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Abstract

This paper studies the tensor product Ry ®w Rps of Jacobson radicals in nest algebras,
and obtains that Ry ®w Ry = {T € B(H1®H2) : T(IN®M) C N_QM_,YN e N, M € M};
and based on the characterization of rank-one operators in Ry ®w Ras, it is proved that if
N, M are non-trivial then Ry ®w Ry = Rig a4 if and only if N, M are continuous.
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§1. Introduction

One of the central results in the theory of tensor products of von Neumann algebras is
Tomita’s commutation formula:

A @, B = (A®, B), (1.1)

where A and B are von Neumann algebras. It was observed in [3] that if we let £ and Lo
denote the projection lattices of A and B respectively, then (1.1) can be rewritten as

Algly ®, Algls = Alg(L1  Ls). (1.2)

This version of Tomita’s theorem makes sense for any pair of reflexive algebras Algl, and
AlgLs. It remains a deep open question whether the tensor product formula (1.2) is valid for
general reflexive algebras, or even general CSL algebras. However, (1.2) has been verified
in a number of special cases!®%67 . In particular, it is known that if A/, M are nests,
then AlgN ®,, AlgM = Alg(N ® M) (see [3]). Since then one has been interested in the
relationship between Ry ®, Ry and Rig - The technique employed in this paper is
different from the other papers about tensor products. We use rank-one operators to study
tensor products and the technique shows its power in this paper.
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Let us introduce some notation and terminology. H represents a complex Hilbert space,
B(H) the algebra of bounded operators on H and F(H) the set of finite -rank operators on H.
A sublattice £ of the projection lattice of B(H) is said to be a subspace lattice if it contains 0
and I and is strongly closed, where we identify projections with their ranges. If the elements
of L pairwise commute, £ is a commutative subspace lattice (CSL). A subspace lattice is
completely distributive if distributive laws are valid for families of arbitrary cardinality (see
[9]). A nest NV is a totally ordered subspace lattice. For L € L, we define

L_=Vv{EeL:LLE}.
In the case of nests, either N_ is the the immediate predecessor of Nor N =N_. If N = N_
for any N € N/, N is called a continuous nest. If £ is a subspace lattice, AlgL denotes the
set of operators in B(H) that leave the elements of £ invariant. If £ is a CSL, AlgL is said
to be a CSL algebra. If £ is a nest, AlgL is said to be a nest algebra.

Recall that the Jacobson radical of a Banach algebra coincides with these elements T'
such that AT is quasinilpotent for every A in the algebra and it is a closed ideal of the
Banach algebra. For a subspace lattice £, we denote R, the Jacobson radical of AlgL. In
[10], Ringrose characterized the Jacobson radical of a nest algebra. In [1], Davidson and Orr
pushed the characterization further to the case of all width two CSL algebras. The result is
essential to our paper.

Let H;(i = 1,2) be complex Hilbert spaces. If £; C B(H;) (i = 1,2) are subspace lattices,
L1 ® Lo is the subspace lattice in B(H; ® Ha) generated by {L1 ® Ly : L; € L;, i = 1,2}, If
S; C B(H;)(i = 1,2) are subspaces, then S; ®S, denotes the linear span of {S1®S5s : S; € S;};
S1 ®, S denotes the norm closure of S; ® Sa; S1 ®., So denotes the weak closure of §; ® So
in B(H1 @ Ha). It is easy to show that S; ®, So = S; ®, Sz, where S; denotes the norm
closure of S;; however in general case, S1 ®,,S2 # S5 ®.,S3’. The reason lies in that the map
(A,B) - A® B from B(H1) x B(Hz2) to B(H1 ® Hsz) is not weakly continuous in general.

§2. Tensor Products of Jacobson Radicals

In the following we suppose that N' and M are nests on H; and Hs respectively; and
that ' ® M is the tensor product of N and M. Ry, Ry and Rygar denote Jacobson
radicals of AlgN, AlgM and Alg(N ® M) respectively.

For z,y € H, the rank-one operator zy* is defined by the equation

(zy*)(2) = (z,y)z, Vz€eH.

Proposition 2.1. RY, = {A € B(H1): AN C N_,VYN € N'}.

Proof. Set U = {A € B(H;1) : AN C N_,¥N € N'}. Then U is a weakly closed AlgN-
module determined by the order homomorphism N — N_ from A into itself. By virtue of
[2] Lemma 1.1, a rank-one operator zy* € U if and only if there exists an element N € N
such that € N and y € NX, where

N.=V{N :N. <N}=N.

We also know that a rank-one operator zy* € Ry if and only if there exists an element
N € N such that € N and y € N*. Thus the Jacobson radical Ry and U have the same
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rank-one operators. Since each finite-rank operator in Ry or U can be represented as a
finite sum of rank-one operators in itself respectively, Ry and U have the same finite-rank
operators.

It follows from Erdos Density Theorem that there is a net {F,} of finite-rank contractions
in Alg\ such that F, — I. Thus for any A € Ry,

F, A% A,
and {F,A} are finite-rank operators in Ry. So
(RyNF(H)Y D RN
and (Ry N F(H))" 2 Ry, (Rnv NF(H))” = RYy,. Combining [2] Corollary 1.6 with the
result in the preceding paragraph, we obtain that
Ry =(RNNFH)Y=UNFH))”=U.

This completes the proof.

Lemma 2.1. Suppose that A € RY;, then there exists a net of finite-rank operators
F, C Ry such that | Fy ||<|| A || and F, =+ A.

Proof. By Erdos Density Theorem, there is a net of finite-rank contractions {F/} C
Alg\ such that F!, =% 1. So

F,=F. A2 A

Since R}, is a weakly closed AlgN-module, {F,,} C RY; N F(H) and || F, ||<|| A ||. From
the proof of the preceding proposition, we know that Ry, N F(H) = Ry N F(H). So
{F.} C Ry NF(H) and satisfies the condition in the lemma.

Lemma 2.2. Ry ®y Ry = Ry @ Ry

Proof. Suppose that A € R, and B € RY,. it follows from Lemma 2.1 that there exist
nets of finite-rank operators {A.} C Ry, {Bg} € R such that

I Ao I AN, I Bs <l Bl and Aq — A, Bs — B.
For any z;,y; € H;(i = 1,2), we have that
((Aa ® Bg) (21 ®@ 22), 41 ®@ y2) = (Aa1,y1)(Bpr2,y2)
— (Az1,y1)(Br2,y2) = (A® B) (21 ® 22),51 © y2).
Since H; ® Ho is the completion of span{z ® 2 : x; € H;} and
I Ao ®@ B [|=Il Ao |- | Bs I<IF Al -1l BII,
it is routine to prove that
((Aq ® Bg)z,w) — ((A® B)z,w) for any z,w € H1 ® Hs.
So Ay ® Bg — A® B and A® B € Ry ®, R, thus
Ry @ Ry € RN ®@uw R,
Ry Quw Riy CRN ®uw R

The converse inequality is obviouse, s0 Ry ®, Ry = RY @uw Ry
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Lemma 2.3. Suppose that U, is a weakly closed Alg(N ® M)- module determined by
an order homomorphism T from N ® M into itself. Then a rank-one operator xy* € U,
if and only if there exists an element L € N ®@ M such that x € L and y € L, where
L.o=V{GeNOIM:LL1(G)}.

Proof. Suppose that there exists an element L € N’ ® M such that € L and y € LL.
For any G e N @ M, if L < 7(G), then

(2y")G = Lizy")LEG € L € 7(G):
it L £ 7(G), then G < L., and

(zy")G = L(zy*)LLG = (0) C 7(G).
Thus the rank-one operator xy* € U;.

Conversely, suppose that zy* € U,. Set L = AN{G € N @ M : Gz = x}, certainly x € L.
For any G € N ® M and L £ 7(G), it follows from the definition of L that 7(G)x # =z. If
Gy # 0, since (zy*)G = 7(G)(2y*)G, we have

[(zy")G1(Gy) = [7(G)(zy")GI(Gy),
|Gy | = =|| Gy |I* 7(G)z.
This cotradicts 7(G)x # x, so Gy = 0 for any L £ 7(G), From the definition of L., we have
L.oy=0andyec L.

Certainly, Lemma 2.3 is true for any subspace lattice L.

Theorem 2.1. Ry @, Ry ={T € B(H1®Hs2) : TINQM)C N_®M_,YN e N, M €
M} ={T € B(Hi®Hz) : TL C 7(L),VL € N@ M}, where 7(L) = V{N_®@M_: N@M <
L}.

Proof. Set U, = {T € B(H1 @ Ha) : TL C 7(L),YL € N @ M}. U, is a weakly closed
Alg(N ® M)-module determined by the order homomorphism L — 7(L) from N ® M into
itself. By virtue of [3, Proposition 2.4],

L=V{(N@M:N®M <L} forany L€ N ® M.
Thus it is easy to show that
U ={T e B(H1 @H2): TIN® M) CN_®@M_,YN e N,M € M}.

Since Ry ®w Ry = Ry ®uw RYy, it follows from Proposition 2.1 that Ry ®., Rar € U-.
Define 1y : N @I - N &1 by

n(IN®I)=N_®I, VNEeN.

71 is an order homomorphism from N ® I into N’ ® I. Define U,, = {T € B(H1 ® Ha) :
T(N®I)C N_®I,VN € N'}. Similarly we define 75 : I @ M — I ® M and U,,. Thus we
have the equation U, = U, NU,,. In fact, U, C U, NU,, is obvious. For T' € U, NU,, we
have that for any N € N', M € M,
TIN@M)CT(N®I)CN_®I,
TINOM)CTUIQM)CI®M-_.
Thus TIN@M) C(N_@I)N(I@M_)=N_®@ M_ and T € U,.
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Since N'® M is a completely distributive CSL ([3, Proposition 2.7]), it follows from [8,
Theorem 3| that the rank-one subalgebra of Alg(N ® M) is weakly dense in Alg(N @ M).
So it is routine to show that the linear span of rank-one operators in U, is also weakly dense
in U-. Accordingly, to show U, C Ry ®, R, it suffices to consider rank-one operators in
U..

From Lemma 2.3, it follows that a rank-one operator xy* € U,, if and only if there exists
N®IeN®Isuchthat z € N®I and y € (N ® I)%, where

(NoDE=(V{N®I:N®I£N oI})*
=(V{N'®@I:N @I < NI}t
=(V{N'®I:N_ < N}H*
=(NeH)t=Ntel
Similarly, a rank-one operator xy* € U, if and only if there exists I ® M € I ® M such that
r€I®M and y € I ® M+. Hence a rank-one operator 2y* € U, = U,, NU,, if and only if
there exist N e NV and M € Msuchthat e N@ M andy € Nt @ ML, If 2 = 21 @ 20
and y = y1 ® y2, we can obtain that
zy* = (N ® M)[(x1 @ z2)(y1 ® y2)*](N* ® M)
= (N ® M)[(z1y7) ® (w293)|(N* © M*)
= N(z19})N* @ M(z0y3)M* € Ry @ Ry
(here the second equality follows from (21 ® 22)(y1 ® y2)* = (z1y7) ® (z2y3), it is casy to
prove). In general, there exist nets {z,}, {wg} such that

o [I-1l z and wg II-1l Y,

where z,,ws are finite linear combinations of simple tensors in #; ® Hg. Thus

(N ® M)(zouw)(N* @ M) Ly (N @ M) 2y ) (N © ML) = 2y,
ry" € RN @n R € RN ®@u R

Hence each rank-one operator in U, belongs to Ry Q4 Rar, SO0 Uy, € Ry ®u Ry and
RN Quw Ry =U-.

Corollary 2.1. The following statements are equivalent:

(1) zy* € Ry @n R

(2) zy* € RN Qu R

(3) there exist N € N and M € M such thatx € N®@ M andy € Nt @ M+.

Proof. (1)=(2) It is obvious.

(2)=(3) and (3)=-(1) They follow from the proof of Theorem 2.1.

Lemma 2.4. xy* € Alg(N ® M) if and only if there exist N € N and M € M such
thatx € N® M andy € N* @ M+,

Proof. Since N @M = (N @)V (I ® M), we have that

Alg(N @ M) = Alg(N @ I) N Alg(I @ M).
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Just like the proof in Theorem 2.1, a rank-one operator zy* € Alg(N ®1I) if and only if there
exists an element N € N such that z € N® I and y € N* ® I. Similarly, zy* € Alg(I ® M)
if and only if there exists M € M such that + € I ® M and y € I ® M*. Therefore
zy* € Alg(N ® M) if and only if there exist N € N/ and M € M such that z € N @ M
and y € N* ® M*. Conversely, if there exist N € N, M € M such that x € N ® M and
€ Nt @ M=+, we have

zy* € Alg(N @ I) N Alg(I @ M) = Alg(N @ M).

Lemma 2.5. 0 # (N6 N_)® (M & M_) is an atom of N @ M.

Proof. Recall that an atom P of A/ ® M is an interval projection from N ® M such that
for any £ € N ® M, either P < E or PE =0 (see [4]). Set P= (N6 N_)® (M & M_).
P=N@M-[(N_@M)V(N®M_)] is an interval projection. For any F = F1QFs € NQM,
since N is totally ordered, either £y < N_ or £y > N. If E; < N_, then P(E; ® E3) = 0;
if £1 > N, since M is also totally ordered, either Fo < M_ or Fo > M. If E5 < M_, then
P(Ey ® E3) = 0; and if F3 > M, then P < FE; ® Ey. Hence for any F = F; ® E», either
P < E1® B, or P(Ey ® E») = 0.

Now for any F € N'® M, by virtue of [3, Proposition 2.4] we have

E=V{E,®Ey: B, ® E, < E}.
If for any £y @ Es < E, P(E1 ® Es) = 0, then PE = 0; if there exists some F1 ® Fy < E such
that P(FE;® Es) # 0. It follows from the result of the preceding paragraph that P < E; ® Es
and P < FE.

Proposition 2.2. If a rank-one operator zy* € Alg(N ® M), then the following state-
ments are equivalent:

(1) zy* € Ryvem;

(2) there exists L € N ® M such that x € L andy € L*.

Proof. (1)=(2) Since zy* € Alg(N ® M), it follows from Lemma 2.4 that there exist
N e N and M € M such that 2 € N® M and y € N* @ M*. Set

Gi=(NeN_)®(Ms M),

Go=(N@M)oGi=(N_@M)V(NeM_),

Gs=(NteMH)eG =(Nt"eMH)v(NITeoM®).
IfGi=0then N© N_ =0o0or M& M_ = 0. In this case L = N ® M satisfies the condition
in 2). Now we suppose that G; # 0. Since N ® M = G + Gy and N* @ M+ = G, + G3,
we have

zy* = (G1+ G2)(zy")(G1 + Gs)
= (N ®@ M)(zy")G3 + G2(zy")G1 + G1(2y*) G-
Since xy* € Raygm and Gy is an atom of NV @ M, it follows from [1, Theorem 4.8] that
Gi(zy*)Gy = 0. Hence x € Gf or y € Gf. If v € G then v € Gy and y € G1 + G3 =
Nt MLt CGy;ifye Gy, thenye G3 C (N@ M)t andz € N ®@ M.
(2)=(1) If there exists L € N'® M such that + € L and y € L, then for any T €
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Alg(N ® M) we have L+TL = 0 and

[(xy")T)" = [L(xy*) L T)" =0, Vn>2.
So (zy*)T is quasinilpotent. It follows from the definition of Ry ga and zy* € Alg(N @ M)
that zy* € Rygm-

Lemma 2.6. Ry @, Ry € Rygom-

Proof. For any A € B(H1),B € B(Hz2),N € N and M € M, we have

(N® M)(A® B)(N* ® M*) = NAN*+ ® MBM™
€ERNQORM
C Alg(N) ®, Alg(M) = Alg(N @ M).
For any T € Alg(N @ M), T(N @ M) C N ® M. Thus
[(N® M)(A® B)(N* @ MH)T]" =0, Vn>2.
It follows from the definition of Jacobson radical that NAN* @ MBM~* € Raga. Recall
that S ®, So = 81 ®, S2, where S; are subspaces of H;. Since
Ry =span{ NAN* : A € B(H,),N € N},
Ry = span{ MBM™ : B € B(Hs), M € M},
we have
Ry @n Ry = span{ NAN* : A € B(H1), N € N} @, span{MBM™" : B € B(H2), M € M}
€ Ryem-

Theorem 2.2. If N', M are non-trivial, then the following statements are equivalent:

(1) Ry @w Rar = R

(2) Ry ®n Rar and Rygam have the same rank-one operators;

(3) N, M are continuous.

Proof. (1)=(2) It follows from Lemma 2.6 that we only need to prove that each rank-one
operator in Raga belongs to Ry &, Rar. Suppose that

zy" € Ryvom € Ryom = RN @uw Ru-
It follows from Corollary 6 that zy* € Ry ®, Ras-

(2)=-(3) If at least one of N, M is not continuous, without loss of genenrality, we suppose
that A is not continuous. Thus, there exists N € N such that N > 0 and N # N_. Since
M is non-trivial, choose M € M such that 0 < M < I. We choose non-zero vectors
r1 € N6 N_, 20 € M and y, € ML7 then

T=x1 @120 € N M,
and
y=r1 0y c (NoN_ )M+ C(No M):n (Nt oM.
Then it follows from Lemma 2.4 and Proposition 2.2 that xy* € Ry ga. By the hypothesis

of (2), zy* € Ry ®n Ry Thus, it follows from Corollary 2.1 that there exist F; € N and
Ey € M such that

r=x1®x0 € 1 ® F5y and y:x1®y2€Ef®E2l.
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Since N is totally ordered, either £y < N_ or E; > N. If E; < N_, then
T ® 22 = (B @ E) (71 ® 73)
= (E1 ® E2)[(N & N_)®@ M|(z1 ® 22) = 0;
if F1 > N, then
71 @Yo = (Bi @ Ey)[(N 6 N_) ® M~](21 ® y2) = 0.

This contradicts that z1, 22 and y are non-zero vectors. Hence both N/, M are continuous.
(3)=(1) Since N/, M are continuous, it follows from Proposition 2.1 that we have

Ry ={A € B(H1): AN C N,YN € N'} = AlgV,
Ry ={B € B(Hz2): BM C M,YM € M} = AlgM.
Hence it follows from Lemma 2.2 and Lemma 2.6 that
Rivom 2 RN Quw Ry = Riy @w Ry
= AlgN ®,, AlgM = Alg(N ® M) 2 Rirgm-

So Ryom = RN @uw R

Corollary 2.2. If N, M are non-trivial and at least one of N'y, M is not continuous,
then Ry ®@n Ry C Ryom-

Proof. If Ry ®, Rar = Ryem, then Ry ®@w Ry = R and N, M continuous. This
is a contradiction.

Remark 2.1. If N, M are trivial, then Ry = Ry = Ryeom = (0). In this case we
have Ry ®, Ry = Rygm. If N is trivial and M is not, then Ry ®, Ry = (0) and the
Jacobson radical Rarga of Alg(N ® M) is not zero (it follows from Proposition 2.2). Thus
in this case, Ry @, Ry C Ragm-
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