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Abstract

This paper gives some sufficient conditions for determining the simplicity of infinite di-
mentional Novikov algebras of characteristic 0, and also constructs a class of simple Novikov
algebras by extending the base field. At last, the deformation theory of Novikov algebras is

introduced.
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§1. Introduction

Novikov algebras were introduced in connection with the Poisson brackets of hydrody-

namic type[1]. They were also introduced in connection with Hamiltonian operators in the

formal variational calculus[2]. Geometrically, a Novikov algebra corresponds to a left in-

variant torsion free flat connection of the Lie group whose Lie algebra is isomorphic to the

commutator Lie algebra of the Novikov algebra. The abstract study of Novikov algebras

began with Zelmanov[3], who showed that simple finite dimentional Novikov algebras of

characteristic 0 are one-dimensional. Osborn classified simple Novikov algebras with an

idempotent element and some modules over such algebras[4]. A class of simple Novikov

algebra without idempotent elements was constructed though Novikov-Poisson algebras by

Xiaoping Xu[5]. For further understanding and physical applications, Bai Chengming[6] gave

a classification of Novikov algebras over the complex field in dimension 2 and 3.

We call a nonassociative algebra left Novikov if it satisfies the two identities

(x, y, z) = (y, x, z), (xy)z = (xz)y,

where (x, y, z) = (xy)z − x(yz). The operators Lx and Rx for some x ∈ A,

Lx : A → A,

y 7→ xy,

Rx : A → A,

y 7→ yx
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are called respectively the left multiplication operator and the right multiplication operator.

The beauty of a Novikov algebra is that the left multiplication operators form a Lie algebra

and the right multiplication operators are commutative. A Novikov-Poission algebra is a

vector space A with two operations “· , ◦” such that (A, ·) forms a commutative associative

algebra and (A, ◦) forms a Novikov algebra for which

(x · y) ◦ z = x · (y ◦ z), (x ◦ y) · z − x ◦ (y · z) = (y ◦ x) · z − y ◦ (x · z).

The main theorem in [4] is: if A is a simple infinite dimentional Novikov algebra over a field

of characteristic 0 containing an idempotent e with the property that A =
∑
α
A′

α, where

A′
α = {x ∈ A| [Le − (α+ b)id]nx = 0 for some n},

then A is described by one of the following:

(1.1) A has a basis {xi}i≥−1, where products are given by xixj = (j + 1)xi+j .

(1.2) A has a basis {xα}, where α ranges over an additive subgroup△ of F, and products

are given by xαxβ = (β + b)xα+β .

(1.3) A has a basis {xα,k}, where products are given by

xα,kxβ,l = (β + b)

(
k + l

k

)
xα+β,k+l +

(
l + k − 1

k

)
xα+β,k+l−1.

A natural question is whether the inverse of the statement is true. In this paper we give

the positive answer. To prove this ,we will first show that the Novikov algebras of algebraic

structure (1.1), (1.2) or (1.3) are all simple.

Algebraic deformation theory was introduced for associative algebras by Nijenhuis and

Richardson[7]. In [8, 9], Bai gave the deformation theory of Novikov algebras and proved

that the Novikov algebras in dimension ≤ 3 can be realized as the algebras defined by I.

M. Gel‘fand[10] and their compatible infinitesimal deformations. Whether this result can be

extended to higher dimensions remains an open problem. In this paper, we introduce the

general deformation theory of Novikov algebras.

The paper is organized as follows. In Section 2, we prove that the Novikov algebras of

algebraic structure (1.1), (1.2) or (1.3) are all simple. In Section 3, we construct a class of

simple Novikov algebras by extending the base field . The general deformation theory of

Novikov algebra is introduced in Section 4.

§2. Simplicity of Novikov Algebras

In this section, we give some sufficient conditions for determining the simplicity of Novikov

algebras. Throughout this section, let (A·, ◦) be an infinite dimentional Novikov algebra over

a field of characteristic 0. The set of positive integers will be denoted by N .

Theorem 2.1. If A has a basis {xi}i≥−1, where products are given by xi◦xj = (j+1)xi+j,

then (A, ◦) is simple.

Proof. Suppose I is a nonzero ideal of A. Let i be an arbitrary nonzero element of I. We

can write i = ai1xi1 + · · ·+ aijxij , where aik ̸= 0 and im ̸= in, if m ̸= n. k,m, n = 1, · · · , j.
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Since x0 ◦ xik = (ik + 1)xik , we obtain

i = ai1xi1 + · · ·+ aijxij ,

Lx0i = ai1(1 + i1)xi1 + · · ·+ aij (1 + ij)xij ,

· · · · · · ,
Lj−1
x0

i = ai1(1 + i1)
j−1xi1 + · · ·+ aij (1 + ij)

j−1xij .

The matrix of this system has the form

M =


ai1 ai2 · · · aij

ai1(1 + i1) ai2(1 + i2) · · · aij (1 + ij)
...

...
. . .

...
ai1(1 + i1)

j−1 ai2(1 + i2)
j−1 · · · aij (1 + ij)

j−1


j×j

.

Notice that detM =
( j∏

k=1

aik

)
detB , where detB is the determinant of Vandermonde and

we have detM ̸= 0 if im ̸= in(m ̸= n). Hence, xi1 , · · · , xij are linear combinations of the

vectors i, Lx−0i, · · · , Lj−1
x0

i. So, xi1 , · · · , xij are all in I. Since i ̸= 0, we have at least one

element xk ∈ I. If k = −1, i.e., x−1 ∈ I, for arbitrary i ∈ N,x−1 ◦ xi = (i + 1)xi−1 ∈ I.

So, xi−1 ∈ I. Hence, I = A. If k ̸= −1, we have x−1 ◦ xk = (k + 1)xk−1 ∈ I. So xk−1 ∈ I.

Using induction we can get x−1 ∈ I. Hence, I = A. From the above proof, we can see that

A has no nontrivial ideal, i.e. A is simple.

Theorem 2.2. If A has a basis {xα}, where α ranges over an additive group △ of F,

and products are given by xαxβ = (β + b)xα+β, then A is simple.

Proof Suppose I is a nonzero ideal of A. Let i be an arbitrary element of I. We can

write i = a1xα1 + · · · + ajxαj , where ak ̸= 0 and αm ̸= αn. Using the similar device as in

Theorem 2.1, we can get xαk
∈ I, k = 1, · · · , j. Since i ̸= 0, we have at least one element

xα ∈ I.

Case 1. Suppose b ̸= 0. If α ̸= −b,∀β ∈ △, β−α ∈ △, we have xβ−αxα = (α+ b)xβ ∈ I.

So xβ ∈ I. If α = −b, i.e. x−b ∈ I, since −b ∈ △, we get b ∈ △, x−b ◦xb = 2bx0 ∈ I. Hence,

x0 ∈ I. For all α ̸= −b, x0 ◦ xα = (α+ b)xα ∈ I. So xα ∈ I. Summarizing, we have I = A.

Case 2. Suppose b = 0. If α = 0, i.e., x0 ∈ I, for arbitrary α ∈ △−{0}, x0xα = αxα ∈ I.

So we have xα ∈ I. If α ̸= 0, xα ∈ I. Since x−α ◦ xα = αx0, we have x0 ∈ I. For arbitrary

β ∈ △ − {0}, x0xβ = βxβ ∈ I. So we have xβ ∈ I. Summarizing we get I = A. From the

above we can see that A has no nontrivial ideal, i.e., A is simple.

Theorem 2.3. If A has a basis {xα,k}, where α ranges over an additive group △ of F

and k ranges over the nonnegative integers Z+, where products are given by

xα,kxβ,l = (β + b)

(
k + l

k

)
xα+β,k+l +

(
k + l − 1

k

)
xα+β,k+l−1,

then A is simple.

Proof. For any ω =
∑

α∈△,j∈Z+

aα,jxα,j ∈ A, we define

dβ(ω) =

{
x
Max{j ∈ J |aβ,j ̸= 0}, if some aβ,j ̸= 0;
−1, otherwise.

Put Ãγ =
∑

j∈Z+

Fxγ,j for γ ∈ △ and put ∂ = Lx0,0 − b id. It is obvious that ∂(xα,j) =
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αxα,j + xα,j−1. Note that, for any β ∈ △,

(∂ − βid)(ω) =
∑

aα,j [(α− β)xα,j + xα,j−1],

dβ [(∂ − βid)(ω)] = dβ(ω)− 1,

dγ [(∂ − βid)(ω)] = dγ(ω), for β ̸= γ ∈ △.

Moreover, if dβ(ω) ≥ 0, we have

dβ [(∂ − βid)dβ(ω)+1(ω)] = −1,

dγ [(∂ − βid)dβ(ω)+1(ω)] = dγ(ω) for β ̸= γ ∈ △.

Therefore (∂ − βid)dβ(ω)+1(ω) ∈
∑

β ̸=γ∈△ Ãγ .

Suppose I is a nonzero ideal of A, and let ω be an arbitrary nonzero element of I. We

can write

ω = b11xα1,a11 + · · ·+ b1i1xα1,a1i1

+ b21xα2,a21 + · · ·+ b2i2xα2,a2i2

+ · · · · · ·
+ bs1xαs,as1 + · · ·+ bsisxαs,asis

,

where bmn ∈ F − {0}, ak1 ≥ ak2 ≥ · · · ≥ akik , k = 1, · · · , s. From the above proof, we get

Q =
∏
i ̸=j

(∂ − αiid)
dαi

(ω)+1(ω) ∈ Ãαj ,

dαj (Q) = dαj (ω).

Using the similar device as in Theorem 2.1, we get xαj ,aj,p ∈ I, p = 1, · · · , ij , j = 1, · · · , s.
Since ω ̸= 0, we have at least one nonzero element xα,k ∈ I.

Case 1. Suppose b ̸= 0.

If α = 0, i.e. x0,k ∈ I, since x0,0x0,k = x0,k−1 ∈ I, we get x0,k−1 ∈ I. Using induction,

we have x0,0, x0,2 ∈ I. Since x0,kx0,2 =
(
k+1
k

)
x0,k+1 ∈ I, we have x0,k+1 ∈ I. Using

induction we have x0,i ∈ I, for arbitrary i ∈ Z+. For arbitrary β ∈ △− {0}, l ∈ Z+. Since

x0,lxβ,0 = βxβ,l ∈ I, we have xβ,l ∈ I. Hence, I = A.

If α ̸= 0, since x0,0xα,k = αxα,k + xα,k−1 ∈ I, we have xα,k−1 ∈ I. Using induction we

have xα,0 ∈ I. Since α ∈ △,−α ∈ △ and x−α, xα,0 = αx0,0 ∈ I, we have x0,0 ∈ I. Since

x0,0x0,k = x0,k−1 ∈ I, we have x0,k−1 ∈ I. Using induction, we can get x0,i ∈ I for arbitrary

i ∈ Z+. For arbitrary β ∈ △ −{0}, k ∈ Z+, we have x0,kxβ,0 = βxβ,k ∈ I. So xβ,k ∈ I.

Hence, I = A.

Case 2. Suppose b ̸= 0.

If α ̸= −b, since x0,0xα,k = (α + b) xα,k + xα,k−1 ∈ I, we have xα,k−1 ∈ I. Using

induction we can get xα,0 ∈ I. Since α ∈ △,−α ∈ △, and x−α,o xα,0 = (α + b)x0,0 ∈ I,

we have x0,0 ∈ I. Since x0,0 xα,k+1 = (α + b)xα,k+1 + xα,k ∈ I, we have xα,k+1 ∈ I. Using

induction we have xα,i ∈ I, for arbitrary i ∈ Z+. For arbitrary β ∈ △, i ∈ Z+,−α+ β ∈ △,

x−α+β,ixα,0 = (α+ b)xβ,i ∈ I, we have xβ,i ∈ I. Hence, I = A.

If α = −b, i.e. x−b,k ∈ I, α = −b ∈ △, then b ∈ △. Since x−b,kxb,0 = 2bx0,k ∈ I, we have

x0,k ∈ I.

Since x0,0x0,k = bx0,k + x0,k−1, we have x0,k−1 ∈ I. Using induction we have x0,0 ∈ I.

Since x0,kx0,1 = bx0,k+1 + x0,k ∈ I, we have x0,k+1 ∈ I. Using induction we have x0,i ∈ I,
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for arbitrary i ∈ Z+. For arbitrary β ∈ △ − {−b}, i ∈ Z+, x0,ixβ,0 = (β + b)xβ,i ∈ I.

α = −b ∈ △, then 2α = −2b ∈ △. For arbitrary i ∈ Z+, xb,ix−2b,0 = −bx−b,i ∈ I. So we

have x−b,i ∈ I. Hence, I = A.

From the above proof we can see A has no nontrivial ideal, i.e. A is simple.

Corrollary 2.1. If A is a simple infinite dimentional Novikov algebra over a field of

characteristic 0 containing an idempotent e with the property that A =
∑
α
A′

α, where A′
α =

{x ∈ A| [Le − (α+ b)id]nx = 0 for some n}, then the subalgebra
∑

α∈△
Aα is a simple Novkov

algebra over A0.

Theorem 2.4. A is a simple infinite dimentional Novikov algebra of characteristic 0

containing an idempotent e with the property that A =
∑
α
A′

α, where A′
α = {x ∈ A| [Le −

(α+ b)id]nx = 0 for some n}, if and only if A is described by one of the following:

(1) A has a basis {xi}i≥−1, where products are given by xixj = (j + 1)xi+j.

(2) A has a basis {xα} where α ranges over an additive subgroup △ of F , and products

are given by xαxβ = (β + b)xα+β

(3) A has a basis {xα,k} where products are given by

xα,kxβ,l = (β + b)

(
k + l

k

)
xα+β,k+l +

(
l + k − 1

k

)
xα+β,k+l−1.

Proof. Based on the above results, to prove the theorem we need only to prove that

there exists an element e ∈ A such that e2 = be for some b ∈ F and A =
∑
α
A′

α, where

A′
α = {x ∈ A| [Le − (α+ b)id]nx = 0 for some n}.
In Case (1), since x0x0 = x0, putting e = x0 and A′

i = Fxi, we can easily verify that

A′
i = {x ∈ A| [Le − (i+ 1)id]nx = 0 for some n} and A =

∑
A′

i.

In Case (2), since x0x0 = bx0, putting e = x0 and A′
α = Fxα,then we can easily verify

that A′
α = {x ∈ A| [Le − (α+ b)id]nx = 0 for some n} and A =

∑
α∈△

A′
α.

In Case (3), since x0,0x0,0 = bx0,0, putting e = x0,0 and A′
α = Ãα, we can easily verify

that A′
α = {x ∈ A| [Le − (α+ b)id]nx = 0 for some n} and A =

∑
α∈△

A′
α.

§3. New Simple Novikov Algebras

In this section, we consider the simplicity of Novikov algebra A ⊗F E := AE over E,

where E is an extension field of F .

Let {ξi}i∈I be a basis of A. Then AE has {ξi⊗1}i∈I as a basis. The products of Novikov

algebra AE are given by

(ξi ⊗ 1)(ξj ⊗ 1) = ξiξj ⊗ 1.

By Theorems 2.1–2.3, we can easily obtain

Theorem 3.1. If A is a Novikov algebra satisfying one of the conditions (1.1), (1.2) and

(1.3), then AE is simple.

§4. The Deformation Theory of Novikov Algebras

In this section, we shall give the definition of deformation of a Navikov algebra A over a

commutative ring F . Since A is F -module, we can obtain an F [t]-module A[t] = A⊗F F [t].
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As a matter of fact, A[t] is an F [t]−module of formal power-series with coefficients in the

F− module A, i.e. A[t] =
{ n∑

i=0

ait
i
∣∣n ∈ Z+, ai ∈ A

}
. The algebra A is submodule of A[t]

and we could make A[t] an algebra by bilinearly extending the multiplication of A, but we

may also impose other multiplications on A[t] that agree with that of A when we specialize

t = 0.

Suppose a multiplication α : A[t] ⊗F [t] A[t] → A[t] is given by a formal power-series of

the form

α(a, b) = α0(a, b) + α1(a, b)t+ α2(a, b)t
2 + · · · .

Since we are defining α over F [t], it is enough to consider a and b in A, and we further

presume that each αn is a linear map A ⊗ A → A. Since we want the specialization t = 0

to give the original multiplication on A, we insist that α0(a, b) = ab (multiplication in A).

Definition 4.1. A one-parameter formal deformation of a Novikov algebra A over a

commutative ring F is a formal power-series α =
∞∑

n=0
αnt

n with coefficients in HomF (A ⊗

A,A) such that α0 : A⊗A → A is a multiplication in A. The deformation is called Novikov

if α(α(a, b), c) − α(a, α(b, c)) = α(α(b, a), c) − α(b, α(a, c)) and α(α(a, b), c) = α(α(a, c), b)

for all a, b, c ∈ A.

Definition 4.2. We call A[t] = A ⊗F F [t] with the multiplication defined by α the

deformation of Novikov algebra A.

Example 4.1. Let (A,α1, α0) be a Novikov-Poisson algebra. (A,α1) forms a commuta-

tive associative algebra, (A,α0) forms a Novikov algebra and define α : A[t]⊗F [t]A[t] → A[t]

by

α = α0 + α1t.

It can be easily verified that (A[t], α) forms a Novikov algebra, i.e. (A[t], α) is the deformation

of (A,α0).
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