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THE CODIMENSION FORMULA
ON QUASI-INVARIANT

SUBSPACES OF THE FOCK SPACE
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Abstract

Let M be an approximately finite codimensional quasi-invariant subspace of the Fock space.
This paper gives a formula to calculate the codimension of such spaces and uses this formula

to study the structure of quasi-invariant subspaces of the Fock space. Especially, as one of
applications, it is showed that the analogue of Beurling’s theorem is not true for the Fock space
L2
a(Cn) in the case of n ≥ 2.
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§0. Introduction

Let D denote the open unit disk in the complex plane C. The present paper was mainly
motivated by the recent works of K. Guo[7,9] in the Hardy space H2(Dn) and analytic Hilbert
space over a bounded domain. In [7], the author get the codimension formula for invariant
subspaces of Hardy space over Dn. The analogue formula for analytic Hilbert spaces over
a bounded domain Ω ⊂ Cn was established in [9]. In this paper we will be concerned with
the Fock space L2

a(Cn). The Fock space or the so called Siegel-Bargmann space, defined to
be the space of all µ-square-integrable entire functions over Cn, where

dµ(z) = e
−|z|2

2 dν(z)(2π)−n

is the Gaussian measure on Cn (dν is the ordinary Lebesgue measure). It is easy to see
that L2

a(Cn) is a closed subspace of L2(Cn) with the reproducing kernel functions Kλ(z) =

eλ̄z/2 and the normalized reproducing kernel functions kλ(z) = eλ̄z/2−|λ|2/4. For general
background on Fock space one may consult[5] and the references therein. As proved in
[10], there exists no nontrivial invariant subspaces for multiplication operator Mzi . Thus,
they introduced a substitute for invariant subspace, the so called quasi-invariant space. Let
M be a closed subspace of the Fock space L2

a(Cn). We say that M is quasi-invariant if
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pM ∩ L2
a(Cn) ⊂ M and M0 = {f ∈ M |pf ∈ L2

a(Cn)} is dense in M for all polynomial
p. Let M be a quasi-invariant subspaces of L2

a(Cn). We call M an approximately finite
codimensional quasi-invariant subspace (abbr., AFCQS), if M is equal to the intersection
of all finite codimensional quasi-invariant subspaces containing M . For a quasi-invariant
subspaces M , the AF-envelope of M is defined by the intersection of all finite codimensional
quasi-invariant subspaces containing M , and denoted by Me. Clearly, the definition implies
that Me is an AFCQS. It is the main purpose of the present paper to establish the formula
to calculate the codimesion of an AFCQS.

Besides the introduction, the paper has three sections. In Section 1, we mainly review
some basic terminologies and some results concerning quasi-invariant subspaces of the Fock
space and the so called characteristic space theory. The codimension formula for an AFCQS
will be established in Section 2. Section 3 contains two applications of the codimension
formula. A direct application of the codimension formula is that zero-based quasi-invariant
subspaces have codimension 1 (or index 1) property which will play an important role in
the construction of quasi-invariant subspace having codimension great than one. Another
application shows that the analogue of Beurling’s theorem does not hold in the Fock space
L2
a(Cn) in the case of n > 1.

§1. Preliminaries

For a polynomial q =
∑

am1···mnz
m1
1 zm2

2 · · · zmn
n , let q(D) denote the linear partial differ-

ential operator
∑

am1···mn

∂m1+m2+···mn

∂z
m1
1 ∂z

m2
2 ···∂zmn

n
. Let M be a quasi-invariant subspaces of L2

a(Cn)

and C the polynomial ring over Cn. For λ ∈ Cn, set

Mλ = {q ∈ C : q(D)f |λ = 0, ∀f ∈ M},
where q(D)f |λ denotes (q(D)f)(λ). It is easy to check that Mλ is invariant under the action
by basic partial differential operators { ∂

∂z1
, ∂
∂z2

, · · · , ∂
∂zn

}. Mλ is called the characteristic
space of M at λ. The envelope of M at λ, Me

λ, is defined by

Me
λ = {f ∈ L2

a(Cn) : q(D)f |λ = 0, ∀ q ∈ Mλ}.
It is easy to check that Me

λ ⊇ M and Me
λ is quasi-invariant.

In what follows we will denote the zero set of M by Z(M), that is, Z(M) = {λ ∈
Cn : f(λ) = 0, ∀f ∈ M}. The following algebraic reduction theorem for finite codimension
quasi-invariant subspace first appeared in [10] and will be used several times in the present
paper.

Lemma 1.1.[10, Theorem 5.5] Let M be a quasi-invariant subspace of finite codimension.
Then C ∩ M is an ideal in the polynomial ring C and C ∩ M is dense in M . Conversely,
if I is an ideal in C of finite codimension then [I] is quasi-invariant subspace of the same
codimension and [I] ∩ C = I.

The next proposition illustrates some basic properties of the characteristic space of quasi-
invariant subspaces and their envelope and will be used in establishing the codimensional
formula next. The argument in the proof is close to that in [6] where a similar theorem for
invariant subspaces of Hardy space is proved.

Proposition 1.1. Let M be a quasi-invariant subspace of the Fock space L2
a(Cn). Then

we have

(1) if Z(M) = ∅, then Me = L2
a(Cn);

(2) if Z(M) ̸= ∅, then M ⊆ Me ̸= L2
a(Cn), (Me)e = Me, and Z(M) = Z(Me);

(3) if Z(M) ̸= ∅, then Me = ∩λ∈Z(M)M
e
λ.
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In particular, suppose M1,M2 are two quasi-invariant subspaces of L2
a(Cn). Then Me

1 =
Me

2 if and only if Z(M1) = Z(M2), and for every λ ∈ Z(M1), M1λ = M2λ.

Proof. (1) Let Mα be a finite co-dimensional quasi-invariant subspaces such that Mα ⊇
M . Then Z(Mα) ⊆ Z(M). Hence Z(Mα) = ∅. By Lemma 1.1 we have Mα ∩ C is an ideal
of the polynomial ring C and Mα ∩C is dense in M . This implies that Z(Mα ∩C) = ∅. Thus
Mα ∩ C = C and Mα = L2

a(Cn). Hence Me = ∩Mα = L2
a(Cn).

(2) The proof is obvious.

(3) We first recall that the degree of a monomial zm1
1 zm2

2 · · · zmn
n is defined by m1 +

m2 + · · · +mn and the degree of a polynomial p is defined by maximum of the degrees of
the monomials which occur in p and denoted by degree(p). For every λ ∈ Z(M) and each
positive integer k, set

M
(k)
λ = {f ∈ L2

a(Cn) : p(D)f |λ = 0, p ∈ Mλ and degree(p) ≤ k}.

Then M
(k)
λ is finite codimensional quasi-invariant subspace and M

(k)
λ ⊇ M . Since

Me
λ = {f ∈ L2

a(Cn) : p(D)f |λ = 0, ∀p ∈ Mλ} =
∩
k≥1

M
(k)
λ

for each λ ∈ Z(M). By the definition of Me we have

Me ⊆
∩

λ∈Z(M)

Me
λ. (1.1)

Let N be a finite codimensional quasi-invariant subspace of L2
a(Cn) and N ⊇ M . Then

N ∩ C is dense in N . Since N is finite codimensional, then Z(N) is finite. Thus we have:( ∩
λ∈Z(N)

Ne
λ

)∩
C =

∩
λ∈Z(N)

(Ne
λ ∩ C) =

∩
λ∈Z(N)

(N ∩ C)eλ = N ∩ C.

The second equality is based on the fact that (N∩C)λ = Nλ when N has finite codimensional
and the definition of the Ne

λ, while the last equality comes from Theorem 2.1 in [6]. Hence

N =
∩

λ∈Z(N)

Ne
λ.

Since for every λ ∈ Z(N), λ also is in Z(M), we have Nλ ⊆ Mλ. Consequently, Me
λ ⊆ Ne

λ.
So,

∩
λ∈Z(N)

Me
λ ⊆ N. This means that

∩
λ∈Z(M)

Me
λ ⊆ N. (1.2)

We thus conclude by (1.1) and (1.2) that
∩

λ∈Z(M)

Me
λ = Me.

For each λ ∈ Z(M), it is easy to check that Mλ = (Me)λ. From (2) and (3), one
easily induces that for any two quasi-invariant subspaces M1, M2, M

e
1 = Me

2 if and only
if Z(M1) = Z(M2) and M1λ = M2λ for each λ ∈ Z(M1). This completes the proof of
Proposition 1.1.

Remark 1.1. Proposition 1.1 gives an interesting application of the characteristic space
theory to quasi-invariant subspaces. Besides its application in the present paper, we believe
it will play an important role in the study of the structure of quasi-invariant subspaces. One
may consult [8] where characteristic space theory have been proved to be a powerful tool in
studying the structure of invariant subspaces of Hardy space H2(Dn).
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§2. The Codimensional Formula for AFCQS

In [7], the author got the codimension formula for an approximately finite codimensional
invariant subspaces of Hardy space over Dn. The analogue formula in analytic Hilbert spaces
over a bounded domain Ω ⊂ Cn was established in [9]. In this section, we will establish the
codimension formula for an AFCQS in the Fock space. The main ideal of the proof comes
from [7] and [9].

Following the notation in [9], let M1, M2 be quasi-invariant subspaces of L2
a(Cn) and

λ ∈ Cn. We call that M1,M2 have the same multiplicity at λ if M1λ = M2λ. We use
Z(M2)\Z(M1) to denote the set of zeros of M2 related to M1, that is, Z(M2)\Z(M1) is
defined by {λ ∈ Z(M2) : M2λ ̸= M1λ}. If M1 ⊇ M2, the cardinality of zeros of M2

related to M1, card(Z(M2)\Z(M1)), is defined by
∑

λ∈Z(M2)\Z(M1)

dim (M2λ/M1λ). We call

the following proposition the codimension formula throughout this paper.
Theorem 2.1. Let M1, and M2 be quasi-invariant subspaces of L2

a(Cn) such that M1 ⊇
M2 and dimM1/M2 = k < ∞. If M2 is an approximately finite codimensional quasi-
invariant subspace (AFCQS), then

dim (M1/M2) =
∑

λ∈Z(M2)\Z(M1)

dimM2λ/M1λ = card(Z(M2)\Z(M1)).

Proof. For each γ ∈ Z(M2) \ Z(M1), let

Mγ
2 = {g ∈ M1 : q(D)g|γ = 0, q ∈ (M2)λ} = M1 ∩ (M2)

e
γ .

Obviously Mγ
2 contains M2 and Mγ

2 is quasi-invariant. Set

M ′
2 =

∩
γ∈Z(M2)\Z(M1)

Mγ
2 .

We claim that M ′
2 = M2. In fact, by the fact that M ′

2 ⊇ M2, we have (M
′
2)λ ⊆ (M2)λ. Since

M ′
2 =

∩
γ∈Z(M2)\Z(M1)

Mγ
2 ⊇ ∩λ∈Cn{g ∈ M1 : q(D)g|λ = 0, q ∈ (M2)λ},

(M ′
2)λ ⊇ (M2)λ. Therefore, by Proposition 1.1, we have

M2 ⊆ M ′
2 ⊆ (M ′

2)
e = Me

2 = M2.

This completes the proof of the claim.
Since dim (M1/M2) = k, the number of elements in Z(M2)\Z(M1) is at most k. Assume

first that Z(M2) \ Z(M1) contains only one point λ, then

M2 = {h ∈ M1 : p(D)h|λ = 0, p ∈ M2λ}.
We define a map

ϕ(·, ·) : M2λ/M1λ ×M1/M2 → C

by ϕ(p̃, h̃) = p(D)h|λ. Clearly, this is well defined and from this and the representation of
M2, one has that dim M1/M2 = dim M2λ/M1λ.

Now let l > 1 and assume that the proposition has been proved for Z(M2) \ Z(M1)
containing points less than l. Let Z(M2) \ Z(M1) = {λ1, · · · , λl}, where λi ̸= λj . Writing

M⋆
2 = {h ∈ M1 : p(D)h|λ1 = 0, p ∈ (M2)λ1},

then (M⋆
2 )λ1 = M2λ1 . Similarly to the preceding proof, we have

dim (M1/M
⋆
2 ) = dim (M2λ1/M1λ1).
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Write M2λ1 = M1λ1+̇R with dimR = dim (M2λ1/M1λ1), and let LR denote the linear space
of polynomials generated by R such that it is invariant under the action by { ∂

∂z1
, · · · , ∂

∂zn
}.

Put

QR = {p ∈ C : q(D)p|λ1 = 0, q ∈ LR}.
Then it is easily verified that QR is a finite codimensional ideal of C with only zero point
λ1 because LR is finite dimensional. From the definition of M⋆

2 , the following inclusion are
easily verified:

QRM1 ⊆ M⋆
2 ⊆ M1.

Consequently, for λ ̸= λ1, (M1)λ = (M⋆
2 )λ. So Z(M2) \ Z(M2)

⋆ = {λ2, · · · , λl}. By the
induction hypothesis, we have

dimM⋆
2 /M2 =

l∑
j=2

dim (M2)λj/(M
⋆
2 )λj =

l∑
j=2

dim (M2)λj/(M1)λj .

It follows that

dimM1/M2 = dimM1/M
⋆
2 + dimM⋆

2 /M2

=
l∑

j=2

dim (M2)λj/(M1)λj

= card(Z(M2) \ Z(M1)).

This completes the proof.

§3. Applications

We end this paper with two applications of the codimension formula. The simplest
nontrivial example of the quasi-invariant subspace that comes to mind is that of zero-based
one: Given a sequence Λ in C, if there is an element f ∈ L2

a(C) such that f(Λ) = 0 we say
that Λ is a zero sequence. The quasi-invariant subspaces of the form

I = {f ∈ L2
a(C)| f = 0 on Λ}

counting multiplicities whenever necessary are called zero-based quasi-invariant subspace.
It is showed in [13] that such subspaces in Hardy space are of codimension 1 (That is
dimM/zM = 1). Let M be a quasi-invariant subspace of Fock space, we use zM to denote
the set {zf | f ∈ M, zf ∈ L2

a(C)}. Obviously, I is an AFCQS. Thus by Theorem 2.1 we
have the following proposition which will play an important role in our next paper [12].

Proposition 3.1. Let I be a zero-based quasi-invariant subspace of the Fock space. Then
dim I/zI = 1.

In [2], A. Beurling proved that: If N ̸= 0 be an invariant subspace of the Hardy space
H2(D), then N ⊖ zN is a one dimension subspace spanned by an inner function ϕ and

N = [ϕ] = [N ⊖ zN ],

where N ⊖ zN = N ∩ (zN)⊥ and [ϕ] denotes the smallest invariant subspace containing
ϕ. Beurling’s Theorem has played an important role in operator theory, function theory
and their intersection, function-theoretic operator theory. In [14], Richter proved that the
analogue of Beurling’s Theorem is true in the Dirichlet space. It is well known that the
invariant subspace lattice of the Bergman space L2

a(D) is very complicated. In fact the
dimension of N ⊖ zN can be an arbitrary positive integer or ∞ (see [11]). However, a
big breakthrough in the study of the analogue of Beurling’s theorem on Bergman space was
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made by A. Aleman S. Richter and C. Sundberg[1]. They proved that any invariant subspace
N of the Bergman space L2

a(D) also has the form N = [N ⊖ zN ]. In a previous paper [4],
we proved that the analogue of Beurling’s Theorem deos not hold in general in the Fock
space L2

a(C). The following example shows that the analogue of Beurling’s Theorem does
not hold in Fock space L2

a(Cn) when n > 1.
Example. Let I be an ideal of polynomial ring C over Cn (n > 1) with finite codimension

such that (0, 0, · · · , 0) /∈ Z(I). Let

C0 = {p| p(0, 0, · · · , 0) = 0, p ∈ C}.
Then [I]⊖ [C0I] does not generate [I].

Proof. By Proposition 2.1, dim ([I] ⊖ [C0I]) = 1. Since [I] has finite codimension,
rank [I] > 1. Thus [I]⊖ [C0I] does not generate [I].
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