TENSOR PRODUCTS OF JACOBSON RADICALS IN NEST ALGEBRAS

DONG Zhu*

Abstract

This paper studies the tensor product $\mathcal{R}_N \otimes_w \mathcal{R}_M$ of Jacobson radicals in nest algebras, and obtains that $\mathcal{R}_N \otimes_w \mathcal{R}_M = \{T \in \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2) : T(N \otimes M) \subseteq N_- \otimes M_-, \forall N \in \mathcal{N}, M \in \mathcal{M}\};$ and based on the characterization of rank-one operators in $\mathcal{R}_N \otimes_w \mathcal{R}_M$, it is proved that if \mathcal{N}, \mathcal{M} are non-trivial then $\mathcal{R}_N \otimes_w \mathcal{R}_M = \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}^w$ if and only if \mathcal{N}, \mathcal{M} are continuous.

Keywords Jacobson radical, Tensor product, Nest algebra
2000 MR Subject Classification 47L75
Chinese Library Classification 0177.3⁺9 Document Code A
Article ID 0252-9599(2003)03-0001-08

§1. Introduction

One of the central results in the theory of tensor products of von Neumann algebras is Tomita's commutation formula:

$$\mathcal{A}' \otimes_w \mathcal{B}' = (\mathcal{A} \otimes_w \mathcal{B})', \tag{1.1}$$

where \mathcal{A} and \mathcal{B} are von Neumann algebras. It was observed in [3] that if we let \mathcal{L}_1 and \mathcal{L}_2 denote the projection lattices of \mathcal{A} and \mathcal{B} respectively, then (1.1) can be rewritten as

$$\operatorname{Alg}\mathcal{L}_1 \otimes_w \operatorname{Alg}\mathcal{L}_2 = \operatorname{Alg}(\mathcal{L}_1 \otimes \mathcal{L}_2).$$
(1.2)

This version of Tomita's theorem makes sense for any pair of reflexive algebras Alg \mathcal{L}_1 and Alg \mathcal{L}_2 . It remains a deep open question whether the tensor product formula (1.2) is valid for general reflexive algebras, or even general CSL algebras. However, (1.2) has been verified in a number of special cases^[3,5,6,7]. In particular, it is known that if \mathcal{N}, \mathcal{M} are nests, then Alg $\mathcal{N} \otimes_w$ Alg $\mathcal{M} = \text{Alg}(\mathcal{N} \otimes \mathcal{M})$ (see [3]). Since then one has been interested in the relationship between $\mathcal{R}_N \otimes_w \mathcal{R}_M$ and $\mathcal{R}^w_{\mathcal{N} \otimes \mathcal{M}}$. The technique employed in this paper is different from the other papers about tensor products. We use rank-one operators to study tensor products and the technique shows its power in this paper.

Manuscript received March 11, 2002.

Department of Mathematics, Zhejiang University, Hangzhou 310027, China;

Istitute of Mathematics, Fudan University, Shanghai 200433, China.

E-mail: dzhe8@mail.china.com

Let us introduce some notation and terminology. \mathcal{H} represents a complex Hilbert space, $\mathcal{B}(H)$ the algebra of bounded operators on \mathcal{H} and $\mathcal{F}(H)$ the set of finite -rank operators on \mathcal{H} . A sublattice \mathcal{L} of the projection lattice of $\mathcal{B}(H)$ is said to be a subspace lattice if it contains 0 and I and is strongly closed, where we identify projections with their ranges. If the elements of \mathcal{L} pairwise commute, \mathcal{L} is a commutative subspace lattice (CSL). A subspace lattice is completely distributive if distributive laws are valid for families of arbitrary cardinality (see [9]). A nest \mathcal{N} is a totally ordered subspace lattice. For $L \in \mathcal{L}$, we define

$$L_{-} = \lor \{ E \in \mathcal{L} : L \not\leq E \}.$$

In the case of nests, either N_{-} is the the immediate predecessor of N or $N = N_{-}$. If $N = N_{-}$ for any $N \in \mathcal{N}, \mathcal{N}$ is called a continuous nest. If \mathcal{L} is a subspace lattice, Alg \mathcal{L} denotes the set of operators in $\mathcal{B}(H)$ that leave the elements of \mathcal{L} invariant. If \mathcal{L} is a CSL, Alg \mathcal{L} is said to be a CSL algebra. If \mathcal{L} is a nest, Alg \mathcal{L} is said to be a nest algebra.

Recall that the Jacobson radical of a Banach algebra coincides with these elements T such that AT is quasinilpotent for every A in the algebra and it is a closed ideal of the Banach algebra. For a subspace lattice \mathcal{L} , we denote $\mathcal{R}_{\mathcal{L}}$ the Jacobson radical of Alg \mathcal{L} . In [10], Ringrose characterized the Jacobson radical of a nest algebra. In [1], Davidson and Orr pushed the characterization further to the case of all width two CSL algebras. The result is essential to our paper.

Let $\mathcal{H}_i(i = 1, 2)$ be complex Hilbert spaces. If $\mathcal{L}_i \subseteq \mathcal{B}(\mathcal{H}_i)$ (i = 1, 2) are subspace lattices, $\mathcal{L}_1 \otimes \mathcal{L}_2$ is the subspace lattice in $\mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2)$ generated by $\{L_1 \otimes L_2 : L_i \in \mathcal{L}_i, i = 1, 2\}$. If $\mathcal{S}_i \subseteq \mathcal{B}(\mathcal{H}_i)(i = 1, 2)$ are subspaces, then $\mathcal{S}_1 \otimes \mathcal{S}_2$ denotes the linear span of $\{S_1 \otimes S_2 : S_i \in \mathcal{S}_i\}$; $\mathcal{S}_1 \otimes_n \mathcal{S}_2$ denotes the norm closure of $\mathcal{S}_1 \otimes \mathcal{S}_2$; $\mathcal{S}_1 \otimes_w \mathcal{S}_2$ denotes the weak closure of $\mathcal{S}_1 \otimes \mathcal{S}_2$ in $\mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2)$. It is easy to show that $\mathcal{S}_1 \otimes_n \mathcal{S}_2 = \overline{\mathcal{S}}_1 \otimes_n \overline{\mathcal{S}}_2$, where $\overline{\mathcal{S}}_i$ denotes the norm closure of \mathcal{S}_i ; however in general case, $\mathcal{S}_1 \otimes_w \mathcal{S}_2 \neq \mathcal{S}_2^w \otimes_w \mathcal{S}_2^w$. The reason lies in that the map $(A, B) \to A \otimes B$ from $\mathcal{B}(\mathcal{H}_1) \times \mathcal{B}(\mathcal{H}_2)$ to $\mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2)$ is not weakly continuous in general.

§2. Tensor Products of Jacobson Radicals

In the following we suppose that \mathcal{N} and \mathcal{M} are nests on \mathcal{H}_1 and \mathcal{H}_2 respectively; and that $\mathcal{N} \otimes \mathcal{M}$ is the tensor product of \mathcal{N} and \mathcal{M} . \mathcal{R}_N , \mathcal{R}_M and $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ denote Jacobson radicals of Alg \mathcal{N} , Alg \mathcal{M} and Alg $(\mathcal{N} \otimes \mathcal{M})$ respectively.

For $x, y \in \mathcal{H}$, the rank-one operator xy^* is defined by the equation

$$(xy^*)(z) = \langle z, y \rangle x, \quad \forall z \in \mathcal{H}.$$

Proposition 2.1. $\mathcal{R}^w_{\mathcal{N}} = \{A \in \mathcal{B}(\mathcal{H}_1) : AN \subseteq N_-, \forall N \in \mathcal{N}\}.$

Proof. Set $\mathcal{U} = \{A \in \mathcal{B}(\mathcal{H}_1) : AN \subseteq N_-, \forall N \in \mathcal{N}\}$. Then \mathcal{U} is a weakly closed Alg \mathcal{N} module determined by the order homomorphism $N \to N_-$ from \mathcal{N} into itself. By virtue of
[2] Lemma 1.1, a rank-one operator $xy^* \in \mathcal{U}$ if and only if there exists an element $N \in \mathcal{N}$ such that $x \in N$ and $y \in N^{\perp}_{\sim}$, where

$$N_{\sim} = \vee \{N' : N'_{-} < N\} = N.$$

We also know that a rank-one operator $xy^* \in \mathcal{R}_N$ if and only if there exists an element $N \in \mathcal{N}$ such that $x \in N$ and $y \in N^{\perp}$. Thus the Jacobson radical \mathcal{R}_N and \mathcal{U} have the same

rank-one operators. Since each finite-rank operator in \mathcal{R}_N or \mathcal{U} can be represented as a finite sum of rank-one operators in itself respectively, \mathcal{R}_N and \mathcal{U} have the same finite-rank operators.

It follows from Erdos Density Theorem that there is a net $\{F_{\alpha}\}$ of finite-rank contractions in Alg \mathcal{N} such that $F_{\alpha} \xrightarrow{w} I$. Thus for any $A \in \mathcal{R}_N$,

$$F_{\alpha}A \xrightarrow{w} A,$$

and $\{F_{\alpha}A\}$ are finite-rank operators in \mathcal{R}_N . So

$$(\mathcal{R}_N \cap \mathcal{F}(H))^w \supseteq \mathcal{R}_N$$

and $(\mathcal{R}_N \cap \mathcal{F}(H))^w \supseteq \mathcal{R}^w_N, (\mathcal{R}_N \cap \mathcal{F}(H))^w = \mathcal{R}^w_N$. Combining [2] Corollary 1.6 with the result in the preceding paragraph, we obtain that

$$\mathcal{R}^w_{\mathcal{N}} = (\mathcal{R}_N \cap \mathcal{F}(H))^w = (\mathcal{U} \cap \mathcal{F}(H))^w = \mathcal{U}.$$

This completes the proof.

Lemma 2.1. Suppose that $A \in \mathcal{R}^w_N$, then there exists a net of finite-rank operators $F_{\alpha} \subseteq \mathcal{R}_N$ such that $|| F_{\alpha} || \leq || A ||$ and $F_{\alpha} \xrightarrow{w} A$.

Proof. By Erdos Density Theorem, there is a net of finite-rank contractions $\{F'_{\alpha}\} \subseteq$ Alg \mathcal{N} such that $F'_{\alpha} \xrightarrow{w} I$. So

$$F_{\alpha} = F'_{\alpha}A \xrightarrow{w} A.$$

Since $\mathcal{R}^w_{\mathcal{N}}$ is a weakly closed Alg \mathcal{N} -module, $\{F_{\alpha}\} \subseteq \mathcal{R}^w_{\mathcal{N}} \cap \mathcal{F}(H)$ and $|| F_{\alpha} || \leq || A ||$. From the proof of the preceding proposition, we know that $\mathcal{R}^w_{\mathcal{N}} \cap \mathcal{F}(H) = \mathcal{R}_N \cap \mathcal{F}(H)$. So $\{F_{\alpha}\} \subseteq \mathcal{R}_N \cap \mathcal{F}(H)$ and satisfies the condition in the lemma.

Lemma 2.2. $\mathcal{R}_N \otimes_w \mathcal{R}_M = \mathcal{R}^w_N \otimes_w \mathcal{R}^w_M$.

Proof. Suppose that $A \in \mathcal{R}^w_{\mathcal{N}}$ and $B \in \mathcal{R}^w_{\mathcal{M}}$. it follows from Lemma 2.1 that there exist nets of finite-rank operators $\{A_{\alpha}\} \subseteq \mathcal{R}_N, \{B_{\beta}\} \subseteq \mathcal{R}_M$ such that

 $||A_{\alpha}|| \leq ||A||, ||B_{\beta}|| \leq ||B||$ and $A_{\alpha} \xrightarrow{w} A, B_{\beta} \xrightarrow{w} B.$

For any $x_i, y_i \in \mathcal{H}_i$ (i = 1, 2), we have that

$$\langle (A_{\alpha} \otimes B_{\beta})(x_1 \otimes x_2), y_1 \otimes y_2 \rangle = \langle A_{\alpha}x_1, y_1 \rangle \langle B_{\beta}x_2, y_2 \rangle$$
$$\longrightarrow \langle Ax_1, y_1 \rangle \langle Bx_2, y_2 \rangle = \langle (A \otimes B)(x_1 \otimes x_2), y_1 \otimes y_2 \rangle.$$

Since $\mathcal{H}_1 \otimes \mathcal{H}_2$ is the completion of span $\{x_1 \otimes x_2 : x_i \in \mathcal{H}_i\}$ and

$$\parallel A_{\alpha} \otimes B_{\beta} \parallel = \parallel A_{\alpha} \parallel \cdot \parallel B_{\beta} \parallel \leq \parallel A \parallel \cdot \parallel B \parallel$$

it is routine to prove that

$$\langle (A_{\alpha} \otimes B_{\beta})z, w \rangle \longrightarrow \langle (A \otimes B)z, w \rangle \text{ for any } z, w \in \mathcal{H}_1 \otimes \mathcal{H}_2.$$

So $A_{\alpha} \otimes B_{\beta} \xrightarrow{w} A \otimes B$ and $A \otimes B \in \mathcal{R}_N \otimes_w \mathcal{R}_M$, thus

$$\mathcal{R}_{\mathcal{N}}^{w} \otimes \mathcal{R}_{\mathcal{M}}^{w} \subseteq \mathcal{R}_{N} \otimes_{w} \mathcal{R}_{M},$$
$$\mathcal{R}_{\mathcal{N}}^{w} \otimes_{w} \mathcal{R}_{\mathcal{M}}^{w} \subseteq \mathcal{R}_{N} \otimes_{w} \mathcal{R}_{M}.$$

The converse inequality is obviouse, so $\mathcal{R}_N \otimes_w \mathcal{R}_M = \mathcal{R}_N^w \otimes_w \mathcal{R}_M^w$.

Lemma 2.3. Suppose that \mathcal{U}_{τ} is a weakly closed $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ -module determined by an order homomorphism τ from $\mathcal{N} \otimes \mathcal{M}$ into itself. Then a rank-one operator $xy^* \in \mathcal{U}_{\tau}$ if and only if there exists an element $L \in \mathcal{N} \otimes \mathcal{M}$ such that $x \in L$ and $y \in L^{\perp}_{\sim}$, where $L_{\sim} = \vee \{G \in \mathcal{N} \otimes \mathcal{M} : L \not\leq \tau(G)\}.$

Proof. Suppose that there exists an element $L \in \mathcal{N} \otimes \mathcal{M}$ such that $x \in L$ and $y \in L^{\perp}_{\sim}$. For any $G \in \mathcal{N} \otimes \mathcal{M}$, if $L \leq \tau(G)$, then

$$(xy^*)G = L(xy^*)L_{\sim}^{\perp}G \subseteq L \subseteq \tau(G);$$

if $L \not\leq \tau(G)$, then $G \leq L_{\sim}$ and

$$(xy^*)G = L(xy^*)L_{\sim}^{\perp}G = (0) \subseteq \tau(G).$$

Thus the rank-one operator $xy^* \in \mathcal{U}_{\tau}$.

Conversely, suppose that $xy^* \in \mathcal{U}_{\tau}$. Set $L = \wedge \{G \in \mathcal{N} \otimes \mathcal{M} : Gx = x\}$, certainly $x \in L$. For any $G \in \mathcal{N} \otimes \mathcal{M}$ and $L \not\leq \tau(G)$, it follows from the definition of L that $\tau(G)x \neq x$. If $Gy \neq 0$, since $(xy^*)G = \tau(G)(xy^*)G$, we have

$$[(xy^*)G](Gy) = [\tau(G)(xy^*)G](Gy),$$

$$\| Gy \|^2 x = \| Gy \|^2 \tau(G)x.$$

This cotradicts $\tau(G)x \neq x$, so Gy = 0 for any $L \not\leq \tau(G)$, From the definition of L_{\sim} , we have $L_{\sim}y = 0$ and $y \in L_{\sim}^{\perp}$.

Certainly, Lemma 2.3 is true for any subspace lattice \mathcal{L} .

Theorem 2.1. $\mathcal{R}_N \otimes_w \mathcal{R}_M = \{T \in \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2) : T(N \otimes M) \subseteq N_- \otimes M_-, \forall N \in \mathcal{N}, M \in \mathcal{M}\} = \{T \in \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2) : TL \subseteq \tau(L), \forall L \in \mathcal{N} \otimes \mathcal{M}\}, where \tau(L) = \lor \{N_- \otimes M_- : N \otimes M \leq L\}.$

Proof. Set $\mathcal{U}_{\tau} = \{T \in \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2) : TL \subseteq \tau(L), \forall L \in \mathcal{N} \otimes \mathcal{M}\}$. \mathcal{U}_{τ} is a weakly closed $\operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ -module determined by the order homomorphism $L \to \tau(L)$ from $\mathcal{N} \otimes \mathcal{M}$ into itself. By virtue of [3, Proposition 2.4],

$$L = \vee \{ N \otimes M : N \otimes M \le L \} \quad \text{for any } L \in \mathcal{N} \otimes \mathcal{M}.$$

Thus it is easy to show that

$$\mathcal{U}_{\tau} = \{T \in \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2) : T(N \otimes M) \subseteq N_- \otimes M_-, \forall N \in \mathcal{N}, M \in \mathcal{M}\}.$$

Since $\mathcal{R}_N \otimes_w \mathcal{R}_M = \mathcal{R}^w_N \otimes_w \mathcal{R}^w_M$, it follows from Proposition 2.1 that $\mathcal{R}_N \otimes_w \mathcal{R}_M \subseteq \mathcal{U}_\tau$. Define $\tau_1 : \mathcal{N} \otimes I \to \mathcal{N} \otimes I$ by

$$\tau_1(N \otimes I) = N_- \otimes I, \quad \forall N \in \mathcal{N}.$$

 au_1 is an order homomorphism from $\mathcal{N} \otimes I$ into $\mathcal{N} \otimes I$. Define $\mathcal{U}_{\tau_1} = \{T \in \mathcal{B}(\mathcal{H}_1 \otimes \mathcal{H}_2) : T(N \otimes I) \subseteq N_- \otimes I, \forall N \in \mathcal{N}\}$. Similarly we define $\tau_2 : I \otimes \mathcal{M} \to I \otimes \mathcal{M}$ and \mathcal{U}_{τ_2} . Thus we have the equation $\mathcal{U}_{\tau} = \mathcal{U}_{\tau_1} \cap \mathcal{U}_{\tau_2}$. In fact, $\mathcal{U}_{\tau} \subseteq \mathcal{U}_{\tau_1} \cap \mathcal{U}_{\tau_2}$ is obvious. For $T \in \mathcal{U}_{\tau_1} \cap \mathcal{U}_{\tau_2}$ we have that for any $N \in \mathcal{N}, M \in \mathcal{M}$,

$$T(N \otimes M) \subseteq T(N \otimes I) \subseteq N_{-} \otimes I,$$

$$T(N \otimes M) \subseteq T(I \otimes M) \subseteq I \otimes M_{-}.$$

Thus $T(N \otimes M) \subseteq (N_{-} \otimes I) \cap (I \otimes M_{-}) = N_{-} \otimes M_{-}$ and $T \in \mathcal{U}_{\tau}.$

Since $\mathcal{N} \otimes \mathcal{M}$ is a completely distributive CSL ([3, Proposition 2.7]), it follows from [8, Theorem 3] that the rank-one subalgebra of Alg($\mathcal{N} \otimes \mathcal{M}$) is weakly dense in Alg($\mathcal{N} \otimes \mathcal{M}$). So it is routine to show that the linear span of rank-one operators in \mathcal{U}_{τ} is also weakly dense in \mathcal{U}_{τ} . Accordingly, to show $\mathcal{U}_{\tau} \subseteq \mathcal{R}_N \otimes_w \mathcal{R}_M$, it suffices to consider rank-one operators in \mathcal{U}_{τ} .

From Lemma 2.3, it follows that a rank-one operator $xy^* \in \mathcal{U}_{\tau_1}$ if and only if there exists $N \otimes I \in \mathcal{N} \otimes I$ such that $x \in N \otimes I$ and $y \in (N \otimes I)^{\perp}_{\sim}$, where

$$(N \otimes I)_{\sim}^{\perp} = (\vee \{N' \otimes I : N \otimes I \not\leq N'_{-} \otimes I\})^{\perp}$$
$$= (\vee \{N' \otimes I : N'_{-} \otimes I < N \otimes I\})^{\perp}$$
$$= (\vee \{N' \otimes I : N'_{-} < N\})^{\perp}$$
$$= (N \otimes I)^{\perp} = N^{\perp} \otimes I.$$

Similarly, a rank-one operator $xy^* \in \mathcal{U}_{\tau_2}$ if and only if there exists $I \otimes M \in I \otimes \mathcal{M}$ such that $x \in I \otimes M$ and $y \in I \otimes M^{\perp}$. Hence a rank-one operator $xy^* \in \mathcal{U}_{\tau} = \mathcal{U}_{\tau_1} \cap \mathcal{U}_{\tau_2}$ if and only if there exist $N \in \mathcal{N}$ and $M \in \mathcal{M}$ such that $x \in N \otimes M$ and $y \in N^{\perp} \otimes M^{\perp}$. If $x = x_1 \otimes x_2$ and $y = y_1 \otimes y_2$, we can obtain that

$$\begin{aligned} xy^* &= (N \otimes M)[(x_1 \otimes x_2)(y_1 \otimes y_2)^*](N^{\perp} \otimes M^{\perp}) \\ &= (N \otimes M)[(x_1y_1^*) \otimes (x_2y_2^*)](N^{\perp} \otimes M^{\perp}) \\ &= N(x_1y_1^*)N^{\perp} \otimes M(x_2y_2^*)M^{\perp} \in \mathcal{R}_N \otimes \mathcal{R}_M \end{aligned}$$

(here the second equality follows from $(x_1 \otimes x_2)(y_1 \otimes y_2)^* = (x_1y_1^*) \otimes (x_2y_2^*)$, it is casy to prove). In general, there exist nets $\{z_\alpha\}$, $\{w_\beta\}$ such that

$$z_{\alpha} \xrightarrow{\|\cdot\|} x \text{ and } w_{\beta} \xrightarrow{\|\cdot\|} y,$$

where z_{α}, w_{β} are finite linear combinations of simple tensors in $\mathcal{H}_1 \otimes \mathcal{H}_2$. Thus

$$(N \otimes M)(z_{\alpha}w_{\beta}^{*})(N^{\perp} \otimes M^{\perp}) \xrightarrow{\|\cdot\|} (N \otimes M)(xy^{*})(N^{\perp} \otimes M^{\perp}) = xy^{*},$$
$$xy^{*} \in \mathcal{R}_{N} \otimes_{n} \mathcal{R}_{M} \subseteq \mathcal{R}_{N} \otimes_{w} \mathcal{R}_{M}.$$

Hence each rank-one operator in \mathcal{U}_{τ} belongs to $\mathcal{R}_N \otimes_w \mathcal{R}_M$, so $\mathcal{U}_{\tau} \subseteq \mathcal{R}_N \otimes_w \mathcal{R}_M$ and $\mathcal{R}_N \otimes_w \mathcal{R}_M = \mathcal{U}_{\tau}$.

Corollary 2.1. The following statements are equivalent:

- (1) $xy^* \in \mathcal{R}_N \otimes_n \mathcal{R}_M;$
- (2) $xy^* \in \mathcal{R}_N \otimes_w \mathcal{R}_M;$
- (3) there exist $N \in \mathcal{N}$ and $M \in \mathcal{M}$ such that $x \in N \otimes M$ and $y \in N^{\perp} \otimes M^{\perp}$.

Proof. $(1) \Rightarrow (2)$ It is obvious.

 $(2) \Rightarrow (3)$ and $(3) \Rightarrow (1)$ They follow from the proof of Theorem 2.1.

Lemma 2.4. $xy^* \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ if and only if there exist $N \in \mathcal{N}$ and $M \in \mathcal{M}$ such that $x \in N \otimes M$ and $y \in N_{-}^{\perp} \otimes M_{-}^{\perp}$.

Proof. Since $\mathcal{N} \otimes \mathcal{M} = (\mathcal{N} \otimes I) \vee (I \otimes \mathcal{M})$, we have that

$$\operatorname{Alg}(\mathcal{N}\otimes\mathcal{M}) = \operatorname{Alg}(\mathcal{N}\otimes I) \cap \operatorname{Alg}(I\otimes\mathcal{M}).$$

Just like the proof in Theorem 2.1, a rank-one operator $xy^* \in \operatorname{Alg}(\mathcal{N} \otimes I)$ if and only if there exists an element $N \in \mathcal{N}$ such that $x \in N \otimes I$ and $y \in N_-^{\perp} \otimes I$. Similarly, $xy^* \in \operatorname{Alg}(I \otimes \mathcal{M})$ if and only if there exists $M \in \mathcal{M}$ such that $x \in I \otimes M$ and $y \in I \otimes M_-^{\perp}$. Therefore $xy^* \in \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M})$ if and only if there exist $N \in \mathcal{N}$ and $M \in \mathcal{M}$ such that $x \in N \otimes M$ and $y \in N_-^{\perp} \otimes M_-^{\perp}$. Conversely, if there exist $N \in \mathcal{N}, M \in \mathcal{M}$ such that $x \in N \otimes M$ and $\in \mathcal{N}_-^{\perp} \otimes M_-^{\perp}$. We have

$$xy^* \in \operatorname{Alg}(\mathcal{N} \otimes I) \cap \operatorname{Alg}(I \otimes \mathcal{M}) = \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M}).$$

Lemma 2.5. $0 \neq (N \ominus N_{-}) \otimes (M \ominus M_{-})$ is an atom of $\mathcal{N} \otimes \mathcal{M}$.

Proof. Recall that an atom P of $\mathcal{N} \otimes \mathcal{M}$ is an interval projection from $\mathcal{N} \otimes \mathcal{M}$ such that for any $E \in \mathcal{N} \otimes \mathcal{M}$, either $P \leq E$ or PE = 0 (see [4]). Set $P = (N \oplus N_{-}) \otimes (M \oplus M_{-})$. $P = N \otimes M - [(N_{-} \otimes M) \lor (N \otimes M_{-})]$ is an interval projection. For any $E = E_1 \otimes E_2 \in \mathcal{N} \otimes \mathcal{M}$, since \mathcal{N} is totally ordered, either $E_1 \leq N_{-}$ or $E_1 \geq N$. If $E_1 \leq N_{-}$, then $P(E_1 \otimes E_2) = 0$; if $E_1 \geq N$, since \mathcal{M} is also totally ordered, either $E_2 \leq M_{-}$ or $E_2 \geq M$. If $E_2 \leq M_{-}$, then $P(E_1 \otimes E_2) = 0$; and if $E_2 \geq M$, then $P \leq E_1 \otimes E_2$. Hence for any $E = E_1 \otimes E_2$, either $P \leq E_1 \otimes E_2$ or $P(E_1 \otimes E_2) = 0$.

Now for any $E \in \mathcal{N} \otimes \mathcal{M}$, by virtue of [3, Proposition 2.4] we have

$$E = \vee \{ E_1 \otimes E_2 : E_1 \otimes E_2 \le E \}.$$

If for any $E_1 \otimes E_2 \leq E$, $P(E_1 \otimes E_2) = 0$, then PE = 0; if there exists some $E_1 \otimes E_2 \leq E$ such that $P(E_1 \otimes E_2) \neq 0$. It follows from the result of the preceding paragraph that $P \leq E_1 \otimes E_2$ and $P \leq E$.

Proposition 2.2. If a rank-one operator $xy^* \in Alg(\mathcal{N} \otimes \mathcal{M})$, then the following statements are equivalent:

(1) $xy^* \in \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}};$

(2) there exists $L \in \mathcal{N} \otimes \mathcal{M}$ such that $x \in L$ and $y \in L^{\perp}$.

Proof. (1) \Rightarrow (2) Since $xy^* \in \text{Alg}(\mathcal{N} \otimes \mathcal{M})$, it follows from Lemma 2.4 that there exist $N \in \mathcal{N}$ and $M \in \mathcal{M}$ such that $x \in N \otimes M$ and $y \in N_{-}^{\perp} \otimes M_{-}^{\perp}$. Set

$$G_1 = (N \ominus N_-) \otimes (M \ominus M_-),$$

$$G_2 = (N \otimes M) \ominus G_1 = (N_- \otimes M) \vee (N \otimes M_-),$$

$$G_3 = (N_-^{\perp} \otimes M_-^{\perp}) \ominus G_1 = (N^{\perp} \otimes M_-^{\perp}) \vee (N_-^{\perp} \otimes M^{\perp}).$$

If $G_1 = 0$ then $N \ominus N_- = 0$ or $M \ominus M_- = 0$. In this case $L = N \otimes M$ satisfies the condition in 2). Now we suppose that $G_1 \neq 0$. Since $N \otimes M = G_1 + G_2$ and $N_-^{\perp} \otimes M_-^{\perp} = G_1 + G_3$, we have

$$\begin{aligned} xy^* &= (G_1 + G_2)(xy^*)(G_1 + G_3) \\ &= (N \otimes M)(xy^*)G_3 + G_2(xy^*)G_1 + G_1(xy^*)G_1 \end{aligned}$$

Since $xy^* \in \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ and G_1 is an atom of $\mathcal{N} \otimes \mathcal{M}$, it follows from [1, Theorem 4.8] that $G_1(xy^*)G_1 = 0$. Hence $x \in G_1^{\perp}$ or $y \in G_1^{\perp}$. If $x \in G_1^{\perp}$ then $x \in G_2$ and $y \in G_1 + G_3 = N_-^{\perp} \otimes M_-^{\perp} \subseteq G_2^{\perp}$; if $y \in G_1^{\perp}$, then $y \in G_3 \subseteq (N \otimes M)^{\perp}$ and $x \in N \otimes M$.

 $(2) \Rightarrow (1)$ If there exists $L \in \mathcal{N} \otimes \mathcal{M}$ such that $x \in L$ and $y \in L^{\perp}$, then for any $T \in \mathcal{N} \otimes \mathcal{M}$

 $\operatorname{Alg}(\mathcal{N}\otimes\mathcal{M})$ we have $L^{\perp}TL=0$ and

$$[(xy^*)T]^n = [L(xy^*)L^{\perp}T]^n = 0, \quad \forall n \ge 2.$$

So $(xy^*)T$ is quasinilpotent. It follows from the definition of $\mathcal{R}_{\mathcal{N}\otimes\mathcal{M}}$ and $xy^*\in \mathrm{Alg}(\mathcal{N}\otimes\mathcal{M})$ that $xy^* \in \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$.

Lemma 2.6. $\mathcal{R}_N \otimes_n \mathcal{R}_M \subseteq \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$.

Proof. For any $A \in \mathcal{B}(\mathcal{H}_1), B \in \mathcal{B}(\mathcal{H}_2), N \in \mathcal{N}$ and $M \in \mathcal{M}$, we have

$$(N \otimes M)(A \otimes B)(N^{\perp} \otimes M^{\perp}) = NAN^{\perp} \otimes MBM^{\perp}$$

 $\in \mathcal{R}_N \otimes \mathcal{R}_M$

$$\subseteq \operatorname{Alg}(\mathcal{N}) \otimes_w \operatorname{Alg}(\mathcal{M}) = \operatorname{Alg}(\mathcal{N} \otimes \mathcal{M}).$$

For any $T \in Alg(\mathcal{N} \otimes \mathcal{M}), T(N \otimes M) \subseteq N \otimes M$. Thus

$$(N \otimes M)(A \otimes B)(N^{\perp} \otimes M^{\perp})T]^n = 0, \quad \forall n \ge 2.$$

It follows from the definition of Jacobson radical that $NAN^{\perp} \otimes MBM^{\perp} \in \mathcal{R}_{N \otimes \mathcal{M}}$. Recall that $S_1 \otimes_n S_2 = \overline{S}_1 \otimes_n \overline{S}_2$, where S_i are subspaces of \mathcal{H}_i . Since

$$\mathcal{R}_N = \overline{\operatorname{span}}\{NAN^{\perp} : A \in \mathcal{B}(\mathcal{H}_1), N \in \mathcal{N}\},$$
$$\mathcal{R}_M = \overline{\operatorname{span}}\{MBM^{\perp} : B \in \mathcal{B}(\mathcal{H}_2), M \in \mathcal{M}\}$$

we have

 $\mathcal{R}_N \otimes_n \mathcal{R}_M = \operatorname{span}\{NAN^{\perp} : A \in \mathcal{B}(\mathcal{H}_1), N \in \mathcal{N}\} \otimes_n \operatorname{span}\{MBM^{\perp} : B \in \mathcal{B}(\mathcal{H}_2), M \in \mathcal{M}\}$ $\subseteq \mathcal{R}_{\mathcal{N}\otimes \mathcal{M}}.$

Theorem 2.2. If \mathcal{N}, \mathcal{M} are non-trivial, then the following statements are equivalent:

(1) $\mathcal{R}_N \otimes_w \mathcal{R}_M = \mathcal{R}^w_{\mathcal{N} \otimes \mathcal{M}};$

(2) $\mathcal{R}_N \otimes_n \mathcal{R}_M$ and $\mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$ have the same rank-one operators;

(3) \mathcal{N} , \mathcal{M} are continuous.

Proof. $(1) \Rightarrow (2)$ It follows from Lemma 2.6 that we only need to prove that each rank-one operator in $\mathcal{R}_{\mathcal{N}\otimes\mathcal{M}}$ belongs to $\mathcal{R}_N\otimes_n \mathcal{R}_M$. Suppose that

$$cy^* \in \mathcal{R}_{\mathcal{N}\otimes\mathcal{M}} \subseteq \mathcal{R}^w_{\mathcal{N}\otimes\mathcal{M}} = \mathcal{R}_N \otimes_w \mathcal{R}_M.$$

3 It follows from Corollary 6 that $xy^* \in \mathcal{R}_N \otimes_n \mathcal{R}_M$.

 $(2) \Rightarrow (3)$ If at least one of \mathcal{N}, \mathcal{M} is not continuous, without loss of generality, we suppose that \mathcal{N} is not continuous. Thus, there exists $N \in \mathcal{N}$ such that N > 0 and $N \neq N_{-}$. Since \mathcal{M} is non-trivial, choose $M \in \mathcal{M}$ such that 0 < M < I. We choose non-zero vectors $x_1 \in N \ominus N_-, x_2 \in M$ and $y_2 \in M^{\perp}$, then

$$x = x_1 \otimes x_2 \in N \otimes M,$$

and

$$y = x_1 \otimes y_2 \in (N \ominus N_-) \otimes M^{\perp} \subseteq (N \otimes M)^{\perp} \cap (N_-^{\perp} \otimes M_-^{\perp}).$$

Then it follows from Lemma 2.4 and Proposition 2.2 that $xy^* \in \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$. By the hypothesis of (2), $xy^* \in \mathcal{R}_N \otimes_n \mathcal{R}_M$. Thus, it follows from Corollary 2.1 that there exist $E_1 \in \mathcal{N}$ and $E_2 \in \mathcal{M}$ such that

$$x = x_1 \otimes x_2 \in E_1 \otimes E_2$$
 and $y = x_1 \otimes y_2 \in E_1^{\perp} \otimes E_2^{\perp}$.

Since \mathcal{N} is totally ordered, either $E_1 \leq N_-$ or $E_1 \geq N$. If $E_1 \leq N_-$, then

$$\begin{aligned} x_1 \otimes x_2 &= (E_1 \otimes E_2)(x_1 \otimes x_2) \\ &= (E_1 \otimes E_2)[(N \ominus N_-) \otimes M](x_1 \otimes x_2) = 0; \end{aligned}$$

if $E_1 \geq N$, then

$$x_1 \otimes y_2 = (E_1^{\perp} \otimes E_2^{\perp})[(N \ominus N_-) \otimes M^{\perp}](x_1 \otimes y_2) = 0.$$

This contradicts that x_1, x_2 and y_2 are non-zero vectors. Hence both \mathcal{N}, \mathcal{M} are continuous.

 $(3) \Rightarrow (1)$ Since \mathcal{N}, \mathcal{M} are continuous, it follows from Proposition 2.1 that we have

$$\mathcal{R}_{\mathcal{M}}^{w} = \{A \in \mathcal{B}(\mathcal{H}_{1}) : AN \subseteq N, \forall N \in \mathcal{N}\} = \text{Alg}\mathcal{N}, \\ \mathcal{R}_{\mathcal{M}}^{w} = \{B \in \mathcal{B}(\mathcal{H}_{2}) : BM \subseteq M, \forall M \in \mathcal{M}\} = \text{Alg}\mathcal{M}$$

Hence it follows from Lemma 2.2 and Lemma 2.6 that

$$\begin{aligned} \mathcal{R}^w_{\mathcal{N}\otimes\mathcal{M}} \supseteq \mathcal{R}_N \otimes_w \mathcal{R}_M &= \mathcal{R}^w_{\mathcal{N}} \otimes_w \mathcal{R}^w_{\mathcal{M}} \\ &= \mathrm{Alg}\mathcal{N} \otimes_w \mathrm{Alg}\mathcal{M} = \mathrm{Alg}(\mathcal{N}\otimes\mathcal{M}) \supseteq \mathcal{R}^w_{\mathcal{N}\otimes\mathcal{M}}. \end{aligned}$$

So $\mathcal{R}^w_{\mathcal{N}\otimes\mathcal{M}} = \mathcal{R}_N \otimes_w \mathcal{R}_M$.

Corollary 2.2. If \mathcal{N}, \mathcal{M} are non-trivial and at least one of \mathcal{N}, \mathcal{M} is not continuous, then $\mathcal{R}_N \otimes_n \mathcal{R}_M \subset \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$.

Proof. If $\mathcal{R}_N \otimes_n \mathcal{R}_M = \mathcal{R}_{\mathcal{N} \otimes \mathcal{M}}$, then $\mathcal{R}_N \otimes_w \mathcal{R}_M = \mathcal{R}^w_{\mathcal{N} \otimes \mathcal{M}}$ and \mathcal{N}, \mathcal{M} continuous. This is a contradiction.

Remark 2.1. If \mathcal{N}, \mathcal{M} are trivial, then $\mathcal{R}_N = \mathcal{R}_M = \mathcal{R}_{\mathcal{N}\otimes\mathcal{M}} = (0)$. In this case we have $\mathcal{R}_N \otimes_n \mathcal{R}_M = \mathcal{R}_{\mathcal{N}\otimes\mathcal{M}}$. If \mathcal{N} is trivial and \mathcal{M} is not, then $\mathcal{R}_N \otimes_n \mathcal{R}_M = (0)$ and the Jacobson radical $\mathcal{R}_{\mathcal{N}\otimes\mathcal{M}}$ of $\operatorname{Alg}(\mathcal{N}\otimes\mathcal{M})$ is not zero (it follows from Proposition 2.2). Thus in this case, $\mathcal{R}_N \otimes_n \mathcal{R}_M \subset \mathcal{R}_{\mathcal{N}\otimes\mathcal{M}}$.

References

- Davidson, K. & Orr, J., The Jacobson radical of a CSL algebra, Trans. Amer. Math. Soc., 344(1994), 925–947.
- [2] Erdos, J. A. & Power, S. C., Weakly closed ideals of nest algebras, J. Operator Theory, 7(1982), 219–235.
- [3] Gilfeather, F., Hopenwasser, A. & Larson, D., Reflexive algebras with finite width lattices: tensor products, cohomology, compact perturbation, J. Funct. Anal., 55(1984), 176–199.
- [4] Hopenwasser, A., The radical of a reflexive algebra, Pacific J. Math., 65(1976), 375–392.
- [5] Hopenwasser, A. & Kraus, J., Tensor products of reflexive algebras II, J. London Math. Soc., 28:2(1983), 359–362.
- [6] Hopenwasser, A., Laurie, C. & Moore, R., Reflexive algebras with completely distributive subspace lattices, J. Operator Theory, 11(1984), 91–108.
- [7] Kraus, J., Tensor products of reflexive algebras, J. London Math. Soc., 28:2(1983), 350–358.
- [8] Laurie, C. & Longstaff, W., A note on rank-one operators in reflexive algebras, Proc. Amer. Math. Soc., 89(1983),293–297.
- [9] Longstaff, W., Strongly reflexive lattices, J. London Math. Soc., 11:2 (1975), 491-498.
- [10] Ringrose, J. R., On some algebras of operators, Proc. London Math. Soc., 15:3(1965), 61–83.