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ON THE SPACES OF THE MAXIMAL POINTS***
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Abstract

For a continuous domain D, some characterizations that the convex powerdomain C'D is
a domain hull of Max(CD) is given in terms of compact subsets of D. And in the case, it is
proved that the set of the maximal points Max(CD) of C'D with the relative Scott topology is
homeomorphic to the set of all Scott compact subsets of Max(D) with the topology induced by
the Hausdorff metric derived from a metric on Max(D) when Max(D) is metrizable.
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§1. Introduction

It is an interesting and active research direction to deal with some problems in topology
by employing appropriate domain environment. In [8], J. D. Lawson proved that each Polish
space can be arise as the set of maximal points of an w-continuous domain; K. Martin[*3]
obtained the similar results by virtue of introducing Lebesgue measurement on continuous
domains, and he investigated relations between the maximal points of D and those of the
convex powerdomain C'D. In this paper a characterization that the convex powerdomain
CD is a domain hull of Max(C'D) is given in terms of Scott compact subsets of D. And in
this case, it is proved that the set of the maximal points Max(C' D) of C'D with the relative
Scott topology is homeomorphic to the set of all Scott compact subsets of Max(D) with the
topology induced by the Hausdorff metric if Max(D) is metrizable.

A dcpo D is a partially ordered set such that every directed set E of D has a least
upper bound in D, denoted by VE. For z,y € D,z < y implies that for each directed set
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E C D with y < VE, there exists some e € E such that z < e. For each x € D, we denote
la={yeD:y<atand fz={yeD:z <y} Adepo D is called a continuous
domain if |} x is directed and x = V |} x for each x € D. For a set A C D, we denote
TA={yeD:3a€ Aa<y}. Aiscalled an upper set if + A = A. | A and the lower set
can be defined dually. Also f} A, A can be given similarly.

A subset U of a depo D is Scott open provided U is an upper set and ENU # () for each
directed set E C D with VE € U. The topology o(D) formed by all the Scott open sets of
D is called the Scott topology. The topology generated by taking o(D) U {D\ Tz :x € D}
as a subbase is called the Lawson topology, denoted by A(D).

Definition 1.1.11 An abstract basis is given by a set B with a transitive order < such
that

M<z=dJye BBM<y<=z

for all x € B and all nonempty finite sets M C B

Obviously, (D, <) is an abstract basis for a continuous domain D.

A subset I of an abstract basis (B, <) is called an ideal if I is a directed lower set with
respect to the transitive order <. The collection of ideals of (B, <) ordered by set-theoretical
inclusion is a continuous domain, denoted by Id(B, <) (see [1]).

Let D be a continuous domain and A, B C D. We define relations as follows:

ALy B<=VYae A,Fbe€ B,a K b,
A<y B<=Vbe B,3a € A,a < b,
A<py B<— A< BA<y B.

Similarly we can define the relations <, <y and <g;.

Let Fin(D) be the collection of all nonempty finite subsets of D. It is easily to see that
(Fin(D), < gar) is an abstract basis.

Definition 1.2.1%13! let D be a continuous domain.

(1) Id(Fin(D),<gum) is called the convex powerdomain of D, written CD for short.

(2) A* ={F € Fin(D) : F <gp A} for each nonempty set A C D.

For a depo D, let Max(D) denote the set of all maximal points of D and Com(Max (D))
the collection of all Scott compact subsets of Max(D).

Proposition 1.1.['233] (1) K* € CD for each Scott compact subset of D.

(2) VF € Fin(D),I e CD,Fel < Fr<l1.

(3) Ky =n{t F: F €1} is a Scott compact upper set for each I € CD, and K} C I for
each I € Max(CD).

Definition 1.3.81 A continuous domain D is called a domain hull of Max(D) if equation
A(D) |Max(D)= (D) |Max(p) holds, where X(D) |nax(p)y and 0(D) |max(py are the relative
Lawson topology and Scott topology respectively.

Theorem 1.1.[12] For a continuous domain D, the following are equivalent:

(1) D is a domain hull of Max(D);

(2) For each x € D, there is a Scott closed set A, of D such that T = N Max(D) =
A, NMax(D);
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(3) For each x € D and each y € Max(D),z £ y implies that there exist xo <K x,yo K Y
such that 1 zoN 1 yo = 0.

§2. Characterization of Max(CD)

In [12], we obtained the following results:

Theorem 2.1.1'% Let D be a continuous domain. Then

(1) K = Kg- =N{1 F : F € K*} for each Scott compact upper set K of D

(2) If D is a domain hull of Max(D), and K € Com(Max(D)), then K* € Max(CD).

Lemma 2.1. If D is a domain hull of Max(D) and K; C Max(D) for each I € Max(CD),
then K N Max(D) is Scott compact for each Scott compact upper set K of D.

Proof. Let Ky be an arbitrary Scott compact upper set of D. Then Kj € CD and
hence there exists a J € Max(CD) such that K§ C J. Thus by Theorem 2.1(1) we have
K; C Ko N Max(D). To complete the proof, it suffices to show K; = Ko N Max(D).

Suppose that there is a kg € Ko N Max(D) \ K. Then ko ¢1 Fy for some Fy € J. Note
that there is a G, € K such that a € G, for each a < kg. We can take an F,, € J such
that

Fy<pm Fo, Go<gum Fo,

and hence a < z, for some z, € F,. Again by Theorem 2.1,K7 = J, and hence z, < mq
for some m, € K;. Thus the net {m, : a < ko} in Max(D) has an cluster my € K
with respect to the relative Scott topology on Max(D) as K is Scott compact. Note that
Max(D) with the relative Scott topology is Hausdorff as D is a domain hull of Max(D),
there exist ug < ko, vg < mq such that 1 upN f} vo N Max(D) = (). On the other hand , we
can take a u; with ug < u; < ko such that m,, €ft vo N Max(D) as mg is a cluster of the
net {mg : a < ko} and {} vo N Max(D) is a neighborhood of mg. By u1 < z,, < my,, then
My, € ug N Max(D), which is contradiction. Thus the proof is completed.

Theorem 2.2. If continuous domain D is a domain hull of Max(D), then the following
statements are equivalent.

(1) CD is a domain hull of Max(CD);

(2) K; € Max(D) for each I € Max(CD);

(3) K N Max(D) is Scott compact for each Scott compact upper set K of D and I = K3
for each I € Max(CD).

Proof. (1)=(2): Suppose K; € Max(D) for some I € Max(CD).Then there exists a
ko € Kr\Max(D). We can take mo € K; N Max(D) with kg < mg. For each k € K\ | ko,
take an ay with ap < k and ag £ ko, and for each s €| kg N K, take an arbitrary b, with
bs < s. We obtain a Scott open cover {{} ai : k € K\ | ko} U{{} bs : s €] ko N K} of K,
hence there is a finite subcover {ft ax, :7=1,2,--- ,;ni}U{fbs, : j =1,2,--- ,na}. Then

G:{aki e =1,2,--- ,nl}U{bs]. =12, ,Tlg} <gm Ki.

Again we take a by with {b,, : j =1,2,--- ,na} < by < mg and by £ ko and let F' = {a, :
i=1,2,--- ,n1} U{bo}. Then it is easy to see F* € I. By Theorem 1.1, it suffice to show
that + F*N 1+ H* # () for each H € 1.
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For each H € I, take an H € I with G < H and H <« H. Since ko € K7,
H,={he H:3kecKmn]|myh<k}#0.

If H; = H, then it is not difficult to show {mg}* €t F*N 1 H* # () and hence the proof is
completed.

We now suppose H\H; # (. For each h € H\H;, then there is a k;, € K\ | mg such
that h < kp. Note G <gpy Kj, then Ay = {ax, € G : ag, < kp} # 0 and we can take a
up, such that A, U {h} < up < ky,. For each h € Hy, take a uy, with {h, by} < up < mo.
Thus we can show H <py Uy and F <gy Uy for Ug = {up : h € H}, and hence
Ui et F*nt H* # 0.

(2) = (3): Follows from Lemma 2.1, Proposition 1.1 and Theorem 2.1.

(3) = (1): Take an arbitrary I € CD,J € Max(CD) with I ¢ J. It suffice to show that
there exists a G, G € J such that { IN {f G* = () by Theorem 1.1 and Proposition 1.1.
By I ¢ J and Proposition 1.1(3), we can take an F' € I\J with F €gps K7, which implies
FﬁUKJOI‘FﬁLKJ.

(i) If F £, K, then there exists an z1 € F such that 2y £ m for each m € K, thus by
Theorem 1.1 we can take z,, < x1,a, < m such that 1 z,,N 1 @, = 0. For each m € K,
take an a,, satisfying @, < a,, < m, then obtain an open cover {f a,, : m € K;} of K.
Suppose that {{} @, : i = 1,2,--- ,n} is a finite subcover of K;. Then G = {an,, : i =
1,2,--- ,n} <gm Ky, and hence G € J by Proposition 1.1(3). In the following we show
that f# IN{ G* = 0.

Firstly take an z7 with {z,,, : i =1,2,--- ,n} €K T1 < z1, then take an arbitrary y, with
yr < z for each z € F\{z1}. Then F = {y, : z € F\{z1}} U{Z1} <gm F, hence F € I.

Suppose Iy €t IN {} G*, then F € Iy and G = {a,,, : i = 1,2,--- ,n} € Iy, hence there
is an H € Iy such that G <gy H,F <gy H. Thus there is an h, h € H such that
71 < h and @,,, < h for some @,,, € G, which contradicts to 1 1N 1 @,, = (). Hence
T INH G =0.

(ii) If F £y K, then there exists an my € K; such that © € mg for each x € F. From
Theorem 1.1, it follows that there are a, < z,b, < mg such that 1 a,N 1 b, = 0 for each
x € F. now we can take br and bp with {b, : 2 € F} < br < br < mg by the finiteness of
F, and take a G € J with bp € G. For each y € G\{br}, take an arbitrary b, with b, < y,
then

G ={b,:yeG\{br}U{br} <pum G.
Suppose Iy €t IN f G*. Then Fy = {a, : v € F} € I,G € Iy. Take an H € I, with

{F1,G} <gu H, it will, similarly to the proof of (i), induce a contradiction.
In view of the above, the proof is completed.

§3. Metric Topology on Max(CD)
From the characterization theorem above and Theorem 2.1(1), it follows that the mapping
g : Com(Max(D)) - Max(CD),
K— K*
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is a bijection when D and C'D are domain hulls of Max(D) and Max(CD) respectively. In
addition if Max(D) with the relative Scott topology is metrizable, then a interesting question
is posed!!3l:

Is Max(CD) with the relative Scott topology homeomorphic to Com(Max(D) with the
topology induced by the Hausdorff metric derived from a metric on Max(D)?

In the following we will show that the answer to the question is yes. Now suppose that
d is a metric on Max(D), then the Hausdorff metric d on Com(Max(D)) derived from d as
follows:

d(Kl,Kz) = inf{r N K1 Q BQ(KQ),KQ Q B;(KI)L

where B} (K1) = {z € Max(D) : d(z, K1) < r} and d(z, K1) = inf{d(z,y) : y € K1 }.

Theorem 3.1. Let continuous domain D and its convex powerdomain CD be domain

hulls of Max(D) and Max(CD) respectively, and Max(D) metrizable. Then

g : (Com(Max(D),T;) — (Max(CD),o(CD)Max(CD))
is a continuous and open mapping and hence is a homeomorphism, where T is the topology
induced by the Hausdorff metric d.

Proof. (i) g is continuous. Suppose that J € Max(CD) and ff I N Max(CD) is an
arbitrary Scott open neighborhood of J. By I <« J, there are G1,G2 € Fin(D) with
Gy <gum Go such that I C G7 C G5 C J, which implies G1 <ga Ky, and hence K; Cft Gy
by Theorem 2.3(3). Since K is compact subset of metric space Max(D), there exists a
positive real number r such that for each k € K,

By (k) €t x4, N Max(D)
for some x;, € G1. By G1 <gum K, for each x € Gy there is a k; € K such that
Bl (kz) Cft e N Max(D) Cfh o
for some positive real number r,. Let 7o = min{r,r, : € G1}/2, we claim
BY(K;) = {K € Com(Max(D) : d(K;, K) <o} C g~ '[ft I N Max(CD)],
hence g is continuous.

In fact, from K € Bg)(K 7), it follows that for each k € K there is a y, € K such
that k& € B} (yx) Cft G1, hence G; <y K. Now let z € G;. From K; C B)°(K) , it
follows that there is a u, € K such that d(k;,u,) < ro, which implies u, € B)°(k;) € .
Thus we have © < uy, and hence G; <1 K. By G1 <gum K and I C GF, we know that
K € g7 [t INnMax(CD)]. Hence g is continuous.

(ii) To prove that g is an open mapping, it suffices to prove that for each K € Max(D) and
for 7 > 0, g[BZ(K)] is an open set. Suppose K € BZ(K), then K1 C By’ (K), K C B, (K1)
for some rg < r. For each k € K; there is an xj, € K such that d(k,zy) < ro. We can take
an s with 0 < s < inf{(r —r9)/3,70} such that B} (k) C B}’ (x), and take an a; < k
such that

k eft ar, " Max(D) C B (k).

Thus we obtain an open cover {f} a : k € K1} of K; which has a finite subcover {{} ay, :
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i=1,2,---,n}, then F = {ak,,aky, - ,0k, } € Kf, i.e. Kj € U = F* N Max(CD). To
complete the proof, it suffices to show U C g[B%(K)].
Suppose K5 € U, then F < gy Ko and hence

Ky Cf FNMax(D) C U{B}" (k;) :i=1,2,--- ,n}
CU{B)’(xy,):i=1,2,--- ,n}
C B’ (K).
For each u € K, again by K C B}"(K;) and F <gu K, there is a y, € K; such that
d(u,y) < 7o, and there is a ay, € F such that ay, < y., which means d(y., k:,) < sg,, -
Again by F <gp Ko, there is a z, € Ko such that ak,, < 2y, which implies d(k;,, zy) <

Sk,;, - Thus we have

i

d(u, 20) < d(u, yu) + d(Yu, ki) + d(ki, , 2u)
< 1o+ 28, <ro+2(r—r19)/3 <,
which means d(K, K3) < r, hence K3 € 9[BL(K)].
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