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Abstract

Consider the motion of immersed hypersurfaces driven by surface diffusion flow and give an
lower bound on the life span of a smooth immersed solution, which depends only on how much
the curvature of the initial surface is concentrated in space.
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§1. Introduction

Let φ0 : M → Rn+1 be a closed immersed orientable hypersurface. We consider the
surface diffusion flow φ :M × [0, T ] → Rn+1, i.e. the geometric evolution equation is

∂

∂t
φ = (△H)ν, φ(·, 0) = φ0, (1.1)

where △ and H stand for the Laplacian and the mean curvature of Mt = {φ(x, t) : x ∈M},
respectively, ν denotes the unit vector field normal to the hypersurface Mt.

The surface diffusion flow (1.1) was first proposed by Mullins[15] to model surface dynam-
ics for phase interfaces when the evolution is only governed by mass diffusion in the interface.
It has also been examined in a more general mathematical and physical context by Davi
and Gurtin[5], and by Cahn and Taylor[3]. More recently, Cahn, Elliot, and Novick-Cohen[2]

showed by formal asymptotic that the surface diffusion flow is the singular limit of the
zero level set of the solution to the Cahn-Hillard equation with a concentration-dependent
mobility.

In two dimensions and for strip-like domains, the surface flow was investigated by Baras,
Duchon, and Robert[1]. They proved global existence of weak solutions. Also in two dimen-
sions, the surface flow for closed embedded curves was analytically investigated by Elliot
and Garcke[6]. They showed local existence and regularity for C4-initial curves, and global
existence for small perturbations of circles. Furthermore, assuming global existence, they
showed that any closed curve would become circular under this evolution. They did not
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obtain uniqueness of solutions. Recently, Giga and Ito[8] established the existence of unique
(local) solutions for immersed H4-initial curves. Moreover, they proved that the surface dif-
fusion flow could drive an initially embedded curve to a self intersection. In any dimension,
Escher, Mayer and Simonett[7] showed the long time existence and convergence of the flow
for initial data which are C2,α-close to a sphere. By numerical simulations, Escher, Mayer
and Simonett showed that an immersed curve could develop singularities under the surface
diffusion flow. To the author’s knowledge, up to now there is neither a proof of regularity of
the flow, no an example showing the development of a singularity. In this paper, as a first
step in this research, we obtain the following theorem.

Theorem 1.1. Let φ : M → Rn+1 be a smooth immersion. There are constants ε0 >
0, C < +∞ depending only on n, such that if ρ > 0 is chosen with∫

Bρ(x)

|A0|2dµ0 ≤ ε < ε0 for any x ∈ Rn+1, (1.2)

the maximal time T of smooth existence for (1.1) satisfies

T ≥ 1

C
ρ4, (1.3)

and one has the estimate ∫
Bρ(x)

|A|2dµ ≤ Cε for 0 ≤ t ≤ 1

C
ρ4, (1.4)

where A = (hij) denotes the second fundamental form.
In the statement of the theorem the integrals should be interpreted as integrals over the

preimage of Bρ(x) under φ0 and φ, respectively.
This paper is organized as follows. In Section 2, we collect some notations and basic

results needed; In Section 3, we derive energy estimates; In Section 4, we derive the local
estimates of the curvature by concentration of curvature; In Section 5, we give a proof of
Theorem 1.1.

Despite the large literature on the mean curvature flow, fourth or even higher order flows
appeared only recently. Besides the cited works above, we quote the work of Simonett[19]

on the gradient flow of the Willmore functional W (φ) =
∫
M

|A|2dµ defined on surfaces

immersed in R3. In this paper it is shown the long time existence and convergence of the
flow for initial data which are C2,α-close to a sphere. In [12], Kuwert and Schatzle studied
the global existence and regularity of the gradient flow of the Willmore functional for general
initial data. Finally, in a very recent paper [13], Mantegazza studied the global existence of
the gradient flow of the functional Fm(φ) =

∫
M
[1+ |∇mν|2]dµ in the case m > [n2 ], where n

is the dimension of M . For other geometric evolution equations of higher order, refer to [4,
11, 16–18]. Our work borrows from [10, 12, 13, 16, 17] the basic idea of using interpolation
inequalities as a tool to derive a-priori estimates.

§2. Notations and Preliminaries

We devote this section to introduce the basic notations and facts about differentiable and
Riemannian manifolds which will be needed later in the paper. The main objects of the
paper are n-dimensional closed hypersurfaces immersed in Rn+1, that is, pairs (M,φ) where
M is an n-dimensional smooth manifold, connected with empty boundary, and a smooth
map φ : M → Rn+1 such that the rank of dφ is everywhere equal to n. The manifold M
gets in a natural way a metric tensor g turning it in a Riemannian manifold (M, g), by
pulling back the standard scalar product of Rn+1 with the immersion map φ. Taking local
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coordinates around p ∈ M given by a chart F : Rn ⊃ U → M , we identify the map φ with
its expression in coordinates φ ◦ F : Rn ⊃ U → Rn+1, then we have local basis of TpM and

T ∗
pM , respectively given by vectors { ∂

∂xi
} and covectors {dxj}. We will denote vectors on

M by X = Xi, which means X = Xi ∂
∂xi

, covectors by Y = Yj , that is , Y = Yjdxj and a

general mixed tensor with T = T i1···ik
j1···jl , where the indices refer to the local basis. The scalar

product in R3 will be denoted by ⟨ , ⟩. As the metric g is obtained by pulling it back with

φ, we have gij = ⟨∂φ(x)
∂xi

, ∂φ(x)
∂xj

⟩. The canonical measure induced by the metric g is given by

µ =
√
GLn, where G = det(gij) and Ln is the standard Lebesgue measure on Rn.

The second fundamental form A = hij of M is the 2-tensor defined as follows:

hij(x) = −
⟨
ν(x),

∂2φ(x)

∂xi∂xj

⟩
, (2.1)

the mean curvature H is the trace of A,

H(x) = gijhij . (2.2)

The induced covariant derivative on (M, g) of a vector field X is given by

∇jX
i =

∂

∂xj
Xi + Γi

jkX
k, (2.3)

where the Christoffel symbols Γ = Γi
ij . In all the paper the covariant derivative ∇T of a

tensor T = T i1···ik
j1···jl will be denoted by ∇sT

i1···ik
j1···jl = (∇T )i1···iksj1···jl . With ∇mT we will mean the

k-th iterated covariant derivative of a tensor T .
We recall that the gradient ∇f of a function and the divergence divX of a vector field

at a point p ∈ (M, g) are defined respectively by

g(∇f(p), v) = dfp(v), ∀v ∈ TpM

and

divX = trace∇X = ∇iX
i =

∂

∂xi
Xi + Γi

ikX
k. (2.4)

The Laplacian △T of a tensor T is

△T = gij∇i∇jT. (2.5)

The Riemann tensor, the Ricci tensor and the scalar curvature are expressible via the second
fundamental form as follows:

Rijkl = hikhjl − hilhjk, Ricij = Hhij − hilg
lkhkj , R = H2 − |A|2. (2.6)

Hence, the formulas for the interchange of covariant derivatives, which involve the Riemann
tensor, become

∇i∇jX
s −∇j∇iX

s = Rijklg
ksX l = Rs

ijlX
l = (hikhjl − hilhjk)g

ksX l,

∇i∇jYk −∇j∇iYk = Rijklg
lsYs = Rs

ijkYs = (hikhjl − hilhjk)g
lsYs. (2.7)

The Codazzi equations

∇ihjk = ∇jhik = ∇khij

imply the following identity which will be crucial in the sequel,

△hij = ∇i∇jH +Hhilg
lshsj − |A|2hij , (2.8)

and the following inequalities

|∇A| ≤ C|∇A0|, |∇2A| ≤ C|∇2A0|. (2.9)
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The following Gauss-Weingarten relations are fundamental

∂2φ

∂xi∂xj
= Γk

ij

∂φ

∂xk
− hijν,

∂

∂xj
ν = hjlg

ls ∂φ

∂xs
, (2.10)

which imply that |∇ν| = |A|.
In all this paper we will write T ∗ S, following Hamilton[9], to denote a tensor formed by

contraction on some indices of the tensor T and S using the coefficients gij . We use the
notation Pm

r (A) for any term of the type

Pm
r (A) =

∑
i1+···+ir=m

∇i1A ∗ ∇i2A ∗ · · · ∗ ∇irA. (2.11)

Now we derive some evolution equations from the flow (1.1) which will be useful for the
estimates of the following sections.

Lemma 2.1. We have

∂

∂t
gij = −2△Hhij , (2.12)

∂

∂t
gij = 2△Hhij , (2.13)

∂

∂t
ν = −∇(△H), (2.14)

∂

∂t
Γi
jk = ∇(△H) ∗A+ (△H) ∗A, (2.15)

∂

∂t
(dµ) = −H△Hdµ, (2.16)

∂

∂t
hij = −△2hij + P 2

3 (A), (2.17)

∂

∂t
∇khij = −△2∇khij + P k+2

3 (A). (2.18)

In the end of this section, we discuss the small time existence of the surface diffusion flow
(1.1). Suppose that φ0 :M → Rn+1 is a smooth immersion of an n-dimensional hypersurface
M which is compact, connected and has empty boundary. We look for a smooth function
φ :M × [0, T ] such that

(1) the map φt = φ(·, t) :M → Rn+1 is an immersion;

(2) the following partial differential equation is satisfied ∂
∂tφ(p, t) = △H(p, t)ν(p, t).

The small time existence of such problem is standard[11,17].

Lemma 2.2. For any smooth immersion φ0 : M → Rn+1, there exists a unique smooth
φ to the surface diffusion flow (1.1) defined on some interval 0 ≤ t < T and taking φ0 as its
initial value.

§3. Energy Inequalities

In this section, we will derive energy inequalities from the evolution equations obtained
in previous section.

Lemma 3.1. Let η : M × [0, T ] → R be a C2-smooth function. The following formula
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holds,

d

dt

∫
M

1

2
η|∇kA|2dµ = −

∫
M

1

2
ηH△H|∇kA|2dµ+

∫
M

1

2
ηt|∇kA|2dµ

−
∫
M

gisgjz∇ik+2
∇ik+1

∇i1···ikhij∇ik+2∇ik+1(η∇i1···ikhsz)dµ

+

∫
M

ηP k+2
3 (A) ∗ ∇kAdµ. (3.1)

Proof. By using Lemma 2.1, we have

d

dt

∫
M

1

2
η|∇kA|2dµ = −

∫
M

1

2
ηH△H|∇kA|2dµ+

∫
M

1

2
ηt|∇kA|2dµ

+

∫
M

1

2
η
∂

∂t
|∇kA|2dµ. (3.2)

Note that
∂

∂t
|∇kA|2 = −2gisgjz∇ik+1∇ik+2∇ik+2

∇ik+1
∇i1···ikhij∇i1···ikhsz

+ P k+2
3 (A) ∗ ∇kA.

Hence, using divergence theorem, we have∫
M

1

2
η
∂

∂t
|∇kA|2dµ =

∫
M

[−gisgjz∇ik+2
∇ik+1

∇i1···ikhij∇ik+2∇ik+1(η∇i1···ikhsz)

+ ηP k+2
3 (A) ∗ ∇kA]dµ.

Combining this relation with (3.2), we complete the proof of Lemma 3.1.
Lemma 3.2. Let η = γ5 with γ ∈ C2(M × [0, T ]) and s ≥ 4. Then for C = C(n, s) we

have
d

dt

∫
M

|∇kA|2γsdµ+

∫
M

|∇k+2A|2γsdµ

≤
∫
M

s|∇kA|2γs−1γtdµ+ C

∫
M

|∇kA|2γs−4(|∇γ|4 + γ2|∇2γ|2)dµ

+

∫
M

P k+2
3 (A) ∗ ∇kAγsdµ. (3.3)

Proof. First we deal with the third term on the right of (3.1).

I = −
∫
M

gisgjz∇ik+2
∇ik+1

∇i1···ikhij∇ik+2∇ik+1(γs∇i1···ikhsz)dµ

≤ −
∫
M

|∇k+2A|2γsdµ+
1

4

∫
M

|∇k+2A|2γsdµ

+ C

∫
M

|∇k+1A|2γs−2|∇γ|2dµ+ C

∫
M

|∇kA|2γs−4(|∇γ|4 + γ2|∇2γ|2)dµ.
(3.4)

For the third term on the right of (3.4), integrating by parts, we have∫
M

|∇k+1A|2γs−2|∇γ|2dµ

≤ ε

∫
M

|∇k+2A|2γsdµ+ C(ε)

∫
M

|∇kA|2γs−4|∇γ|4dµ

+
1

2

∫
M

|∇k+1A|2γs−2|∇γ|2dµ+ C

∫
M

|∇kA|2γs−2|∇2γ|2dµ.
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Combining this relation with (3.4), we have

I ≤ −1

2

∫
M

|∇k+2A|2γsdµ+ C

∫
M

|∇kA|2γs−4(|∇γ|4 + γ2|∇2γ|2)dµ.

Substituting this relation to (3.1) we have (3.3). The proof of Lemma 3.2 is completed.

In the following we assume that γ = γ̃ ◦ φ, where ∥γ̃∥C2(Rn+1) ≤ C. This implies ∇γ =

(∇γ̃ ◦ φ)∇φ and ∇2γ = (∇2γ̃ ◦ φ)(∇φ, ∇φ) + (∇γ̃ ◦ φ)A, and therefore we have

|∇γ| ≤ C, |∇2γ| ≤ C(1 + |A|). (3.5)

Lemma 3.3. Let γ = γ̃ ◦ φ satisfy (3.5). Then we have

d

dt

∫
M

|∇kA|2γsdµ+
3

4

∫
M

|∇k+2A|2γsdµ

≤
∫
M

(P k+2
3 (A) ∗ ∇kAγs + P k

3 (A) ∗ ∇kAγs−2 + P k
3 (A) ∗ ∇kAγs)dµ

+ C

∫
M

|A|2γs−4−kdµ.

Proof. We will estimate the terms in (3.3). First, we have, by integrating by parts, that∫
M

|∇kA|2γs−1γtdµ =

∫
M

|∇kA|2γs−1[(∇γ̃ ◦ φ)ν]△Hdµ

≤ C

∫
M

|∇k+1A|2γs−2dµ+ C

∫
M

|∇kA|2γs−4dµ

+

∫
M

(P k+2
3 (A) ∗ ∇kAγs + P k

3 (A) ∗ ∇kAγs−2)dµ. (3.6)

Now using the following interpolation inequality[12](∫
M

|∇kϕ|pγsdµ
) 1

p ≤ ε
(∫

M

|∇k+1ϕ|pγs+pdµ
) 1

p

+ Cε

(∫
M

|ϕ|pγs+kpdµ
) 1

p

, (3.7)

where 2 ≤ p ≤ ∞, k ∈ N, s ≥ kp and Cε = Cε(d, p,m, k), we have∫
M

|∇kA|2γs−4dµ+

∫
M

|∇k+1A|2γs−2dµ

≤ ε

∫
M

|∇k+2A|2γsdµ+ C(ε)

∫
M

|A|2γs−4−2kdµ. (3.8)

Combining this relation with (3.6) we obtain∫
M

|∇kA|2sγs−1γtdµ ≤ ε

∫
M

|∇k+2A|2γsdµ+ C(ε)

∫
M

|A|2γs−4−2kdµ

+

∫
M

(P k+2
3 (A) ∗ ∇kAγs + P k

3 (A) ∗ ∇kAγs−2)dµ.
(3.9)

Now we deal with the following term∫
M

|∇kA|2γs−4(|∇γ|4 + γ2|∇2γ|2)dµ

≤ ε

∫
M

|∇k+2A|2γsdµ+ C(ε)

∫
M

|A|2γs−4−2kdµ+ C

∫
M

P k
5 (A) ∗ ∇kAγsdµ.

(3.10)

Substituting (3.9) and (3.10) to (3.3), we follow the conclusion of Lemma 3.3.
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Corollary 3.1. Suppose χBρ(x0) ≤ γ̃ ≤ χB2ρ(x0) and ∥∇j γ̃∥L∞ ≤ Cρ−j for j = 1, 2.
Under the assumptions of Lemma 3.3, we have

d

dt

∫
M

|∇kA|2γsdµ+
3

4

∫
M

|∇k+2A|2dµ

≤
∫
M

(P k+2
3 (A) ∗ ∇kAγs + P k

3 (A) ∗ ∇kAγs−2 + P k
5 (A) ∗ ∇kAγs)dµ

+
C

ρ4+2k

∫
M

|A|2γs−4−2kdµ.

§4. Control by Concentration of Curvature

For simplicity, we denote ∥ϕ∥p,U = (
∫
U
|ϕ|pdµ)

1
p .

Lemma 4.1. Let φ :M × [0, T ] → Rn+1 be a surface diffusion flow, γ as in (3.5) and let

ε = sup
0≤t≤t

∥A∥22,[γ>0] ≤ ε0 (4.1)

for some ε0 small enough depending on the constants in (3.5). Then for any t ∈ [0, T ], we
have ∫

[γ=1]

|A|2dµ+
1

2

∫ t

0

∫
[γ=1]

(|∇2A|2 + |A|2|∇A|2 + |A|6)dµdτ

≤
∫
[γ0>0]

|A0|2dµ0 + Cεt. (4.2)

Proof. From Lemma 3.3 for s = 4 and k = 0, we have

d

dt

∫
M

|A|2γ4dµ+
3

4

∫
M

|∇2A|2γ4dµ

≤ 1

4

∫
M

|∇2A|2γ4dµ+ C

∫
M

[|A|6γ4 + |∇A|2|A|2γ4]dµ+ C

∫
[γ>0]

|A|2dµ.
(4.3)

Here we have used the facts that∫
M

|∇2A||A|3γ4dµ ≤ 1

4

∫
M

|∇2A|2γ4dµ+ C

∫
M

|A|6γ4dµ,∫
M

|A|4γ2dµ ≤ 1

2

∫
M

|A|6γ4dµ+
1

2

∫
[γ>0]

|A|2dµ.

Now we deal with the terms
∫
M

|A|6γ4dµ and
∫
M

|A|2|∇A|2γ4dµ. Recall the Michael-Simon

Sobolev inequality[14] (∫
M

u2dµ
) 1

2 ≤ C
(∫

M

|∇u|dµ+

∫
M

|H||u|dµ
)

(4.4)

with C = C(n). Letting u = |A|3γ2 we have∫
M

|A|6γ4dµ

≤ C
(∫

M

|∇A|2γ2dµ
)2

+ C

∫
[γ>0]

|A|2dµ
∫
M

|A|6γ4dµ+ C
(∫

[γ>0]

|A|2dµ
)2

.
(4.5)
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By integrating by parts, we have∫
M

|∇A|2γ2dµ

≤
(∫

[γ>0]

|A|2dµ
∫
M

|∇2A|2γ4dµ
) 1

2

+ C

∫
[γ>0]

|A|2dµ+

∫
M

|∇A|2γ2dµ. (4.6)

From (4.5) and (4.6) we have∫
M

|A|6γ4dµ

≤ C

∫
[γ>0]

|A|2dµ
(∫

M

[|∇2A|2γ4 + |A|6γ4]dµ
)
+ C

(∫
[γ>0]

|A|2dµ
)2

. (4.7)

Letting u = |A||∇A|γ2 we obtain∫
M

|A|2|∇A|2γ4dµ ≤ C

∫
[γ>0]

|A|2dµ
(∫

M

[|∇2A|2γ4 + |A|6γ4]dµ
)

+ C
(∫

[γ>0]

|A|2dµ
)2

+
(∫

M

|∇A|2γ2dµ
)2

. (4.8)

Substituting (4.6) to (4.8) we have∫
M

|A|2|∇A|2γ4dµ

≤ C

∫
[γ>0]

|A|2dµ
(∫

M

[|∇2A|2γ4 + |A|6γ4]dµ
)
+ C

(∫
[γ>0]

|A|2dµ
)2

. (4.9)

Combining (4.3), (4.7) with (4.9) we have

d

dt

∫
M

|A|2γ4dµ+
1

2

∫
M

(|∇2A|2 + |A|2|∇A|2 + |A|6)γ4dµ

≤ C

∫
[γ>0]

|A|2dµ
(∫

M

[|∇2A|2γ4 + |A|6γ4]dµ
)
+ C

(∫
[γ>0]

|A|2dµ
)2

+ C

∫
[γ>0]

|A|2dµ.

Since
∫
[γ>0]

|A|2dµ ≤ ε0, we have

d

dt

∫
M

|A|2γ4dµ+
1

2

∫
M

(|∇2A|2 + |A|2|∇A|2 + |A|6)γ4dµ ≤ Cε.

Now (4.2) follows by integration over [0, t].
Lemma 4.2. Let m ∈ N and γ as in (3.5). We have for any s ≥ 2m+ 4,

d

dt

∫
M

|∇mA|2γsdµ+
1

2

∫
M

|∇m+2A|2γsdµ

≤ C(∥A∥4∞,[γ>0] + ∥A∥3∞,[γ>0])

∫
M

|∇mA|2γsdµ

+ C(1 + ∥A∥4∞,[γ>0])∥A∥
2
2,[γ>0]. (4.10)

Proof. To prove this lemma, we need the following interpolation inequalities[12]

(i) Let 0 ≤ i1, · · · , ir ≤ k, i1 + · · ·+ ir = 2k and s ≥ 2k. Then∣∣∣ ∫
M

|∇i1ϕ ∗ · · · ∗ ∇irϕγs|dµ
∣∣∣ ≤ C∥ϕ∥r−2

∞

(∫
M

|∇kϕ|2γsdµ+ ∥ϕ∥2L2

)
, (4.11)

where C = C(k, n, s, ∥∇γ∥∞).
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(ii) Let 1
p + 1

q = 1
r , 1 ≤ p, q, r ≤ ∞ and α + β = 1, α, β ≥ 0. For s ≥ max{αq, βp} and

− 1
p ≤ t ≤ 1

q , we have(∫
M

|∇ϕ|2rγsdµ
) 1

r ≤ C
(∫

M

|ϕ|qγs(1−tq)dµ
) 1

q
(∫

M

|∇2ϕ|pγs(1+tp)dµ
) 1

p

+ Cs
(∫

M

|ϕ|qγs−αqdµ
) 1

q
(∫

M

|∇ϕ|pγs−βpdµ
) 1

p

,
(4.12)

where C = C(n, r). By Lemma 3.3, we have

d

dt

∫
M

|∇mA|2γsdµ+
3

4

∫
M

|∇m+2A|2γsdµ

≤
∫
M

(Pm+2
3 (A) ∗ ∇mAγs + Pm

5 (A) ∗ ∇mAγs)dµ+ C

∫
M

|A|2γs−4−2mdµ.
(4.13)

Using (4.11) with r = 6 and k = m, we get∣∣∣ ∫
M

Pm
5 (A) ∗ ∇mAγsdµ

∣∣∣ ≤ C∥A∥4∞,[γ>0]

(∫
M

|∇mA|2γsdµ+ ∥A∥22,[γ>0]

)
. (4.14)

Using (4.11) with r = 4 and k = m, we get∣∣∣ ∫
M

Pm
3 (A) ∗ ∇mAγs−2dµ

∣∣∣ ≤ C∥A∥2∞,[γ>0]

(∫
M

|∇mA|2γs−2dµ+ ∥A∥22,[γ>0]

)
. (4.15)

Using (4.11) with r = 4, k = m+ 1, we get∣∣∣ ∫
M

Pm+2
3 (A) ∗ ∇mAγsdµ

∣∣∣
≤ ε

∫
M

|∇m+2A|2γsdµ+ C(ε)∥A∥4∞,[γ>0]

∫
M

|∇mA|2γsdµ

+ C∥A∥2∞,[γ>0]∥A∥
2
2,[γ>0] + C∥A∥2∞,[γ>0]

∫
M

|∇m+1A|2γsdµ. (4.16)

By (4.12) with p = q = 2r = 2, α = 0, β = 1, t = 0, we have

∥A∥2∞,[γ>0]

∫
M

|∇m+1A|2γsdµ ≤ ε

∫
M

|∇m+2A|2γsdµ+ C(ε)∥A∥4∞,[γ>0]

∫
M

|∇mA|2γsdµ

+ C

∫
M

|∇m+1A|2γs−2dµ. (4.17)

Combining (4.13)–(4.17), we prove Lemma 4.2.
Lemma 4.3. Under the assumptions of Lemma 4.1, let

sup
0≤t≤T

∫
[γ>0]

|A|2dµ ≤ ε0, (4.18)

where ε0 is small enough depending on the constants in (3.5). Then

∥∇mA∥∞,[γ>1] ≤ C(m,T, α0(m+ 2)), (4.19)

where α0(m) =
m∑
j=0

∥∇jA∥2,[γ0>0].

Proof. Recalling Lemma 4.3 in [12], we have for any tensor ϕ on M and γ as in (3.5)
that

∥ϕ∥4∞,[γ=1] ≤ C∥ϕ∥22,[γ>0](∥∇
2ϕ∥22,[γ>0] + ∥|ϕ|2|A|4∥1,[γ>0] + ∥ϕ∥22,[γ>0]). (4.20)
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Moreover, if ϕ = A and if

∥A∥22,[γ>0] ≤ ε0

for some ε0 small enough depending on the constants in (3.5), then

∥A∥4∞,[γ=1] ≤ C∥A∥22,[γ>0](∥∇
2A∥22,[γ>0] + ∥A∥22,[γ>0]). (4.21)

For 0 ≤ σ < τ ≤ 1, let γσ,τ = ψσ,τ ◦ γ satisfy γσ,τ = 0 for γ ≤ σ and γσ,τ = 1 for γ ≥ τ.
With σ = 0, τ = 1

2 we deduce from Lemma 4.1 that∫ T

0

∫
[γ≥1/2]

(|∇2A|2 + |A|6)dµ ≤ Cε0(1 + T ). (4.22)

Substituting (4.22) to (4.21), we let σ = 1
2 , τ = 3

4 and obtain∫ T

0

∥A∥4∞,[γ≥3/4]dt ≤ Cε0(Cε0(1 + T ) + ε0T ) ≤ Cε20(1 + T ). (4.23)

From Lemma 4.2 with σ = 3
4 , τ = 7

8 and s = 2m+ 4, we have∫
M

|∇mA|2γsσ,τdµ+

∫ t

0

∫
[γ≥7/8]

|∇m+2A|2dµdt′

≤
∫
M

|∇mA0|2(γ0)sσ,τdµ0 + C(m)ε0

(
T +

∫ T

0

∥A∥4∞,[γ≥3/4]dt+

∫ T

0

∥A∥3∞,[γ≥3/4]dt
)

+ C(m)

∫ t

0

(
∥A∥4∞,[γ≥3/4] + ∥A∥3∞,[γ≥3/4]

)
·
(∫

M

|∇mA|2γsσ,τ
)
dt′

for any t ∈ [0, T ]. Using Gronwall’s inequality and (4.22) we have

sup
0≤t≤T

∫
[γ≥7/8]

|∇mA|2dµ+

∫ T

0

∫
[γ≥7/8]

|∇m+2A|2dµdt ≤ C(m,T, α0(m)).

From this inequality and (4.21) we have

∥A∥4∞,[γ≥15/16] ≤ Cε0(C(2, T, α0(2)) + ε0) ≤ C(T, α0(2)).

Using (4.20) for ϕ = ∇mA, we get

∥∇mA∥4∞,[γ=1] ≤ C(m,T, α0(m+ 2)).

The proof of this lemma is completed.

§5. Proof of Theorem 1.1

For simplicity, we denote ∥ϕ∥p,U = (
∫
φ−1(V )

|ϕ|p)
1
p for any V ⊆ Rn+1. Now we prove

Theorem 1.1.
Without loss of generality, we may assume that ρ = 1. Let

ε(t) = sup
x∈Rn+1

∫
B1(x)

|A|2dµ. (5.1)

By compactness of φ(M × [0, t]) for t < T, we have that the function ε(t) : [0, T ) → R is
continuous. It is easy to check by covering argument that

ε(t) ≤ Γ sup
x∈Rn+1

∫
B1/2(x)

|A|2dµ (5.2)

for some Γ depending only on n. We define

t0 = sup{0 ≤ t ≤ min(T, λ) : ε(t) ≤ 3Γε for 0 ≤ τ ≤ t}, (5.3)
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where λ > 0 be a parameter. By the continuity of ε(t), we have t0 > 0 and

ε(t0) = 3Γε if t0 < min(T, λ). (5.4)

Choose a cutoff function γ̃ ∈ C2(Rn+1) with ∥γ̃∥C2(Rn+1) ≤ C(n) and χB1/2(x) ≤ γ̃ ≤ χB1(x),

then γ = γ̃ ◦ φ satisfies (3.5). Using Lemma 4.1 on [0, t0], we have∫
B1/2(x)

|A|2dµ ≤
∫
B1(x)

|A0|2dµ0 + CΓεt ≤ 2ε for 0 ≤ t ≤ t0,

if we take λ = (CΓ)−1. From (5.2) we have

ε(t) ≤ 2Γε for 0 ≤ t ≤ t0, (5.5)

and thus (5.4) implies t0 = min(T, (CΓ)−1). Now if t0 = (CΓ)−1, then (1.3) holds and (5.5)
implies (1.4). Hence, we only need to lead a contradiction from the assumption

t0 = T. (5.6)

First, by (5.5) and T = t0 ≤ (CΓ)−1 we can apply Lemma 4.3 to obtaining

∥∇mA∥∞ ≤ C(n,m,φ0). (5.7)

Since ∇mA are uniformly bounded in time, we have

|φ(p, t)− φ(p, s)| ≤
∫ t

s

|△H(p, t′)|dt′ ≤ C(t− s)

for any 0 ≤ s < t < T. Then φ(·, t) uniformly converges to a continuous limit φ(·, T ) as
t→ T . We recall Lemma 8.2 in [10]:

Lemma 5.1.[10] Let gij be a time dependent metric on a compact manifold M for 0 ≤
t < T ≤ +∞. Suppose that ∫ T

0

max
Mt

∣∣∣ ∂
∂t
gij

∣∣∣dt ≤ C.

Then the metric gij(t) are all equivalent, and they converge as t→ T uniformly to a positive
definite metric tensor gij(T ) which is continuous and also equivalent.

In our situation, the hypotheses of this lemma are clearly satisfied, hence φ(·, T ) represents
a hypersurface. Moreover, it also follows that there exists a positive constant C depending
only on n and φ0, such that for every 0 ≤ t < T , we have 1

C ≤ gij ≤ C. Since ∂
∂tgij =

−△Hhij , for every k ∈ N we get∥∥∥∇k ∂

∂t
gij

∥∥∥
∞

≤ C(n, k, φ0).

Analogously, as the time derivative of the Christoffel symbols is given by

∂

∂t
Γi
jk = ∇△H ∗A+△H ∗A,

it follows that ∥∥∥∇k ∂

∂t
Γi
jk

∥∥∥
∞

≤ C(n, k, φ0).

With an induction argument, we can prove the following formula relating the iterated co-
variant and coordinate derivatives of a tensor T ,

∇mT = ∂mT +

m∑
l=1

∑
k1+···+kl+k≤m−1

∂k1Γ · · · ∂klΓ · ∂kT. (5.8)

By this relation and induction, it follows that

∥∂kΓi
jl∥∞, ∥∂k∂tΓi

jl∥∞ ≤ C(n, k, φ0)
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for t ∈ [0, T ]. Applying formula (5.8) to T = ∇sA, we see that

∂k∇sA−∇k+sA =

k∑
i=1

∑
j1+···+ji+l≤k−1

∂j1Γ · · · ∂jiΓ · ∂l∇sA,

and by induction and estimate (5.7) we have ∥∂k∇sA∥∞ ≤ C(k, s, φ0). Since we already
know that |φ| is bounded and |∂φ| = 1, by the Gauss-Weingarden relation ∂2φ = Γ∂φ +
Aν, ∂ν = A ∗ ∂φ and previous estimates, we can conclude that

∥∂kφ∥∞ ≤ C(k, φ0) (5.9)

for any k ∈ N and t ∈ [0, T ]. Since ∂tφ = △Hν, we get from (5.9) that ∥∂k∂tφ∥∞ ≤
C(k, n, φ0). Hence, the convergence φ(·, t) → φ(·, T ), as t → T , is in the C∞ topology and
Mt is smooth. φ(·, T ) is an immersion as the metric g(t) → g(T ) are uniformly equivalent.
By short time existence, we can extend the flow φ to an interval [0, T + δ], contradicting the
maximality of T , hence contradicting (5.6), and the theorem is proven.
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