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TENSOR PRODUCTS OF JACOBSON
RADICALS IN NEST ALGEBRAS
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Abstract

This paper studies the tensor product RN ⊗w RM of Jacobson radicals in nest algebras,
and obtains that RN ⊗wRM = {T ∈ B(H1⊗H2) : T (N⊗M) ⊆ N−⊗M−,∀N ∈ N ,M ∈ M};
and based on the characterization of rank-one operators in RN ⊗w RM , it is proved that if
N ,M are non-trivial then RN ⊗w RM = Rw

N⊗M if and only if N ,M are continuous.
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§1. Introduction

One of the central results in the theory of tensor products of von Neumann algebras is

Tomita’s commutation formula:

A′ ⊗w B′ = (A⊗w B)′, (1.1)

where A and B are von Neumann algebras. It was observed in [3] that if we let L1 and L2

denote the projection lattices of A and B respectively, then (1.1) can be rewritten as

AlgL1 ⊗w AlgL2 = Alg(L1 ⊗ L2). (1.2)

This version of Tomita’s theorem makes sense for any pair of reflexive algebras AlgL1 and

AlgL2. It remains a deep open question whether the tensor product formula (1.2) is valid for

general reflexive algebras, or even general CSL algebras. However, (1.2) has been verified

in a number of special cases[3,5,6,7]. In particular, it is known that if N ,M are nests,

then AlgN ⊗w AlgM = Alg(N ⊗ M) (see [3]). Since then one has been interested in the

relationship between RN ⊗w RM and Rw
N⊗M. The technique employed in this paper is

different from the other papers about tensor products. We use rank-one operators to study

tensor products and the technique shows its power in this paper.
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Let us introduce some notation and terminology. H represents a complex Hilbert space,

B(H) the algebra of bounded operators onH and F(H) the set of finite -rank operators onH.

A sublattice L of the projection lattice of B(H) is said to be a subspace lattice if it contains 0

and I and is strongly closed, where we identify projections with their ranges. If the elements

of L pairwise commute, L is a commutative subspace lattice (CSL). A subspace lattice is

completely distributive if distributive laws are valid for families of arbitrary cardinality (see

[9]). A nest N is a totally ordered subspace lattice. For L ∈ L, we define

L− = ∨{E ∈ L : L ̸≤ E}.

In the case of nests, either N− is the the immediate predecessor of N or N = N−. If N = N−

for any N ∈ N , N is called a continuous nest. If L is a subspace lattice, AlgL denotes the

set of operators in B(H) that leave the elements of L invariant. If L is a CSL, AlgL is said

to be a CSL algebra. If L is a nest, AlgL is said to be a nest algebra.

Recall that the Jacobson radical of a Banach algebra coincides with these elements T

such that AT is quasinilpotent for every A in the algebra and it is a closed ideal of the

Banach algebra. For a subspace lattice L, we denote RL the Jacobson radical of AlgL. In

[10], Ringrose characterized the Jacobson radical of a nest algebra. In [1], Davidson and Orr

pushed the characterization further to the case of all width two CSL algebras. The result is

essential to our paper.

Let Hi(i = 1, 2) be complex Hilbert spaces. If Li ⊆ B(Hi) (i = 1, 2) are subspace lattices,

L1 ⊗L2 is the subspace lattice in B(H1 ⊗H2) generated by {L1 ⊗L2 : Li ∈ Li, i = 1, 2}. If
Si ⊆ B(Hi)(i = 1, 2) are subspaces, then S1⊗S2 denotes the linear span of {S1⊗S2 : Si ∈ Si};
S1 ⊗n S2 denotes the norm closure of S1 ⊗S2; S1 ⊗w S2 denotes the weak closure of S1 ⊗S2

in B(H1 ⊗ H2). It is easy to show that S1 ⊗n S2 = S1 ⊗n S2, where Si denotes the norm

closure of Si; however in general case, S1⊗wS2 ̸= Sw
2 ⊗wSw

2 . The reason lies in that the map

(A,B) → A⊗B from B(H1)× B(H2) to B(H1 ⊗H2) is not weakly continuous in general.

§2. Tensor Products of Jacobson Radicals

In the following we suppose that N and M are nests on H1 and H2 respectively; and

that N ⊗ M is the tensor product of N and M. RN , RM and RN⊗M denote Jacobson

radicals of AlgN , AlgM and Alg(N ⊗M) respectively.

For x, y ∈ H, the rank-one operator xy∗ is defined by the equation

(xy∗)(z) = ⟨z, y⟩x, ∀z ∈ H.

Proposition 2.1. Rw
N = {A ∈ B(H1) : AN ⊆ N−, ∀N ∈ N}.

Proof. Set U = {A ∈ B(H1) : AN ⊆ N−, ∀N ∈ N}. Then U is a weakly closed AlgN -

module determined by the order homomorphism N → N− from N into itself. By virtue of

[2] Lemma 1.1, a rank-one operator xy∗ ∈ U if and only if there exists an element N ∈ N
such that x ∈ N and y ∈ N⊥

∼ , where

N∼ = ∨{N ′ : N ′
− < N} = N.

We also know that a rank-one operator xy∗ ∈ RN if and only if there exists an element

N ∈ N such that x ∈ N and y ∈ N⊥. Thus the Jacobson radical RN and U have the same
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rank-one operators. Since each finite-rank operator in RN or U can be represented as a

finite sum of rank-one operators in itself respectively, RN and U have the same finite-rank

operators.

It follows from Erdos Density Theorem that there is a net {Fα} of finite-rank contractions

in AlgN such that Fα
w−→ I. Thus for any A ∈ RN ,

FαA
w−→ A,

and {FαA} are finite-rank operators in RN . So

(RN ∩ F(H))w ⊇ RN

and (RN ∩ F(H))w ⊇ Rw
N , (RN ∩ F(H))w = Rw

N . Combining [2] Corollary 1.6 with the

result in the preceding paragraph, we obtain that

Rw
N = (RN ∩ F(H))w = (U ∩ F(H))w = U .

This completes the proof.

Lemma 2.1. Suppose that A ∈ Rw
N , then there exists a net of finite-rank operators

Fα ⊆ RN such that ∥ Fα ∥≤∥ A ∥ and Fα
w−→ A.

Proof. By Erdos Density Theorem, there is a net of finite-rank contractions {F ′
α} ⊆

AlgN such that F ′
α

w−→ I. So

Fα = F ′
αA

w−→ A.

Since Rw
N is a weakly closed AlgN -module, {Fα} ⊆ Rw

N ∩ F(H) and ∥ Fα ∥≤∥ A ∥. From

the proof of the preceding proposition, we know that Rw
N ∩ F(H) = RN ∩ F(H). So

{Fα} ⊆ RN ∩ F(H) and satisfies the condition in the lemma.

Lemma 2.2. RN ⊗w RM = Rw
N ⊗w Rw

M.

Proof. Suppose that A ∈ Rw
N and B ∈ Rw

M. it follows from Lemma 2.1 that there exist

nets of finite-rank operators {Aα} ⊆ RN , {Bβ} ⊆ RM such that

∥ Aα ∥≤∥ A ∥, ∥ Bβ ∥≤∥ B ∥ and Aα
w−→ A, Bβ

w−→ B.

For any xi, yi ∈ Hi(i = 1, 2), we have that

⟨(Aα ⊗Bβ)(x1 ⊗ x2), y1 ⊗ y2⟩ = ⟨Aαx1, y1⟩⟨Bβx2, y2⟩
−→ ⟨Ax1, y1⟩⟨Bx2, y2⟩ = ⟨(A⊗B)(x1 ⊗ x2), y1 ⊗ y2⟩.

Since H1 ⊗H2 is the completion of span{x1 ⊗ x2 : xi ∈ Hi} and

∥ Aα ⊗Bβ ∥=∥ Aα ∥ · ∥ Bβ ∥≤∥ A ∥ · ∥ B ∥,

it is routine to prove that

⟨(Aα ⊗Bβ)z, w⟩ −→ ⟨(A⊗B)z, w⟩ for any z, w ∈ H1 ⊗H2.

So Aα ⊗Bβ
w−→ A⊗B and A⊗B ∈ RN ⊗w RM , thus

Rw
N ⊗Rw

M ⊆ RN ⊗w RM ,

Rw
N ⊗w Rw

M ⊆ RN ⊗w RM .

The converse inequality is obviouse, so RN ⊗w RM = Rw
N ⊗w Rw

M.
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Lemma 2.3. Suppose that Uτ is a weakly closed Alg(N ⊗ M)- module determined by

an order homomorphism τ from N ⊗ M into itself. Then a rank-one operator xy∗ ∈ Uτ

if and only if there exists an element L ∈ N ⊗ M such that x ∈ L and y ∈ L⊥
∼, where

L∼ = ∨{G ∈ N ⊗M : L ̸≤ τ(G)}.
Proof. Suppose that there exists an element L ∈ N ⊗M such that x ∈ L and y ∈ L⊥

∼.

For any G ∈ N ⊗M, if L ≤ τ(G), then

(xy∗)G = L(xy∗)L⊥
∼G ⊆ L ⊆ τ(G);

if L ̸≤ τ(G), then G ≤ L∼ and

(xy∗)G = L(xy∗)L⊥
∼G = (0) ⊆ τ(G).

Thus the rank-one operator xy∗ ∈ Uτ .

Conversely, suppose that xy∗ ∈ Uτ . Set L = ∧{G ∈ N ⊗M : Gx = x}, certainly x ∈ L.

For any G ∈ N ⊗M and L ̸≤ τ(G), it follows from the definition of L that τ(G)x ̸= x. If

Gy ̸= 0, since (xy∗)G = τ(G)(xy∗)G, we have

[(xy∗)G](Gy) = [τ(G)(xy∗)G](Gy),

∥ Gy ∥2 x =∥ Gy ∥2 τ(G)x.

This cotradicts τ(G)x ̸= x, so Gy = 0 for any L ̸≤ τ(G), From the definition of L∼, we have

L∼y = 0 and y ∈ L⊥
∼.

Certainly, Lemma 2.3 is true for any subspace lattice L.
Theorem 2.1. RN ⊗w RM = {T ∈ B(H1⊗H2) : T (N ⊗M) ⊆ N−⊗M−, ∀N ∈ N ,M ∈

M} = {T ∈ B(H1⊗H2) : TL ⊆ τ(L), ∀L ∈ N ⊗M}, where τ(L) = ∨{N−⊗M− : N ⊗M ≤
L}.

Proof. Set Uτ = {T ∈ B(H1 ⊗H2) : TL ⊆ τ(L), ∀L ∈ N ⊗M}. Uτ is a weakly closed

Alg(N ⊗M)-module determined by the order homomorphism L → τ(L) from N ⊗M into

itself. By virtue of [3, Proposition 2.4],

L = ∨{N ⊗M : N ⊗M ≤ L} for any L ∈ N ⊗M.

Thus it is easy to show that

Uτ = {T ∈ B(H1 ⊗H2) : T (N ⊗M) ⊆ N− ⊗M−, ∀N ∈ N ,M ∈ M}.

Since RN ⊗w RM = Rw
N ⊗w Rw

M, it follows from Proposition 2.1 that RN ⊗w RM ⊆ Uτ .

Define τ1 : N ⊗ I → N ⊗ I by

τ1(N ⊗ I) = N− ⊗ I, ∀N ∈ N .

τ1 is an order homomorphism from N ⊗ I into N ⊗ I. Define Uτ1 = {T ∈ B(H1 ⊗ H2) :

T (N ⊗ I) ⊆ N− ⊗ I, ∀N ∈ N}. Similarly we define τ2 : I ⊗M → I ⊗M and Uτ2 . Thus we

have the equation Uτ = Uτ1 ∩ Uτ2 . In fact, Uτ ⊆ Uτ1 ∩ Uτ2 is obvious. For T ∈ Uτ1 ∩ Uτ2 we

have that for any N ∈ N , M ∈ M,

T (N ⊗M) ⊆ T (N ⊗ I) ⊆ N− ⊗ I,

T (N ⊗M) ⊆ T (I ⊗M) ⊆ I ⊗M−.

Thus T (N ⊗M) ⊆ (N− ⊗ I) ∩ (I ⊗M−) = N− ⊗M− and T ∈ Uτ .
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Since N ⊗M is a completely distributive CSL ([3, Proposition 2.7]), it follows from [8,

Theorem 3] that the rank-one subalgebra of Alg(N ⊗M) is weakly dense in Alg(N ⊗M).

So it is routine to show that the linear span of rank-one operators in Uτ is also weakly dense

in Uτ . Accordingly, to show Uτ ⊆ RN ⊗w RM , it suffices to consider rank-one operators in

Uτ .

From Lemma 2.3, it follows that a rank-one operator xy∗ ∈ Uτ1 if and only if there exists

N ⊗ I ∈ N ⊗ I such that x ∈ N ⊗ I and y ∈ (N ⊗ I)⊥∼, where

(N ⊗ I)⊥∼ = (∨{N ′ ⊗ I : N ⊗ I ̸≤ N ′
− ⊗ I})⊥

= (∨{N ′ ⊗ I : N ′
− ⊗ I < N ⊗ I})⊥

= (∨{N ′ ⊗ I : N ′
− < N})⊥

= (N ⊗ I)⊥ = N⊥ ⊗ I.

Similarly, a rank-one operator xy∗ ∈ Uτ2 if and only if there exists I⊗M ∈ I⊗M such that

x ∈ I ⊗M and y ∈ I ⊗M⊥. Hence a rank-one operator xy∗ ∈ Uτ = Uτ1 ∩ Uτ2 if and only if

there exist N ∈ N and M ∈ M such that x ∈ N ⊗M and y ∈ N⊥ ⊗M⊥. If x = x1 ⊗ x2

and y = y1 ⊗ y2, we can obtain that

xy∗ = (N ⊗M)[(x1 ⊗ x2)(y1 ⊗ y2)
∗](N⊥ ⊗M⊥)

= (N ⊗M)[(x1y
∗
1)⊗ (x2y

∗
2)](N

⊥ ⊗M⊥)

= N(x1y
∗
1)N

⊥ ⊗M(x2y
∗
2)M

⊥ ∈ RN ⊗RM

(here the second equality follows from (x1 ⊗ x2)(y1 ⊗ y2)
∗ = (x1y

∗
1) ⊗ (x2y

∗
2), it is casy to

prove). In general, there exist nets {zα}, {wβ} such that

zα
∥·∥−→ x and wβ

∥·∥−→ y,

where zα, wβ are finite linear combinations of simple tensors in H1 ⊗H2. Thus

(N ⊗M)(zαw
∗
β)(N

⊥ ⊗M⊥)
∥·∥−→ (N ⊗M)(xy∗)(N⊥ ⊗M⊥) = xy∗,

xy∗ ∈ RN ⊗n RM ⊆ RN ⊗w RM .

Hence each rank-one operator in Uτ belongs to RN ⊗w RM , so Uτ ⊆ RN ⊗w RM and

RN ⊗w RM = Uτ .

Corollary 2.1. The following statements are equivalent:

(1) xy∗ ∈ RN ⊗n RM ;

(2) xy∗ ∈ RN ⊗w RM ;

(3) there exist N ∈ N and M ∈ M such that x ∈ N ⊗M and y ∈ N⊥ ⊗M⊥.

Proof. (1)⇒(2) It is obvious.

(2)⇒(3) and (3)⇒(1) They follow from the proof of Theorem 2.1.

Lemma 2.4. xy∗ ∈ Alg(N ⊗ M) if and only if there exist N ∈ N and M ∈ M such

that x ∈ N ⊗M and y ∈ N⊥
− ⊗M⊥

− .

Proof. Since N ⊗M = (N ⊗ I) ∨ (I ⊗M), we have that

Alg(N ⊗M) = Alg(N ⊗ I) ∩Alg(I ⊗M).
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Just like the proof in Theorem 2.1, a rank-one operator xy∗ ∈ Alg(N ⊗I) if and only if there

exists an element N ∈ N such that x ∈ N ⊗ I and y ∈ N⊥
− ⊗ I. Similarly, xy∗ ∈ Alg(I⊗M)

if and only if there exists M ∈ M such that x ∈ I ⊗ M and y ∈ I ⊗ M⊥
− . Therefore

xy∗ ∈ Alg(N ⊗ M) if and only if there exist N ∈ N and M ∈ M such that x ∈ N ⊗ M

and y ∈ N⊥
− ⊗M⊥

− . Conversely, if there exist N ∈ N ,M ∈ M such that x ∈ N ⊗M and

∈ N⊥
− ⊗M⊥

− , we have

xy∗ ∈ Alg(N ⊗ I) ∩Alg(I ⊗M) = Alg(N ⊗M).

Lemma 2.5. 0 ̸= (N ⊖N−)⊗ (M ⊖M−) is an atom of N ⊗M.

Proof. Recall that an atom P of N ⊗M is an interval projection from N ⊗M such that

for any E ∈ N ⊗M, either P ≤ E or PE = 0 (see [4]). Set P = (N ⊖N−) ⊗ (M ⊖M−).

P = N⊗M−[(N−⊗M)∨(N⊗M−)] is an interval projection. For any E = E1⊗E2 ∈ N⊗M,

since N is totally ordered, either E1 ≤ N− or E1 ≥ N . If E1 ≤ N−, then P (E1 ⊗ E2) = 0;

if E1 ≥ N , since M is also totally ordered, either E2 ≤ M− or E2 ≥ M . If E2 ≤ M−, then

P (E1 ⊗ E2) = 0; and if E2 ≥ M , then P ≤ E1 ⊗ E2. Hence for any E = E1 ⊗ E2, either

P ≤ E1 ⊗ E2 or P (E1 ⊗ E2) = 0.

Now for any E ∈ N ⊗M, by virtue of [3, Proposition 2.4] we have

E = ∨{E1 ⊗ E2 : E1 ⊗ E2 ≤ E}.

If for any E1⊗E2 ≤ E, P (E1⊗E2) = 0, then PE = 0; if there exists some E1⊗E2 ≤ E such

that P (E1⊗E2) ̸= 0. It follows from the result of the preceding paragraph that P ≤ E1⊗E2

and P ≤ E.

Proposition 2.2. If a rank-one operator xy∗ ∈ Alg(N ⊗M), then the following state-

ments are equivalent:

(1) xy∗ ∈ RN⊗M;

(2) there exists L ∈ N ⊗M such that x ∈ L and y ∈ L⊥.

Proof. (1)⇒(2) Since xy∗ ∈ Alg(N ⊗ M), it follows from Lemma 2.4 that there exist

N ∈ N and M ∈ M such that x ∈ N ⊗M and y ∈ N⊥
− ⊗M⊥

− . Set

G1 = (N ⊖N−)⊗ (M ⊖M−),

G2 = (N ⊗M)⊖G1 = (N− ⊗M) ∨ (N ⊗M−),

G3 = (N⊥
− ⊗M⊥

− )⊖G1 = (N⊥ ⊗M⊥
− ) ∨ (N⊥

− ⊗M⊥).

If G1 = 0 then N ⊖N− = 0 or M ⊖M− = 0. In this case L = N ⊗M satisfies the condition

in 2). Now we suppose that G1 ̸= 0. Since N ⊗M = G1 +G2 and N⊥
− ⊗M⊥

− = G1 + G3,

we have

xy∗ = (G1 +G2)(xy
∗)(G1 +G3)

= (N ⊗M)(xy∗)G3 +G2(xy
∗)G1 +G1(xy

∗)G1.

Since xy∗ ∈ RN⊗M and G1 is an atom of N ⊗ M, it follows from [1, Theorem 4.8] that

G1(xy
∗)G1 = 0. Hence x ∈ G⊥

1 or y ∈ G⊥
1 . If x ∈ G⊥

1 then x ∈ G2 and y ∈ G1 + G3 =

N⊥
− ⊗M⊥

− ⊆ G⊥
2 ; if y ∈ G⊥

1 , then y ∈ G3 ⊆ (N ⊗M)⊥ and x ∈ N ⊗M .

(2)⇒(1) If there exists L ∈ N ⊗ M such that x ∈ L and y ∈ L⊥, then for any T ∈
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Alg(N ⊗M) we have L⊥TL = 0 and

[(xy∗)T ]n = [L(xy∗)L⊥T ]n = 0, ∀n ≥ 2.

So (xy∗)T is quasinilpotent. It follows from the definition of RN⊗M and xy∗ ∈ Alg(N ⊗M)

that xy∗ ∈ RN⊗M.

Lemma 2.6. RN ⊗n RM ⊆ RN⊗M.

Proof. For any A ∈ B(H1), B ∈ B(H2), N ∈ N and M ∈ M, we have

(N ⊗M)(A⊗B)(N⊥ ⊗M⊥) = NAN⊥ ⊗MBM⊥

∈ RN ⊗RM

⊆ Alg(N )⊗w Alg(M) = Alg(N ⊗M).

For any T ∈ Alg(N ⊗M), T (N ⊗M) ⊆ N ⊗M . Thus

[(N ⊗M)(A⊗B)(N⊥ ⊗M⊥)T ]n = 0, ∀n ≥ 2.

It follows from the definition of Jacobson radical that NAN⊥ ⊗MBM⊥ ∈ RN⊗M. Recall

that S1 ⊗n S2 = S1 ⊗n S2, where Si are subspaces of Hi. Since

RN = span{NAN⊥ : A ∈ B(H1), N ∈ N},
RM = span{MBM⊥ : B ∈ B(H2),M ∈ M},

we have

RN ⊗n RM = span{NAN⊥ : A ∈ B(H1), N ∈ N} ⊗n span{MBM⊥ : B ∈ B(H2),M ∈ M}
⊆ RN⊗M.

Theorem 2.2. If N ,M are non-trivial, then the following statements are equivalent:

(1) RN ⊗w RM = Rw
N⊗M;

(2) RN ⊗n RM and RN⊗M have the same rank-one operators;

(3) N , M are continuous.

Proof. (1)⇒(2) It follows from Lemma 2.6 that we only need to prove that each rank-one

operator in RN⊗M belongs to RN ⊗n RM . Suppose that

xy∗ ∈ RN⊗M ⊆ Rw
N⊗M = RN ⊗w RM .

It follows from Corollary 6 that xy∗ ∈ RN ⊗n RM .

(2)⇒(3) If at least one of N ,M is not continuous, without loss of genenrality, we suppose

that N is not continuous. Thus, there exists N ∈ N such that N > 0 and N ̸= N−. Since

M is non-trivial, choose M ∈ M such that 0 < M < I. We choose non-zero vectors

x1 ∈ N ⊖N−, x2 ∈ M and y2 ∈ M⊥, then

x = x1 ⊗ x2 ∈ N ⊗M,

and

y = x1 ⊗ y2 ∈ (N ⊖N−)⊗M⊥ ⊆ (N ⊗M)⊥ ∩ (N⊥
− ⊗M⊥

− ).

Then it follows from Lemma 2.4 and Proposition 2.2 that xy∗ ∈ RN⊗M. By the hypothesis

of (2), xy∗ ∈ RN ⊗n RM . Thus, it follows from Corollary 2.1 that there exist E1 ∈ N and

E2 ∈ M such that

x = x1 ⊗ x2 ∈ E1 ⊗ E2 and y = x1 ⊗ y2 ∈ E⊥
1 ⊗ E⊥

2 .
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Since N is totally ordered, either E1 ≤ N− or E1 ≥ N . If E1 ≤ N−, then

x1 ⊗ x2 = (E1 ⊗ E2)(x1 ⊗ x2)

= (E1 ⊗ E2)[(N ⊖N−)⊗M ](x1 ⊗ x2) = 0;

if E1 ≥ N, then

x1 ⊗ y2 = (E⊥
1 ⊗ E⊥

2 )[(N ⊖N−)⊗M⊥](x1 ⊗ y2) = 0.

This contradicts that x1, x2 and y2 are non-zero vectors. Hence both N ,M are continuous.

(3)⇒(1) Since N ,M are continuous, it follows from Proposition 2.1 that we have

Rw
N = {A ∈ B(H1) : AN ⊆ N,∀N ∈ N} = AlgN ,

Rw
M = {B ∈ B(H2) : BM ⊆ M,∀M ∈ M} = AlgM.

Hence it follows from Lemma 2.2 and Lemma 2.6 that

Rw
N⊗M ⊇ RN ⊗w RM = Rw

N ⊗w Rw
M

= AlgN ⊗w AlgM = Alg(N ⊗M) ⊇ Rw
N⊗M.

So Rw
N⊗M = RN ⊗w RM .

Corollary 2.2. If N ,M are non-trivial and at least one of N ,M is not continuous,

then RN ⊗n RM ⊂ RN⊗M.

Proof. If RN ⊗nRM = RN⊗M, then RN ⊗wRM = Rw
N⊗M and N ,M continuous. This

is a contradiction.

Remark 2.1. If N ,M are trivial, then RN = RM = RN⊗M = (0). In this case we

have RN ⊗n RM = RN⊗M. If N is trivial and M is not, then RN ⊗n RM = (0) and the

Jacobson radical RN⊗M of Alg(N ⊗M) is not zero (it follows from Proposition 2.2). Thus

in this case, RN ⊗n RM ⊂ RN⊗M.
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