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Abstract

In order to construct estimating functions in some parametric models, this paper introduces
two classes of information matrices. Some necessary and sufficient conditions for the information
matrices achieving their upper bounds are given. For the problem of estimating the median,

some optimum estimating functions based on the information matrices are acquired. Under
some regularity conditions, an approach to carrying out the best basis function is introduced. In
nonlinear regression models, an optimum estimating function based on the information matrices
is obtained. Some examples are given to illustrate the results. Finally, the concept of optimum

estimating function and the methods of constructing optimum estimating function are developed
in more general statistical models.
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§1. Introduction and Definition

An unbiased estimating function g(θ, y) is defined to be a function of the data y and

parameter θ having zero mean for all θ. One purpose of an estimating function is to produce

an estimate θ̂ of the parameter from data y, the estimate being obtained as a root of the

equation g(θ, y) = 0. Consequently, if the parameter θ is p-dimensional, it is necessary at

least that the range of g is p-dimensional with nonvanishing derivative matrix.

If the n × 1 observation y has mean µ(θ) = (µ1(θ), . . . , µn(θ))
′ and covariance matrix

σ2V (θ), both being known functions of the p-dimensional parameter θ and V (θ) being a

positive definite matrix, then, an unbiased estimating function is defined as

q(θ, y) = σ−2{µ̇(θ)}′{V (θ)}−1e(θ), (1.1)

where µ̇ is an n × p matrix with components ∂µi

∂θj
, θ = (θ1, . . . , θp)

′, rank{µ̇(θ)} = p and

e(θ) = y−µ(θ). We call q(θ, y) the quasi score function. The quasi score function is a linear
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unbiased estimating function based only on the first two moments of the observations. It

is well known that the quasi score function is the optimum in the class of linear unbiased

estimating functions {σ−2H(θ)e(θ) : H is a p × n matrix} (McCullagh[10], Godambe and

Heyde[2], Li and McCullagh[7]). It is easily verified that

iθ0 = Covθ0(q) = −Eθ0

(∂q
∂θ

)
= σ−2µ̇′(θ0)V

−1(θ0)µ̇(θ0), (1.2)

where θ0 denotes the true value of θ. This matrix plays the role of Fisher information

exactly as in fully parametric inference and under the usual kinds of limiting conditions the

asymptotic covariance matrix of quasi likelihood estimator θ̂ is i−1
θ0

. So, in this paper, we call

iθ the quasi Fisher information matrix (QFI) of quasi score function q(θ, y). Similarly, QFI

of an arbitrary unbiased estimating function g(θ, y) ∈ {σ−2H(θ)e(θ) : H is a p× n matrix}
is defined as

iθ(H) = σ−2µ̇′(θ)H ′(θ)(H(θ)V (θ)H ′(θ))−1H(θ)µ̇(θ) (1.3)

because the asymptotic covariance matrix of θ̂H is iθ(H), where θ̂H is the root of the equation

g(θ, y) = 0 (McCullagh and Nelder[11], Lin[9]).

On the other hand, it can be easily verified that for 1-dimensional parameter θ,

Iθ(g) =
{
Eθ

(∂g(θ, y)
∂θ

)}2

/Eθ(g
2(θ, y))

provides a compromise between maximizing concentration of the distribution of g(θ, y)

and its sensitivity to θ (Birnbaum[1]). Then we call Iθ(g) the pseudo Fisher informa-

tion (PFI). When θ is p-dimensional vector, in this paper we define PFI of g(θ, y) =

(g1(θ, y), . . . , gp(θ, y))
′ as

Iθ(g) = D′(θ)U−1D(θ), (1.4)

where D is a p× p matrix with components Eθ

{
∂gi(θ,y)

∂θj

}
, U = Eθ{g(θ, y)g′(θ, y)}.

Now suppose that the class of underlying distributions is F = {Fθ}. An estimating

function g∗ is said to be optimal in G if g∗ ∈ G and if, for all g ∈ G and Fθ ∈ F , Iθ(g
∗) ≥ Iθ(g)

or iθ(H
∗) ≥ iθ(H).

Conventionally, we may write dFθ = fθdν, where fθ is the density with respect to the

measure ν on Rn. Then the true score function is s(θ, y) = ∂ ln fθ(y)
∂θ and the true Fisher

information matrix is Iθ = Eθ(s(θ)s
′(θ)).

In what follows, suppose that it is permitted to interchange the differentiation with respect

to θ and the integration over the sample space Y.

In sections below we obtain the upper bounds of the two classes of information matrices.

Some necessary and sufficient conditions for these information matrices achieving their upper

bounds are introduced. For the problem of estimating the median, some optimum estimating

functions are acquired. Under some regularity conditions, an approach to carrying out the

best basis function is introduced. In nonlinear regression models, an optimum estimation

function is obtained. Some examples are given to illustrate our results. Finally, the con-

cept of optimum estimating function and the methods of constructing optimum estimating

function are developed in more general statistical models.
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§2. The Problem of Median

2.1. Independent Sample And One-Dimensional Parameter

In this section, we first assume that y1, . . . , yn are independently (but not necessary

identically) distributed with a common median θ. From recent literature (Jung[6], Godambe

and Thompso[4], Godambe[5]), we know that in order to estimate the median θ, the common

estimating functions based on the independent observations y1, . . . , yn have the form as

gϕ(θ, y) =
n∑

i=1

ai(θ)ϕ(yi, θ), (2.1)

where known functions ϕ(yi, θ), i = 1, · · · , n, satisfy Eθ(ϕ(yi, θ)) = 0, and ai(θ), i =

1, · · · , n, are some arbitrary functions of θ. We call ϕ the basis function.

Let G1(ϕ) be a class of estimating functions as that

G1(ϕ) =
{
gϕ : gϕ =

n∑
i=1

ai(θ)ϕ(yi, θ)
}
.

Obviously, for any gϕ ∈ G1(ϕ), gϕ can be expressed as gϕ = H(θ)e(θ) with H(θ) =

(a1(θ), · · · , an(θ)) and e(θ) = (ϕ(y1, θ), · · · , ϕ(yn, θ))′. According to (1.3) and (1.4), QFI

and PFI of gϕ ∈ G2(ϕ) have the same form:

iθ(H) = Iθ(gϕ) =
{ n∑

i=1

ai(θ)Eθ

(∂ϕ(yi, θ)
∂θ

)}2/{ n∑
i=1

a2i (θ)Eθ(ϕ
2(yi, θ))

}
. (2.2)

Theorem 2.1. If observations y1, · · · , yn are independently distributed with common

median θ, then for an arbitrary Fθ ∈ F and gϕ ∈ G1(ϕ), we have

iθ(H) = Iθ(gϕ) ≤ iθ(H
∗) = Iθ(g

∗
ϕ) ≤ Iθ,

where

H∗(θ) =
(
(Eθ(ϕ

2(y1, θ)))
−1Eθ

(∂ϕ(y1, θ)
∂θ

)
, · · · , (Eθ(ϕ

2(yn, θ)))
−1Eθ

(∂ϕ(yn, θ)
∂θ

))
,

g∗ϕ(θ, y) =

n∑
i=1

(Eθ(ϕ
2(yi, θ)))

−1Eθ

(∂ϕ(yi, θ)
∂θ

)
ϕ(yi, θ), (2.3)

and iθ(H
∗) = Iθ(g

∗
ϕ) = Iθ if and only if there is a function K(θ) satisfying

Pθ{s(θ) = K(θ)e(θ)} = 1.

The proof of this theorem is presented in Appendix below.

Theorem 2.1 shows that the optimum estimating function in G1(ϕ) is g
∗
ϕ(θ, y) as defined

by (2.3). The theorem also implies that two classes of information of estimating function

g(θ, y) equal to their upper bound Iθ if and only if true score function s(θ) belongs to G1(ϕ)

with probability 1. If ϕ can be expressed as ϕ(yi, θ) = c(θ)T (yi) + b(θ) for some functions

c(θ) and b(θ), this is equivalent to

fθ(y) = C(θ) exp
{ n∑

i=1

Qi(θ)T (yi)
}
h(y) a.s.



352 CHIN. ANN. MATH. Vol.24 Ser.B

for some functions C(θ), Qi(θ), i = 1, · · · , n, and h(y), i.e. fθ does belong to the family of

exponential distribution. The results above lead to the following corollary.

Corollary 2.1. Assume that observations y1, · · · , yn are independently distributed with

median θ.

(1) If the score function has the form s(θ) = K(θ)e(θ) a.s. for some function K(θ) and

vector e(θ) = (ϕ(y1, θ), · · · , ϕ(yn, θ))′ , then ϕ is the best basis function, i.e. Iθ(g
∗
ϕ) = Iθ, if

and only if ϕ is unbiased.

(2) If the density function has the form fθ(y) = C(θ) exp
{ n∑

i=1

Qi(θ)T (yi)
}
h(y) a.s. for

some functions C(θ), Qi(θ), i = 1, · · · , n, and h(y), and ϕ can be expressed as ϕ(yi, θ) =

c(θ)T (yi) + b(θ) for some functions c(θ) and b(θ), then ϕ is the best basis function, i.e.

Iθ(g
∗
ϕ) = Iθ, if and only if ϕ is unbiased.

From this corollary, we are able to construct the best basis function if the score function

s(θ) or density function fθ(y) and basis function ϕ have above special forms. In usual

situation, however, the score function or density function is unknown or is not framed as in

Corollary 1. So, it is difficult to determine which basis function to use. In Section 4, using

the corollary, we give some examples to compare some basis functions.

From the proof of Theorem 2.1, on the other hand, we can see that to obtain some results

in Theorem 1, the condition such as gϕ ∈ G1(ϕ) is not necessary, i.e. we have the following

corollary.

Corollary 2.2. If observations y1, · · · , yn are independently distributed with median θ,

then for an arbitrary Fθ ∈ F and g ∈ G, we have

Iθ(g) ≤ Iθ,

where G = {g(θ, y) : Eθ(g) = 0}, and Iθ(g) = Iθ if and only if there is a function K(θ)

satisfying Pθ{s(θ) = K(θ)g(θ, y)} = 1.

In the examples below, the distribution function Fθ is assumed to be continuous. To

obtain the optimum estimating function, a suitable basis function ϕ is important. We

initially consider the following basis function

ϕ(yi, θ) = sign(yi − θ). (2.4)

According to common definition of derivative, however, ∂ϕ
∂θ can not be defined on some

points. In this case, following Godambe and Thompson[4], we define

Eθ

(∂ϕ(yi, θ)
∂θ

)
= lim

ε→0
Eθ ((ϕ(yi, θ + ε)− ϕ(yi, θ))/ε) .

It can be verified that for basis function (2.4),

−1/2Eθ

(∂ϕ(yi, θ)
∂θ

)
= lim

ε→0
Pθ(θ < yi < θ + ε)/ε

∆
= fi(θ),

where fi(θ) > 0 is the density of yi at its median. Thus, in the case, the optimum estimating

function g∗ϕ =
n∑

i=1

fi(θ)ϕ(yi, θ) ignoring a constant −2. If observations y1, · · · , yn, in addition

to being independent, are identically distributed, then f1(θ) = · · · = fn(θ). As a result the

optimum estimating function g∗ϕ is equivalent to g∗ϕ =
n∑

i=1

ϕ(yi, θ), and the solution θ̂ of the
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equation g∗ϕ = 0 can be easily seen to be the ordinary median of the observations y1, · · · , yn.
According to empirical, there are some other methods to choose basis function. For

example (Jung[6]), a common choice is

ϕ(yi, θ) = I(yi ≥ θ)− 1/2, (2.5)

where I(·) is an indicator function. Similar to the result discussed above, in this situation,

the optimum estimating function g∗ϕ =
∑n

i=1 fi(θ)ϕ(yi, θ), where fi(θ) > 0 is also the density

of yi at its median. It can be verified that, whether the basis function ϕ is defined by (2.4)

or by (2.5) or more generally by

ϕ(yi, θ) =

{
−c, if yi < θ,
+c, if yi ≥ θ, c > 0,

the values of QFI and PFI g∗ϕ are equal to the same value: 4
n∑

i=1

f2
i (θ). In Section 4, we

will give examples to introduce the condition under which these basis functions are the best

basis functions.

From the examples, we also see that in the usual situation, the values of fi at their

common median θ must be known as explicit function of θ, up to a constant multiplier.

2.2. Dependent Sample and Multidimensional Parameter

In this section we first suppose observations y1, · · · , yn are distributed independently with

respective median θ1 + θ2x1, · · · , θ1 + θ2xn, where θ1 and θ2 are unknown parameters and

x1, · · · , xn are fixed design covariates. If the basis function is defined as

ϕ(yi, θ1, θ2) = sign(yi − (θ1 + θ2xi)), (2.6)

then, similar to the results above, the jointly optimum estimating function g∗ϕ = (g∗1ϕ, g
∗
2ϕ)

′

for estimating parameters θ1 and θ2 is given by

g∗1ϕ =
n∑

i=1

ϕ(yi, θ1, θ2)fi(θ1 + θ2xi) and g∗2ϕ =
n∑

i=1

ϕ(yi, θ1, θ2)fi(θ1 + θ2xi)xi,

where fi(θ1 + θ2xi) > 0 is the density of yi at the point θ1 + θ2xi.

More generally, consider the following multi-parameter median regression model[6]:{
med(y) = θ(β) = (θ1(β), · · · , θn(β))′
pdf of yi at θi =

1
τ γ(θi),

(2.7)

where y = (y1, · · · , yn)′, y1, · · · , yn may be independent or not, τ > 0 is a scale parameter,

γ is a known function relating the median to the degree of dispersion, β = (β1, · · · , βp)
′ is

the vector of regression parameters.

Let ϕi(yi, β) be basis function satisfying

Eβ(ϕi(yi, β)) = 0, e(β) = (ϕ1(y1, β), · · · , ϕn(yn, β))
′,

H(β) be a p× n matrix and G1(ϕ) be a class of estimating functions as that

G1(ϕ) = {gϕ : gϕ = H(β)e(β)}.

According to (1.3), in this situation, QFI of an arbitrary unbiased estimating function

gϕ = H(β)e(β) is defined as

iβ(H) = ∆′(β)H ′(β)(H(β)Λ(β)H ′(β))−1H(β)∆(β), (2.8)
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where ∆ is an n× p matrix with components Eβ{∂ϕi(yi, β)/∂βj} and Λ is an n× n matrix

with components Eβ{ϕi(yi, β)ϕj(yj , β)}. According to (1.4), in this situation, we define PFI

of gϕ = H(β)e(β) as

Iβ(gϕ) = D′(β)U−1D(β) = iβ(H). (2.9)

Theorem 2.2. For an arbitrary Fθ ∈ F and gϕ ∈ G1(ϕ), we have

iβ(H) = Iβ(gϕ) ≤ iβ(∆
′Λ−1) = Iβ(g

∗
ϕ) ≤ Iβ ,

where

g∗ϕ = ∆′(β)Λ−1(β)e(β), (2.10)

and iβ(∆
′Λ−1) = Iβ(g

∗
ϕ) = Iβ if and only if there is a matrix K(β) satisfying

Pβ{s(β) = K(β)e(β))} = 1.

The proof of this theorem is similar to that of Theorem 3.1 presented below.

Theorem 2.2 shows that the optimum estimating function in G1(ϕ) is g∗ϕ as defined by

(2.10). If the basis function ϕi(yi, β) is chosen as I(yi ≥ θi)− 1
2 , then, the optimum estimating

function g∗ϕ has the same form as defined as Jung[6]. Under moderate assumptions, the

estimate of β obtained by equation g∗ϕ = 0 is consistent and has asymptotically normal

distribution[6].

The theorem also implies that QFI and PFI of estimating function gϕ equal to their upper

bound Iβ if and only if true score function s(β) belongs to G1(ϕ), with probability 1. Then

we get the following corollary.

Corollary 2.3. (1) In model (2.7), if the score function has the form s(θ) = K(θ)e(θ)

a.s. for some matrix K(θ) and vector e(θ) = (ϕ1(y1, θ), · · · , ϕn(yn, θ))
′ , then ϕi are the best

basis functions, i.e. Iθ(g
∗
ϕ) = Iθ, if and only if ϕi are unbiased.

(2) In model (2.7), if the density of (y1, · · · , yn) has the following form

fθ(y) = C(β) exp
{ n∑

i=1

Qi(β)Ti(yi)
}
h(y) a.s.

for some functions C(β), Qi(β), and h(y), and ϕi can be expressed as ϕi(yi, β) = ci(β)Ti(yi)+

bi(β) for some functions ci(β), Ti(yi) and bi(β), then ϕi are the best basis functions, i.e.

Iθ(g
∗
ϕ) = Iθ, if and only if ϕi are all unbiased.

From this corollary, we are able to construct the set of the best basis functions if the

density function fθ(y) and the basis functions have above special forms. In usual situation,

however, the density function is unknown or is not framed as in Corollary 2.3. So, it is

difficult to determine which set of basis functions to use.

§3. Nonlinear Regression Model

In this section, we assume that n× 1 observation y has mean µ(θ) and covariance matrix

σ2V (θ), both being known functions of the p-dimensional parameter θ and V (θ) being a
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positive definite matrix. In other words, we have the following nonlinear regression model{
y = µ(θ) + ε,
Eθ(ε) = 0, V arθ(ε) = σ2V (θ).

(3.1)

Let

G2 = {g : g = σ−2H(θ)e(θ), e(θ) = y − µ(θ)}.

In this case, for an arbitrary estimating function g ∈ G2, QFI defined in (1.3) and PFI

defined in (1.4) are equal to each other, i.e.

iθ(H) = Iθ(g) = σ−2µ̇′(θ)H ′(θ)(H(θ)V (θ)H ′(θ))−1H(θ)µ̇(θ). (3.2)

Theorem 3.1. For an arbitrary Fθ ∈ F and g ∈ G2, we have

iθ(H) = Iθ(g) ≤ iθ(µ̇
′V −1) = Iθ(q) ≤ Iθ,

where q is defined by (1.1), and iθ(µ̇
′V −1) = Iθ(q) = Iθ if and only if there is a matrix K(θ)

satisfying

Pθ{s(θ) = σ−2K(θ)(y − µ(θ))} = 1.

The proof of this theorem is given in Appendix below.

Theorem 3.1 shows that under the criterions of QFI and PFI, the quasi score function

q(θ, y) defined by (1.1) is an optimum estimating function in G2. The theorem also implies

that QFI and PFI of quasi score function q(θ, y) equal to their upper bound Iθ if and only

if true score function s(θ) belongs to G2 with probability 1, this is equivalent to that the

observation y, with probability 1, comes from a family of exponential distribution, i.e.

fθ(y) = C(θ, σ2) exp{σ−2Q(θ)y}h(y) a.s.

for some functions C(θ, σ2), Q(θ) and h(y).

The quasi score method has been investigated in some other respects by many statisticians

such as Wedderburn[12], Godambe and Heyde[2], Li and McCullagh[7] and so on. According

to the theorem above, we obtain again its optimality based on the two classes of information.

§4. Extensions

The concepts and the methods as discussed above can be developed in more general statis-

tical models. Assume that we are able to determine the set of basis functions ϕ1(y1, θ), · · · ,
ϕn(yn, θ). All functions ϕi(·, ·) may be the same function as presented in Section 2 or not,

may be the residual ei(θ) = yi−µi(θ) as expressed in Section 3 or not. The essential charac-

teristic of the basis functions is that the basis functions are unbiased, i.e. Eθ(ϕi(yi, θ)) = 0

for all θ. The parameter θ may be the median as discussed in Section 2 or not, may be

the regression parameter as in Section 2 or not. In fact, θ is an arbitrary parameter in a

statistical model. The observations, y1, · · · , yn, may be independently distributed or not,

may be identically distributed or not. Under these usual assumptions, to estimate θ, a

p-dimensional vector of parameters, the class of estimating functions is defined as

G(ϕ) = {gϕ : gϕ = H(θ)e(θ), H(θ) is a p× n matrix, e(θ) = (ϕ1(y1, θ), · · · , ϕn(yn, θ))
′}.
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According to Theorem 2.2, in this situation, we have the following results:

For an arbitrary Fθ ∈ F and gϕ ∈ G(ϕ), the QFI and PFI satisfy

iθ(H) = Iθ(gϕ) ≤ iθ(∆
′Λ−1) = Iθ(g

∗
ϕ) ≤ Iθ,

where

g∗ϕ = ∆′(θ)Λ−1(θ)e(θ),

∆ and Λ are defined in Section 2, and

iθ(∆
′Λ−1) = Iθ(g

∗
ϕ) = Iθ

if and only if there is a matrix K(θ) satisfying

Pθ{s(θ) = K(θ)e(θ)} = 1.

Similar to the results of Jung[6], under some regularity conditions, the estimator β̂, being

the root of the equation g∗ϕ = 0, has the following properties:

β̂ → β0 a.s. and
√
n(β̂ − β0)

L−→ N(0,Σ),

where

Σ = lim
n→∞

(n)−1iθ(∆
′Λ−1).

On the other hand, choosing some suitable basis functions is also important because

different basis functions perhaps have different values of QFI and PFI. By the result above

or Corollary 2.1 or Corollary 2.3, we sometimes can get the best basis functions. See the

following examples.

In two-parameter double exponential family of distribution, the density function

fθ(y1, · · · , yn) =
n∏

i=1

(2λi)
−1 exp {−|yi − θ|/λi} a.s.,

where θ is the median and λi is a scale parameter. If the basis function is chosen as

ϕ̃(yi, θ) = yi − θ, then the value of QFI and PFI is
n∑

i=1

(4λ2
i )

−1. It can be verified that the

score function

s(θ) = −
n∑

i=1

(λi)
−1ϕ(yi, θ) a.s.,

where ϕ is presented as (2.4). If the basis function is chosen as (2.4), then, the value of QFI

and PFI is
n∑

i=1

λ−2
i , which is just the Fisher information. Thus basis function (2.4) is the

best basis function and then is better than ϕ̃(yi, θ) = yi − θ.

Assume y1, · · · , yn are i.i.d and come from N(µ, σ2). The score function for µ is

s(µ) = σ−2
n∑

i=1

(yi − µ).

If the basis function is chosen as ϕ̃(yi, µ) = yi − µ, then the value of QFI and PFI is nσ−2,

which is equal to Fisher information. If the basis function is chosen as (2.4), then value of

QFI and PFI is 2n(πσ)−2, which is smaller than nσ−2. In this case, ϕ̃(yi, µ) = yi − µ is the

best basis function in the class of unbiased basis functions.
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Generally, assume that y has a continuous density function f(|y − θ|/λ) and x = 0 is

the symmetric center of function f(x). Let y1, · · · , yn be independently and identically

distributed observations of y. If the basis function is chosen as ϕ̃(yi, θ) = yi − θ, then the

value of QFI and PFI is n/λ2, where λ2 is just the variance of y. If the basis function is

chosen as (2.4), then the value of QFI and PFI is 1/(4f2(0)). When we know the values

of λ2 and f(0) or λ2/f2(0) (not necessary to know the distribution of y), we can conclude

which is better.

§5. Appendix

Proof of Theorem 2.1. Obviously,

iθ(H) = Iθ(gϕ) =

{ n∑
i=1

ai(θ)Eθ

(
∂ϕ(yi,θ)

∂θ

)}2

n∑
i=1

a2i (θ)Eθ(ϕ2(yi, θ))

=

{ n∑
i=1

[ai(θ)(Eθ(ϕ
2(yi, θ)))

1/2]
[
(Eθ(ϕ

2(yi, θ)))
−1/2Eθ

(
∂ϕ(yi,θ)

∂θ

)]}2

n∑
i=1

a2i (θ)Eθ(ϕ2(yi, θ))

≤
n∑

i=1

(Eθ(ϕ
2(yi, θ)))

−1
[
Eθ

(∂ϕ(yi, θ)
∂θ

)]2
,

Iθ(g
∗
ϕ) =

{ n∑
i=1

(Eθ(ϕ
2(yi, θ)))

−1
(
Eθ

(
∂ϕ(yi,θ)

∂θ

))2}2

n∑
i=1

(Eθ(ϕ2(yi, θ)))−1
(
Eθ

(
∂ϕ(yi,θ)

∂θ

)2

=
n∑

i=1

(Eθ(ϕ
2(yi, θ)))

−1
[
Eθ

(∂ϕ(yi, θ)
∂θ

)]2
.

Then Iθ(gϕ) ≤ Iθ(g
∗
ϕ).

On the other hand, for any unbiased estimating function g, from Eθ(g(θ, y)) = 0, we get
∂Eθ(g(θ,y))

∂θ = 0. If the differential and the integration are interchanged, then

Eθ{g(θ, y)s′(θ)} = −Eθ

{∂g(θ, y)

∂θ

}
∆
= −D. (5.1)

Let W (θ) = s(θ) + D′U−1(θ)g(θ, y) and U(θ) = Eθ(g
2(θ, y)). Obviously, Eθ(W (θ)) = 0.

From (5.1), we obtain

0 ≤ Covθ(W ) = Eθ{(s+D′U−1g)(s+D′U−1g)′}
= Eθ(ss

′) +D′U−1Eθ(gs
′) + {Eθ(sg

′)}′U−1D +D′U−1D

= Fθ −D′U−1D.

From the result above, we can see that Iθ ≥ D′U−1D = Iθ(g) and Covθ(W ) = 0, i.e.

Iθ = Iθ(g), if and only if there is K(θ) satisfying s(θ) = K(θ)g(θ, y) with probability 1.

Thus the theorem is completely proved.
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Proof of Theorem 3.1. It is clear from (1.2) and (3.2) that for g ∈ G1,

iθ − iθ(H) = iθ − Iθ(g) = σ−2µ̇′V −1µ̇− σ−2µ̇′H ′(HVH ′)−1Hµ̇

= σ−2µ̇′V −1/2
(
I − V 1/2H ′(HVH ′)−1HV 1/2

)
V −1/2µ̇.

Since M
∆
= V 1/2H ′(HVH ′)−1HV 1/2 satisfies M ′ = M and M2 = M , the difference above

is non-negative. Then we get

iθ(H) = Iθ(g) ≤ iθ.

On the other hand, since Eθ(y − µ(θ)) = 0, ∂Eθ(y−µ(θ))
∂θ = 0. If the differential and the

integration are interchanged, then

Eθ{(y − µ(θ))s′(θ)} = −Eθ

{∂(y − µ(θ))

∂θ

}
= µ̇(θ). (5.2)

Let W (θ) = s(θ) − σ−2µ̇′(θ)V −1(θ)(y − µ(θ)). Obviously, Eθ(W (θ)) = 0. From (5.2), we

obtain

0 ≤ Covθ(W ) = Eθ{(s− σ−2µ̇′V −1(y − µ))(s− σ−2µ̇′V −1(y − µ))′}
= Eθ(ss

′)− σ−2µ̇′V −1Eθ{(y − µ)s′} − σ−2Eθ{s(y − µ)′}V −1µ̇+ σ−2µ̇′V −1µ̇

= Fθ − σ−2µ̇′V −1µ̇.

From the result above, we can see that Fθ ≥ σ−2µ̇′V −1µ̇ and Covθ(W ) = 0, i.e. Fθ =

σ−2µ̇′V −1µ̇, if and only if there is a matrix K(θ) satisfying s(θ) = σ−2K(θ)(y − µ(θ)) with

probability 1. Thus the theorem is completely proved.
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