
Chin. Ann. Math.
24B:3(2003),293–302.

ON THE EQUATION �ϕ = |∇ϕ|2

IN FOUR SPACE DIMENSIONS**

ZHOU Yi*

Abstract

This paper considers the following Cauchy problem for semilinear wave equations in n space

dimensions

�ϕ = F (∂ϕ),

ϕ(0, x) = f(x), ∂tϕ(0, x) = g(x),

where � = ∂2
t −△ is the wave operator, F is quadratic in ∂ϕ with ∂ = (∂t, ∂x1 , · · · , ∂xn ).

The minimal value of s is determined such that the above Cauchy problem is locally well-
posed in Hs. It turns out that for the general equation s must satisfy

s > max
(n

2
,
n+ 5

4

)
.

This is due to Ponce and Sideris (when n = 3) and Tataru (when n ≥ 5). The purpose of this
paper is to supplement with a proof in the case n = 2, 4.
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§1. Introduction

In this paper, we consider the following Cauchy problem for semilinear wave equations in
n space dimensions

�ϕ = F (∂ϕ), (1.1)

ϕ(0, x) = f(x), ∂tϕ(0, x) = g(x), (1.2)

where � = ∂2t −△ is the wave operator, F is quadratic in ∂ϕ with ∂ = (∂t, ∂x1 , · · · , ∂xn).
We want to determine the minimal value of s such that the Cauchy problem (1.1),(1.2)

is locally well-posed for

f ∈ Hs, g ∈ Hs−1. (1.3)
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The classical local existence theorem requires s > n
2 + 1, while the scaling limit is s > n

2 .
The correct one turns out to be

s > max
(n
2
,
n+ 5

4

)
. (1.4)

The counter-example which shows that (1.4) can not be improved in general is due to
Lindblad[8]. The positive result is due to Ponce and Sideris[10] (when n = 3) and Tataru[11]

(when n ≥ 5). To our knowledge, the proofs have not been written for the case n = 2, 4.
The purpose of this paper is to supplement with such a proof. The proof in the case n = 2
uses Strichartz inequality just as in the three space dimensional case. The proof in the case
n = 4 uses so called Wave-Sobolev spaces (cf. [1, 3, 5–7, 12]). In the latter case, the proof
is quite similar to that of our previous paper[12] when one deals with two space dimensional
case and the nonlinearity satisfying a null condition. This is the main motivation for us to
write down the present proof.

§2. Four Space Dimensional Case

For simplicity of the exposition, we consider the equation

�ϕ = |∇ϕ|2, (2.1)

where ∇ = (∂x1 , · · · , ∂xn). We start our investigation by studying the regularity properties
of the first iterate of the equation (2.1). For simplicity, we consider the following iterate:

�ϕ = 0, (2.2)

ϕ(0, x) = f(x), ∂tϕ(0, x) = 0, (2.3)

�ψ = |∇ϕ|2, (2.4)

ψ(0, x) = 0, ∂tψ(0, x) = 0. (2.5)

We shall prove

Proposition 2.1. Consider in R4+1 the Cauchy problem (2.4),(2.5) with ϕ satisfying
(2.2),(2.3). If f ∈ Hs with 9

4 < s < 5
2 , then the first iterate ψ belongs to Hs, and moreover,

it holds that

|∂ψ(t, ·)|Hs−1 ≤ Cγt
γ |f |2Hs (2.6)

for any γ with 1
4 < γ < s− 2. Here Cγ is a positive constant depending only on γ.

It turns out that only the knowledge of local regularity of ψ is not enough for our purposes.
We shall also investigate the microlocal regularity properties of ψ.

Proposition 2.2. Under the assumption of Proposition 2.1. Let ψ̃(τ, ξ) be the space time
Fourier transform of ψ. Then microlocally at noncharacteristic point τ2− ξ2 ̸= 0, ψ belongs
to H2s− 3

2 . More precisely, the following estimate holds∫∫
(|τ |+ |ξ|)2s−2||τ | − |ξ||−(5−2s)(|̃∇ϕ|2(τ, ξ))2dτdξ ≤ C|f |4Hs . (2.7)

We are now ready to study the Cauchy problem (2.1),(1.2). It is suggested by Proposition
2.2 that we introduce the Wave-Sobolev norms (cf. [7])

Nb,δ(ϕ) =
(∫∫

w2b
+ (τ, ξ)w2δ

− (τ, ξ)ϕ̃2(τ, ξ)dτdξ
) 1

2

, (2.8)

where ϕ̃ denotes the space-time Fourier transform of ϕ and

w±(τ, ξ) = 1 + ||τ | ± |ξ||. (2.9)
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After some cut off, we shall seek a solution with finite Ns,s− 3
2
norm. Thus, we shall

establish the following

Theorem 2.1. Consider in R4+1 the space-time norms (2.8) and function ϕ defined on
R4+1. Then the estimate

Ns−1,−( 5
2−s)(|∇ϕ|2) ≤ CN2

s,s− 3
2
(ϕ) (2.10)

holds for any 9
4 < s < 5

2 .

By applying Theorem 2.1, we can get

Theorem 2.2. The initial value problem (2.1),(1.2) in 4 space dimensions is locally
well-posed for f ∈ Hs, g ∈ Hs−1 with 9

4 < s < 5
2 .

We first prove Proposition 2.1. It is easy to see that the space Fourier transform of ψ is

ψ̂(t, ξ) =
1

|ξ|

∫ t

0

sin |ξ|(t− t′)F̂ (t′, ξ)dt′, (2.11)

where F = |∇ϕ|2. Noting that

ϕ̂(t′, ξ) = cos |ξ|t′f̂(ξ), (2.12)

we get

ψ̂(t, ξ) =
1

|ξ|

∫ t

0

∫
R4

(ξ − η) · η sin |ξ|(t− t′) cos |ξ − η|t′ cos |η|t′f̂(ξ − η)f̂(η)dηdt′. (2.13)

By duality, we only have to prove∫ t

0

∫∫
(ξ − η) · η(1 + |ξ|)s−1 sin |ξ|(t− t′) cos |ξ − η|t′ cos |η|t′

· f̂(ξ − η)f̂(η)H(ξ)dξdηdt′

≤ Ctγ |f |2Hs∥H∥, (2.14)

where ∥H∥ denotes the L2 norm of H. Let

F (ξ) = (1 + |ξ|)sf̂(ξ). (2.15)

Then (2.14) is equivalent to∫∫
(ξ − η) · η(1 + |ξ|)s−1

(1 + |ξ − η|)s(1 + |η|)s
(∫ t

0

sin |ξ|(t− t′) cos |ξ − η|t′ cos |η|t′dt′
)

· F (ξ − η)F (η)H(ξ)dξdη

≤ Ctγ∥F∥2∥H∥. (2.16)

By making a change of variables from ξ to ξ + η, this is equivalent to∫∫
ξ · η(1 + |ξ + η|)s−1

(1 + |ξ|)s(1 + |η|)s
P (t, ξ, η)F (ξ)F (η)H(ξ + η)dξdη ≤ Ctγ∥F∥2∥H∥, (2.17)

where

P (t, ξ, η) =

∫ t

0

sin |ξ + η|(t− t′) cos |ξ|t′ cos |η|t′dt′. (2.18)

A simple calculation shows that

P (t, ξ, η) ≤
4∑

i=1

Pi(t, ξ, η), (2.19)
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where

P1(t, ξ, η) =
| sin(|ξ + η|+ |ξ|+ |η|)t|

|ξ + η|+ |ξ|+ |η|
≤ tγ

(|ξ + η|+ |ξ|+ |η|)1−γ
, (2.20)

P2(t, ξ, η) =
| sin(−|ξ + η|+ |ξ|+ |η|)t|

−|ξ + η|+ |ξ|+ |η|
≤ tγ

(−|ξ + η|+ |ξ|+ |η|)1−γ
, (2.21)

P3(t, ξ, η) =
| sin(|ξ + η| − |ξ|+ |η|)t|

|ξ + η| − |ξ|+ |η|
≤ tγ

(|ξ + η| − |ξ|+ |η|)1−γ
, (2.22)

P4(t, ξ, η) =
| sin(|ξ + η|+ |ξ| − |η|)t|

|ξ + η|+ |ξ| − |η|
≤ tγ

(|ξ + η|+ |ξ| − |η|)1−γ
. (2.23)

Thus, we need to estimate

Ii =

∫∫
ξ · η(1 + |ξ + η|)s−1

(1 + |ξ|)s(1 + |η|)s
Pi(t, ξ, η)F (ξ)F (η)H(ξ + η)dξdη. (2.24)

Noting that

tγ

(|ξ + η|+ |ξ|+ |η|)1−γ
≤ tγ

(−|ξ + η|+ |ξ|+ |η|)1−γ
, (2.25)

the estimate of I1 can be reduced to that of I2. We shall first estimate I2. We have

I2 ≤ tγ
∫∫

|ξ · η|(1 + |ξ + η|)s−1F (ξ)F (η)H(ξ + η)dξdη

(1 + |ξ|)s(1 + |η|)s(|ξ|+ |η| − |ξ + η|)1−γ
. (2.26)

Without loss of generality, we assume |η| ≤ |ξ|. Then it follows from Schwartz inequality
that

I2 ≤
(∫∫

F 2(ξ)dξdη

(1 + |η|)2(s−1)(|ξ|+ |η| − |ξ + η|)2−2γ

) 1
2 ∥F∥∥H∥. (2.27)

So it remains to prove

J =

∫∫
dη

(1 + |η|)2(s−1)(|ξ|+ |η| − |ξ + η|)2−2γ
≤ C. (2.28)

Without loss of generality, we assume ξ = (r, 0, 0, 0). Then by using polar coordinates, we
get

J ≤ C

∫
dr

(1 + r)2s−2γ−3

∫
sin2 θdθ

(1− cos θ)2−2γ
< +∞ (2.29)

provided that

1

4
< γ < s− 2.

We now estimate I3. I4 is, in fact, equal to I3. By making a change of variables from ξ to
ξ − η then η to −η, we get

I3 ≤ tγ
∫∫

(|ξ + η) · η|(1 + |ξ|)s−1F (ξ + η)F (η)H(ξ)dξdη

(1 + |ξ + η|)s(1 + |η|)s(|ξ|+ |η| − |ξ + η|)1−γ
. (2.30)

If

ξ · η ≥ 0,

then

|ξ + η|2 = ξ2 + η2 + 2ξ · η ≥ |ξ|2.
Thus

I3 ≤ Ctγ
∫∫

F (ξ + η)F (η)H(ξ)

(1 + |η|)s−1(|ξ|+ |η| − |ξ + η|)1−γ
. (2.31)
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The problem is essentially reduced to the previous case. If

ξ · η ≤ 0,

then

|ξ|+ |η| − |ξ + η| = |ξ||η| − ξ · η
|ξ|+ |η|+ |ξ + η|

≥ |ξ||η|
|ξ|+ |η|+ |ξ + η|

.

Thus

I3 ≤ Ctγ
∫∫

F (ξ + η)F (η)H(ξ)dξdη

(1 + |η|)s−γ
(2.32)

provided that |η| ≤ |ξ + η|, and

I3 ≤ Ctγ
∫∫

F (ξ + η)F (η)H(ξ)dξdη

(1 + |ξ + η|)s−1(1 + |η|)1−γ
(2.33)

provided that |ξ + η| ≤ |η|. In both cases, the desired result follows from the following
Lemma 2.1. Let f, g, h be functions defined on Rn. Then∫∫

f(x)g(y)h(x+ y)

(1 + |x|)a(1 + |y|)b(1 + |x+ y|)c
dxdy ≤ C∥f∥∥g∥∥h∥ (2.34)

provided that a, b, c ≥ 0 and a+ b+ c > n
2 .

Proof. By

1

(1 + |x|)a(1 + |y|)b(1 + |x+ y|)c

≤ 1

(1 + |x|)a+b+c
+

1

(1 + |y|)a+b+c
+

1

(1 + |x+ y|)a+b+c
,

(2.34) follows easily from Schwartz’s inequality.
Therefore, we finish the proof of Proposition 2.1.
We now prove Proposition 2.2. We write

ϕ =
1

2
(ϕ+ + ϕ−), (2.35)

where

ϕ±(t, x) = (2π)−4

∫
R4

ei(x·ξ±t|ξ|)f̂(ξ)dξ. (2.36)

To estimate |∇ϕ|2, it suffices to estimate ∇ϕ+ · ∇ϕ+ and ∇ϕ+ · ∇ϕ−. By duality, we only
need to prove that∫∫

(|τ |+ |ξ|)s−1||τ | − |ξ||−( 5
2−s) ˜∇ϕ+ · ∇ϕ±(τ, ξ)H(τ, ξ)dτdξ

≤ C|f |2Hs∥H∥. (2.37)

A simple calculation shows that the left-hand side is equal to∫∫
(||ξ − η| ± |η||+ |ξ|)s−1(||ξ − η| ± |η|| − |ξ|)−( 5

2−s)(ξ − η) · η

· f̂(ξ − η)f̂(η)H(|ξ − η| ± |η|, ξ)dξdη. (2.38)

Let

F (ξ) = (1 + |ξ|)sf̂(ξ).
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Then we only need to prove

I =

∫∫
(ξ − η) · η(||ξ − η| ± |η||+ |ξ|)s−1

(||ξ − η| ± |η|| − |ξ|) 5
2−s|ξ − η|s|η|s

F (ξ − η)F (η)H(|ξ − η| ± |η|, ξ)dξdη

≤ C∥F∥2∥H∥. (2.39)

Without loss of generality, we may assume

|ξ − η| ≥ |η|. (2.40)

Then

||ξ − η| ± |η||+ |ξ| ≤ 4|ξ − η|. (2.41)

It follows that

I ≤ C

∫∫
F (ξ − η)F (η)H(|ξ − η| ± |η|, ξ)dξdη

(||ξ − η| ± |η|| − |ξ|) 5
2−s|η|s−1

. (2.42)

Thus, the desired conclusions follows from the following
Lemma 2.2. The following estimate holds for any 9

4 < s < 5
2 ,

J =

∫∫
F (ξ − η)G(η)H(|ξ − η| ± |η|, ξ)dξdη

(||ξ − η| ± |η|| − |ξ|) 5
2−s|η|s−1

≤ C∥F∥∥G∥∥H∥. (2.43)

Proof. See [4, Theorem 1.1].
We now prove Theorem 2.1. By duality, it suffices to prove that∫∫

ws−1
+ (τ, ξ)w

−( 5
2−s)

− (τ, ξ)|̃∇ϕ|2(τ, ξ)H(τ, ξ)dτdξ

≤ CN2
s,s− 3

2
(ϕ)∥H∥. (2.44)

Let

F = ws
+(τ, ξ)w

s− 3
2

− (τ, ξ)ϕ̃(τ, ξ). (2.45)

Then an easy calculation shows that (2.44) is equivalent to

I =

∫∫
ws−1

+ (τ + λ, ξ + η)(ξ · η)F (τ, ξ)F (λ, η)H(τ + λ, ξ + η)dτdλdξdη

w
5
2−s
− (τ + λ, ξ + η)ws

+(τ, ξ)w
s− 3

2
− (τ, ξ)ws

+(λ, η)w
s− 3

2
− (λ, η)

≤ C∥F∥2∥H∥. (2.46)

Without loss of generality, we may assume

w+(λ, η) ≤ w+(τ, ξ),

then

w+(τ + λ, ξ + η) ≤ 2w+(τ, ξ).

Therefore, noting

|ξ| ≤ w+(τ, ξ), |η| ≤ w+(λ, η),

we can get

I ≤
∫∫

F (τ, ξ)F (λ, η)H(τ + λ, ξ + η)dτdλdξdη

w
5
2−s
− (τ + λ, ξ + η)|η|s−1w

s− 3
2

− (τ, ξ)w
s− 3

2
− (λ, η)

. (2.47)

Without loss of generality, we take

|τ | = τ, |λ| = ±λ. (2.48)
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We claim that

w−(τ + λ, ξ + η) + w−(τ, ξ) + w−(λ, η) ≥
1

2
|||ξ| ± |η|| − |ξ + η||. (2.49)

Let

u = |τ | − |ξ|, v = |λ| − |η|, (2.50)

then

τ = u+ |ξ|, λ = ±(v + |η|). (2.51)

If

|u|+ |v| ≥ 1

2
|||ξ| ± |η|| − |ξ + η||,

then (2.49) will be right. Otherwise

w−(τ + λ, ξ + η) = 1 + ||u± v + |ξ| ± |η|| − |ξ + η||. (2.52)

In the “+” case, we have

|u+ v + |ξ|+ |η|| − |ξ + η| ≥ −|u| − |v|+ |ξ|+ |η| − |ξ + η|

≥ 1

2
(|ξ|+ |η| − |ξ + η|) ≥ 0. (2.53)

In the “−” case, we have

|ξ + η| − |u− v + ||ξ| − |η||| ≥ −|u| − |v|+ |ξ + η| − ||ξ| − |η||

≥ 1

2
(|ξ + η| − ||ξ| − |η||) ≥ 0. (2.54)

Therefore, (2.49) is always valid. It then follows from (2.49) that

|||ξ| ± |η|| − |ξ + η|| 52−s ≤ C(w−(τ + λ, ξ + η) + w−(τ, ξ) + w−(λ, η))
5
2−s

≤ 3Cw−(τ + λ, ξ + η)
5
2−sw−(τ, ξ)

5
2−sw−(λ, η)

5
2−s.

Thus

I ≤ C

∫∫
F (τ, ξ)F (λ, η)H(τ + λ, ξ + η)dτdλdξdη

|||ξ| ± |η|| − |ξ + η|| 52−s|η|s−1w2s−4
− (τ, ξ)w2s−4

− (λ, η)

= C

∫∫
F (u+ |ξ|, ξ)F (±v ± |η|, η)H(u± v + |ξ| ± |η|, ξ + η)dξdη

|||ξ| ± |η|| − |ξ + η|| 52−s|η|s−1

×
∫∫

dudv

(1 + |u|)2s−4(1 + |v|)2s−4
. (2.55)

Let

fu(ξ) = F (u+ |ξ|, ξ), gv(η) = F (±v ± |η|, η). (2.56)

Then it follows from Lemma 2.2 that∫∫
fu(ξ)gv(η)H(u± v + |ξ| ± |η|, ξ + η)dξdη

|||ξ| ± |η|| − |ξ + η|| 52−s|η|s−1
≤ C∥H∥∥fu∥∥gv∥. (2.57)

Thus

I ≤ C∥H∥
∫∫

∥fu∥∥fv∥dudv
(1 + |u|)2s−4(1 + |v|)2s−4

. (2.58)

Noting 2s− 4 > 1
2 , it follows from Schwartz’s inequality that

I ≤ C∥H∥
(∫

∥fu∥2du
) 1

2
(∫

∥gv∥2dv
) 1

2

= C∥H∥∥F∥2. (2.59)

This finishes the proof of Theorem 2.1.
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§3. Two Space Dimensional Case

In this section, we consider the Cauchy problem (1.1),(1.2) in two space dimensions. Our
main result can be summarized in the following

Theorem 3.1. Suppose that (f, g) ∈ Hs(R2) ×Hs−1(R2) for s > 7
4 . Then there exists

a T > 0 depending on s and |f |Hs + |g|Hs−1 such that (1.1),(1.2) has a unique solution ϕ
satisfying

ϕ ∈ C([0, T ];Hs(R2)) ∩ C1([0, T ];Hs−1(R2)), (3.1)∫ T

0

|(−△)
σ
2 ∂ϕ(t, ·)|rLqdt < +∞, (3.2)

where 2
4s−7 < q < +∞, r = 4q

q−2 , and σ = s− 7
4 + 3

2q .

To obtain the result of Theorem 3.1, we need the following Strichartz inequality for the
linear wave equation (cf. [9]).

Lemma 3.1. Let ϕ be a function defined on R × R2 which solves the following initial
value problem for the linear wave equation

�ϕ(t, x) = F (t, x), (3.3)

ϕ(0, x) = f(x), ∂tϕ(0, x) = g(x). (3.4)

Then for any 2 ≤ q < +∞, r = 4q
q−2 , α = 3

r , there holds(∫ T

0

|∂ϕ(t, ·)|rLqdt
) 1

r ≤ C
(
|f |Hα+1 + |g|Hα +

∫ T

0

|F (t, ·)|Hαdt
)
. (3.5)

We are now ready to prove Theorem 3.1. For T, a > 0, define the space

Xa
T = {ϕ ∈ C([0, T ];Hs(R2)) ∩ C1([0, T ];Hs−1(R2)) : ∥ϕ∥ ≤ a}, (3.6)

where

∥ϕ∥ = sup
0≤t≤T

(|ϕ(t, ·)|Hs + |∂tϕ(t, ·)|Hs−1) +
(∫ T

0

|(−△)
σ
2 ∂ϕ(t, ·)|rLqdt

) 1
r

(3.7)

with σ, q, r as in Theorem 3.1. For any ϕ ∈ Xa
T , define ψ = Λϕ by solving the following

Cauchy problem

�ψ = F (∂ϕ), (3.8)

ψ(0, x) = f(x), ∂tψ(0, x) = g(x). (3.9)

We shall show that Λ is a contraction of Xa
T into itself.

By energy estimate, we get

sup
0≤t≤T

|∂ψ(t, ·)|Hs−1 ≤ C1

(
|f |Hs + |g|Hs−1 +

∫ T

0

|F (∂ϕ)(t, ·)|Hs−1dt
)
. (3.10)

By Strichartz’s inequality, we get(∫ T

0

|(−△)
σ
2 ∂ϕ(t, ·)|rLqdt

) 1
r

≤ C2

(
|f |Hs + |g|Hs−1 +

∫ T

0

|F (∂ϕ)(t, ·)|Hs−1dt
)
. (3.11)
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Thus, we get

sup
0≤t≤T

|∂ψ(t, ·)|Hs−1 +
(∫ T

0

|(−△)
σ
2 ∂ϕ(t, ·)|rLqdt

) 1
r

≤ C0

(
|f |Hs + |g|Hs−1 +

∫ T

0

|F (∂ϕ)(t, ·)|Hs−1dt
)

≤ a

4
+ C0

∫ T

0

|F (∂ϕ)(t, ·)|Hs−1dt, (3.12)

where we take

a = 4C0(|f |Hs + |g|Hs−1). (3.13)

Without loss of generality, we assume C0 > 1. As in the three dimensional case, we have

|F (∂ϕ)|Hs−1 ≤ C|∂ϕ|L∞ |∂ϕ|Hs−1 ≤ Ca|∂ϕ|L∞ .

Noting σ > 2
q , it follows from Sobolev inequality that

|∂ϕ|L∞ ≤ C(|∂ϕ|L2 + |(−△)
σ
2 ∂ϕ|Lq ) ≤ Ca+ C|(−△)

σ
2 ∂ϕ|Lq .

Thus

|F (∂ϕ)|Hs−1 ≤ Ca2 + Ca|(−△)
σ
2 ∂ϕ|Lq . (3.14)

It then follows from Hölder’s inequality that∫ T

0

|F (∂ϕ(t, ·))|Hs−1dt ≤ Ca2T + CaT 1− 1
r

(∫ T

0

|(−△)
σ
2 ∂ϕ(t, ·)|rLqdt

) 1
r

≤ Ca2T + Ca2T 1− 1
r ≤ a

4C0
(3.15)

provided that T is taking suitably small. By (3.12), we get

sup
0≤t≤T

|∂ψ(t, ·)|Hs−1 +
(∫ T

0

|(−△)
σ
2 ∂ϕ(t, ·)|rLqdt

) 1
r ≤ a

2
. (3.16)

We have

|ψ(t, ·)|L2 ≤ |f |L2 +

∫ t

0

|∂tψ(τ, ·)|L2dτ

≤ a

4
+ Ta ≤ a

2
(3.17)

provided that T is taken suitably small. Therefore, it follows from (3.16), (3.17) that

∥ψ∥ ≤ a

and thus Λ is a map from Xa
T to Xa

T . In a similar fashion, it can be shown that the mapping
Λ is a contraction on Xa

T . Thus, there exists a unique fixed point of Λ which is a solution
of (1.1),(1.2). This finishes the proof of Theorem 3.1.
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