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Abstract

The chiral ring of classical supersymmetric Yang-Mills theory with gauge group Sp(N) or
SO(N) is computed, extending previous work (of Cachazo, Douglas, Seiberg, and the author)
for SU(N). The result is that, as has been conjectured, the ring is generated by the usual
glueball superfield S ∼ TrWαWα, with the relation Sh = 0, h being the dual Coxeter number.

Though this proposition has important implications for the behavior of the quantum theory,
the statement and (for the most part) the proofs amount to assertions about Lie groups with
no direct reference to gauge theory.
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§1. Introduction

In four-dimensional supersymmetric Yang-Mills theory, the basic gauge invariant opera-

tor is the superspace field strength Wα, α = 1, 2 (and its hermitian conjugate W α̇). Wα

transforms in the adjoint representation of the gauge group, which we will take to be a

simple Lie group G; we denote its Lie algebra as g and let Tr denote an invariant quadratic

form on g. (For classical Lie groups, we will take Tr to be the trace in the fundamental

representation.) Wα is a fermionic operator of dimension 3/2, and is chiral, that is, it is

annihilated by the supersymmetries of one chirality: {Qα̇,Wβ} = 0.

Gauge-invariant polynomials in the Wα, such as TrWα1Wα2 · · ·Wαs , are likewise chiral.

In this paper, we consider the “pure” supersymmetric gauge theory without matter multi-

plets. In this theory, the gauge-invariant polynomials in Wα are the only chiral superfields

of importance. However, such a polynomial is considered trivial if it is proportional to a

linear combination of expressions {Wα,Wβ} for any α, β. The reason for this is the identity1

{Wα,Wβ} = {Qα̇
, Dαα̇Wβ}, (1.1)
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1This identity follows directly from the superspace definition Wα = {Qα̇

, Dαα̇}.
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which implies that any gauge-invariant expression
∑
αβ

Xαβ{Wα,Wβ} is a descendant, that

is, it can be written as
∑̇
α

{Qα̇, Y
α̇} for some Y α̇, and hence decouples from the expectation

value of a product of chiral operators.

Mathematical Description of the Problem

The problem of classifying modulo descendants the chiral operators in supersymmetric

gauge theory is of mathematical as well as physical interest. Before proceeding, let us

reformulate the problem mathematically. We introduce a Z2-graded ring R that is generated

by the components of the Wα. Explicitly, picking a basis Ta, a = 1, · · · , dimG of g, we write

Wα =
∑
a

wa
αTa,

and then R is generated by the (odd) variables wa
α. In the ring R we define an ideal I that

is generated by the components of {Wα,Wβ}. In more detail, we write

{Wα,Wβ} =
1

2

∑
a,b

wa
αw

b
β [Ta, Tb] =

1

2

∑
a,b,c

wa
αw

b
βf

c
abTc,

where [Ta, Tb] =
∑
c
f c
abTc. Thus, I is generated by the even, nilpotent elements

∑
a,b

wa
αw

b
βf

c
ab,

for all α, β, and c. Elements of I are descendants; the quotient ring R/I is the ring of chiral

operators mod descendants. The ideal I is clearly G-invariant, so G acts on R/I. The G-

invariant chiral operators mod descendants form the classical approximation to the physical

“chiral ring” of the theory. So in the classical supersymmetric gauge theory, the chiral ring

is Rcl = (R/I)G, where (R/I)G denotes the G-invariant part of R/I, and the subscript

“cl” means “classical” (we recall shortly how quantum corrections deform the picture). An

element of Rcl can be represented by a G-invariant element of R that is not in I.

If we consider the Wα to be of degree one, then the ideal I is graded — its generators

being homogeneous of degree two — and hence the classical chiral ring Rcl is a graded ring.

There is no non-trivial element of Rcl in degree one (since there is no gauge-invariant linear

function of the Wα). In degree two, since W 2
1 = 1

2{W1,W1} and W 2
2 = 1

2{W2,W2} are

contained in I, any element of Rcl is a multiple of

TrW1W2 = −TrW2W1.

The degree two part of Rcl is thus a one-dimensional vector space, generated by

S = TrW1W2 =
1

2

∑
α

ϵαβTrWαWβ . (1.2)

(Here ϵαβ , α, β = 1, 2 is the antisymmetric tensor with ϵ12 = 1. It is conventional to include

a factor of −1/16π2 in the definition of S; this factor, which is motivated by instanton

considerations, will play no role in the present paper and we will omit it.)

The conjecture [1] that we will be exploring in the present paper is that for any simple Lie

groupG with dual Coxeter number h, the ringRcl is generated by S with the relation Sh = 0.

In [1], this conjecture was proved for SU(N), and certain partial results were obtained for

other groups. For the classical Lie groups (SO(N) and Sp(N) as well as SU(N)) it was

proved that Rcl is generated by S. (This was also proved in [2].) For any Lie group G of

rank r, it was proved that Sr ̸= 0 in Rcl. The purpose of the present paper is to prove the
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conjecture for Sp(N) and SO(N). Most of the arguments are similar to those in [1], but for

SO(N) one important step in the proof uses arguments of a quite different nature, based on

instanton calculations [3] that were reviewed and extended in [4–6]. For exceptional groups,

a proof of the conjecture, or even of the fact that Rcl is generated by S, has not yet emerged.

The rings and ideals R, I, and Rcl all admit an action of SL(2,C), under which the

Wα, α = 1, 2 transform in the two-dimensional representation. Physically, this SL(2,C)

originates from an SU(2) rotation symmetry of the four-dimensional gauge theory. It will

not play an important role in the present paper. The conjecture about the structure of Rcl

implies in any case that SL(2,C) acts trivially on Rcl.

Significance for Physics

To conclude this introduction, let us recall [1] the main reason for the physical interest

of the conjecture. First we must discuss the quantum deformation of the ring Rcl. Our

definition of Rcl was a classical approximation to the analogous chiral ring R of the quantum

theory. For any G, the operator Sh, which has dimension 3h and carries charge 2h with

respect to the U(1)R symmetry of the classical theory, has just the quantum numbers of a

one-instanton contribution to correlation functions. Hence it is possible that the classical

relation Sh = 0 in the ring Rcl could be deformed in the quantum ring R to a relation of

the form

Sh = cΛ3h, (1.3)

with Λ the scale factor of the theory and some constant c. (Λ3h is essentially the exponential

of minus the one-instanton action and is the standard factor that appears in all one-instanton

amplitudes.) This is the only such deformation that is possible if the conjectured structure

of Rcl is correct. (A k-instanton amplitude has the quantum numbers of Skh and so for

k > 1 cannot modify the classical relation Sh = 0.) In fact, explicit instanton calculations

[3–6] can be interpreted, as we will recall in Section 5, as showing that this deformation does

arise.

The quantum deformation of the classical ring Rcl to a quantum ring R has a perhaps

more familiar analog in two dimensions. In the context of two-dimensional supersymmetric

sigma models, the classical cohomology ring of (for example) CPN−1, which is generated

by a degree two element x obeying xN = 0, is naturally deformed to a quantum cohomology

ring in which the relation is xN = e−I . In this case, I is the area of a holomorphic curve

of degree one (computed using a Kahler metric on CPN−1 that is introduced to define

the sigma model). One difference between the four-dimensional gauge theories and the two-

dimensional sigma models is that in four dimensions the starting point, which is the ring Rcl

associated with a Lie group, is less familiar mathematically than the classical cohomology

of CPN−1.

The quantum relation (1.3) has a striking consequence. It implies that in any supersym-

metric vacuum, S must have a nonzero expectation value, equal to c1/hΛ3 (for one of the h

possible values of c1/h). In fact, since∑
α̇

⟨{Qα̇, Y
α̇}⟩ = 0

for any Y α̇ in any supersymmetric vacuum, (1.3) implies that in a supersymmetric vacuum

⟨Sh⟩ = ⟨cΛ3h⟩ = cΛ3h.
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But expectation values of products of chiral operators factorize [3], so in particular ⟨Sh⟩ =
⟨S⟩h. So we get

⟨S⟩h = cΛ3h,

whence ⟨S⟩ = c1/hΛ3, as claimed.

From this, we can deduce more. The supersymmetric gauge theory in four dimensions

has an anomaly-free discrete chiral symmetry under which S is rotated by an hth root of 1.

A nonzero expectation value of S breaks this symmetry, so it follows that in any supersym-

metric vacuum, the discrete chiral symmetry is spontaneously broken. If a supersymmetric

vacuum exists in which ⟨S⟩ = c1/hΛ3 for one choice of c1/h, then applying the broken sym-

metry gives additional vacua with the other possible choices of c1/h. Hence supersymmetric

vacua must come in groups of h, permuted by the spontaneously broken discrete chiral

symmetry.

Of course, it is believed that for any G, the theory has precisely h supersymmetric vacua,

all with a mass gap, permuted by the broken symmetry. Unfortunately, no satisfactory

approximation is known for describing these vacua.

Results in the Present Paper

In Section 2 of this paper, we review the arguments given in [1]. In Section 3, we extend

the argument for Sp(N), and in Section 4, we do so for SO(N). In Section 5, we briefly

review some pertinent aspects of the one-instanton calculations [3–6].

§2. Review

In this section, we briefly review the known arguments.

For the classical groups SU(N), Sp(N),2 and SO(N), one can prove directly [2, 1] that

the ring Rcl is generated by S = TrW1W2. In fact, for the classical groups, any invariant

polynomial in the Wα’s is a polynomial in the traces of words in W1 and W2.
3 A typical

trace of such a word is

TrWn1
1 Wn2

2 Wn3
1 · · ·Wns

2 . (2.1)

The ideal I contains {W1,W2}, so modulo I, we can take W1 and W2 to anticommute.

Hence the only traces to consider are TrWn1
1 Wn2

2 . But I also contains W 2
1 = 1

2{W1,W1},
and likewise W 2

2 = 1
2{W2,W2}. So we are reduced to generators TrWn1

1 Wn2
2 , n1, n2 ≤ 1.

As

TrW1 = TrW2 = 0

for simple G, it follows that Rcl is generated for G a classical Lie group by

S = TrW1W2 = −TrW2W1.

The conjecture under discussion asserts more precisely that Rcl is generated by S with

the relation Sh = 0. So among other things one would like to prove that Sh−1 ̸= 0 in Rcl,

2Our notation for symplectic groups is such that Sp(1) ∼= SU(2). For classical groups, we take the symbol

Tr to refer to a trace in the fundamental representation of SU(N), Sp(N), or SO(N) (of dimension N , 2N ,
and N , respectively).

3For SO(2k), there is an antisymmetric tensor of order 2k, but because of anticommutativity of W1 and
W2, it cannot be used to make an invariant polynomial in these variables if k > 2. The groups SO(2k) with

k ≤ 2 are of course not simple, so we need not consider them.
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or equivalently, that as an element of R, Sh−1 /∈ I. In [1], denoting the rank of G as r, the

weaker statement that Sr /∈ I was proved. In fact, let g = t⊕ k, where t is the Lie algebra

of a maximal torus in G, and k is its orthocomplement. Let I ′ be the ideal generated by the

matrix elements of the projection of Wα to k. Then I ⊂ I ′, since if Wα take values in t, we

have {Wα,Wβ} = 0. To prove that Sr /∈ I, it suffices to show that Sr /∈ I ′. The projection

of Wα to t can be written Wα =
r∑

a=1
wa

αT
′
a, where the sum runs over an orthonormal basis

T ′
a, a = 1, · · · , r, of t. The Z2 graded ring R/I ′ is freely generated by the odd elements wa

α,

a = 1, · · · , r (with no relations, that is, except anticommutativity). Moreover, S =
r∑

a=1
wa

1w
a
2

as an element of R/I ′. This formula and the absence of relations among the wa
i make clear

that Sr ̸= 0 in R/I ′; indeed,

Sr = r!
r∏

a=1

wa
1w

a
2 .

For the Lie groups SU(N) and Sp(N), one has h− 1 = r. So for these groups, the result

Sr ̸= 0 in Rcl is equivalent to the desired Sh−1 ̸= 0. For other groups, h − 1 > r, and a

direct algebraic proof that Sh−1 ̸= 0 is not yet known. It is possible to use four-dimensional

instantons to prove this result; an indication of how to do so is given in Section 5.

The remaining step in [1] was to complete the proof of the conjecture for SU(N) by

showing that SN = 0 for this group. (For SU(N), h = N .) In sketching the proof, and

making similar arguments for other groups, we will make the formulas less clumsy by writing

A and B for W1 and W2.
4 We regard A and B as N ×N traceless matrices, and construct

the following N th order polynomial in A:

F i1i2···iN (A) = ϵj1j2···jNAi1
j1A

i2
j2 · · ·AiN

jN . (2.2)

Here ϵj1j2···jN is the completely antisymmetric tensor, so the right hand side of (2.2) is

antisymmetric in the “lower” indices of the A’s and hence (as the matrix elements of A

anticommute) F is completely symmetric in its indices i1, i2, · · · , iN . As we explain in a

moment, F i1i2···iN is contained in the ideal generated by matrix elements of A2. Suppose

that this is known. Define the dual function of B,

Gi1i2···iN (B) = ϵk1k2···kNBk1
i1B

k2
i2 · · ·BkN

iN . (2.3)

It is likewise contained in the ideal generated by B2. Since F and G are both contained in

the ideal I, so is

F (A) ·G(B) = F i1i2···iN (A)Gi1i2···iN (B)

= ϵj1j2···jNAi1
j1A

i2
j2 · · ·AiN

jN ϵk1k2···kNBk1
i1B

k2
i2 · · ·BkN

iN . (2.4)

But a direct evaluation of the right hand side of (2.4) can be made using the identity

ϵj1j2···jN ϵk1k2···kN
= δj1k1

δj2k2
· · · δjNkN

± permutations of k1, k2, · · · , kN . (2.5)

When this is done, all indices of A’s become contracted with indices of B’s, implying that

F (A) ·G(B) is a sum of terms

Tr(AB)r1Tr(AB)r2 · · ·Tr(AB)rm

4In effect, we are here picking a basis for the space of Wα, α = 1, 2. This will obscure the SL(2,C)

symmetry that was mentioned in the introduction.
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with various ri. The coefficient of SN = (TrAB)N is nonzero — it is 1, coming from the

trivial permutation in (2.5). The other terms with some ri > 1 are contained in I, as we

have seen in proving that Rcl is generated by S. Hence SN ∈ I.

So it remains only to show that F (A)i1i2···iN is in the ideal generated by A2. Without loss

of generality, since this tensor is symmetric in the indices ik, we can set these to a common

value, say N . We will show that

ϵj1j2···jNAN
j1A

N
j2 · · ·AN

jN (2.6)

is a nonzero multiple of

ϵNj1j2···jN−1(A2)Nj1A
N

j2A
N

j3 · · ·AN
jN−1

, (2.7)

which is certainly proportional to A2. We can write (2.7) more explicitly as

N∑
x=1

ϵNj1j2···jN−1AN
xA

x
j1A

N
j2A

N
j3 · · ·AN

jN−1
. (2.8)

The expression

AN
xA

N
j2A

N
j3 · · ·AN

jN1
, (2.9)

being antisymmetric in x, j2, · · · , jN−1, is a nonzero multiple of

ϵxj2j3···jN−1rϵ
rs1s2···sN−1AN

s1A
N

s2 · · ·AN
sN−1 . (2.10)

Now substitute this expression in (2.8), and then use (2.5) to write the product

ϵNj1j2···jN−1ϵxj2j3···jN−1r

as a multiple of

δNx δj1r − δNr δj1x .

We learn that (2.8) is a nonzero multiple of

(δNx δj1r − δNr δj1x )Ax
j1ϵ

rs1s2···sN−1AN
s1A

N
s2 · · ·AN

sN−1 . (2.11)

The δj1x terms give a multiple of TrA, which vanishes for A in the Lie algebra of SU(N),

and the δNx δrj1 term gives (2.6), as promised.

§3. Proof for Sp(N)

In this section, we prove the conjecture for G = Sp(N). For this group, h = N + 1 and

r = h− 1 = N . Since we have in Section 2 explained why Rcl is generated by S for Sp(N),

and why SN = Sr ̸= 0, we need only prove that

SN+1 = 0.

We recall that a generator A of Sp(N) can be represented as a 2N×2N symmetric tensor

Aij . Indices are raised and lowered using the invariant antisymmetric tensor γjk of Sp(N),

and its inverse

γkr : Ai
j = γikAkj , Aij = γikA

k
j ,

with γikγ
kj = δji . The definition of S is

S = TrAB = AijBklγ
jkγli.
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To think of A as a matrix that can be multiplied, one should raise an index and use Ai
j =

γikAkj . The ideal I is generated by the matrix elements of A2, or explicitly by the quantities∑
kl

AikAjlγ
kl, (3.1)

as well as similar expressions with one or both A’s replaced by B.

The antisymmetric tensor γij is nondegenerate and has a nonzero Pfaffian. This implies

that the antisymmetric tensor ϵi1i2···i2N can be written in terms of γ:

ϵi1i2···i2N = γi1i2γi3i4 · · · γi2N−1i2N ± permutations. (3.2)

The strategy of the proof will be the same as for SU(N). We will construct a polynomial

F (A) which is contained in the ideal generated by A2, and which when contracted with the

analogous polynomial in B is equal to SN+1 modulo I. We simply set

F
k1k2···kN−1

i1i2···iN+1
(A) = ϵk1k2···kN−1j1j2···jN+1Ai1j1Ai2j2 · · ·AiN+1jN+1

. (3.3)

F is antisymmetric in the k’s and symmetric in the i’s. To show that F (A) is contained in

the ideal I, we use the identity (3.2) to express the tensor ϵ as a sum of products of N γ’s.

The γ’s have a total of 2N indices, N + 1 of which are j1, j2, · · · , jN+1 and are contracted

with A’s. N + 1 exceeds the number of γ’s, so in each term of the sum, at least one γ has

two indices jm, jn that are contracted with A’s. Since a γ cannot be contracted twice with

the same A (γijAij = 0 as A is symmetric), the γ in question is contracted once each with

two different A’s, giving AimjmAinjnγ
jmjn , for some values of the indices; this is a generator

of I. So F (A) ∈ I.

After defining F
k1k2···kN−1

i1i2···iN+1
(B) by the same formula, we now want to evaluate

F (A) · F (B) = F
i1i2···iN+1

k1k2···kN−1
(A)F

k1k2···kN−1

i1i2···iN+1
(B). (3.4)

(The indices of F (A) have been raised and lowered with γ’s to make this contraction.)

Clearly, F (A) · F (B) is contained in I, since F (A) and F (B) are. However, we can also

evaluate F (A) · F (B) by working directly from the definition:

F (A) · F (B) = ϵk1k2···kN−1j1j2···jN+1A
i1j1Ai2j2 · · ·AiN+1jN+1

· ϵk1k2···kN−1m1m2···mN+1Bi1m1Bi2m2 · · ·BiN+1mN+1 . (3.5)

Now upon using the identity (2.5) to evaluate ϵk1k2···kN−1m1m2···mN+1ϵk1k2···kN−1j1j2···jN+1
,

all indices of A’s are contracted with indices of B’s, and we get as in Section 2 a sum of terms

each of which is of the form Tr (AB)r1 Tr (AB)r2 · · ·Tr (AB)rm for some ri. The coefficient

of SN+1 = (TrAB)N+1 is nonzero, and the other terms with some ri > 1 are again all

contained in the ideal I. So we have shown that SN+1 is contained in I, completing the

proof of the conjecture for the symplectic group.

§4. Proof for SO(N)

For SO(N), the dual Coxeter number is h = N − 2. The proof that SN−2 ∈ I will be

similar to what we have already seen, though slightly more elaborate. A novelty for SO(N)

is that h > r + 1 in this case, so the argument using reduction to a maximal torus (which

only shows that Sr /∈ I) does not suffice to show that Sh−1 /∈ I. The only proof of this that

I know of uses facts about four-dimensional instantons and is deferred to Section 5.
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An element of the Lie algebra of SO(N) is an antisymmetric N ×N matrix Aij ; indices

are raised and lowered and contracted using the invariant metric δij and its inverse δij . Since

indices can be raised and lowered in a unique way without introducing any minus signs, we

make no distinction between upper and lower indices. The ideal I is generated by

(A2)ij =
∑
k

AikAkj = −
∑
k

AikAjk, (4.1)

and analogous expressions with one or both A’s replaced by B. Apart from δij , the only

independent invariant tensor is the antisymmetric tensor ϵi1i2···iN .

Since the proof that SN−2 ∈ I will be slightly elaborate, we first consider the case of

SO(5) (which is isomorphic to Sp(2) so that we could borrow the result of the last section,

though the argument will not be expressed in such terms). To prove that S3 = 0 for SO(5),

we will construct a cubic polynomial F (A), which is contained in I and when contracted

with the analogous cubic polynomial in B is equal to S3 mod I. This will show that S3 ∈ I

for SO(5). Then we will generalize the construction to SO(N) with N > 5. (Since SO(3) is

equivalent to SU(2) and SO(4) to SU(2)× SU(2), we need not consider those cases.)

To construct F (A), we will begin with a product of three A’s, say Arr′Ass′Att′ , and a

product of two antisymmetric tensors, ϵi1i2···i5ϵj1j2···j5 . Then we will contract all six indices

of the A’s with some of the ten indices carried by the antisymmetric tensors. There is

essentially only one way to do this. We cannot take two A’s and contract all four of their

indices with the same antisymmetric tensor, since

Ai1i2Ai3i4ϵi1i2i3i4i5 = 0 (4.2)

by anticommutativity. Likewise, we cannot have two A’s each with one index contracted

with each of the antisymmetric tensors, since again

Ai1j1Ai2j2ϵi1i2i3i4i5ϵj1j2j3j4j5 = 0 (4.3)

by anticommutativity. So the only nonzero expression that we can make by contracting all

six indices of the three A’s with six of the ten indices of the antisymmetric tensors is

Fi1i2j1j2(A) = Ai3i4Aj3j4Ai5j5ϵi1i2i3i4i5ϵj1j2j3j4j5 , (4.4)

in which one A is contracted twice with the first antisymmetric tensor, one is contracted

twice with the second, and one is contracted once with each.

If we insert in the definition of F the identity

ϵi1i2i3i4i5ϵj1j2j3j4j5 = δi1j1δi2j2 · · · δi5j5 ± permutations,

we get a sum of many terms each proportional to a product of five metric tensors δimjn .

The five metrics have a total of ten indices, six of which are contracted with indices of the

three A’s. The crucial fact is that six exceeds five, so one metric has both indices contracted

with A’s. One cannot contract a metric tensor twice with the same A (δijAij = 0, as A is

antisymmetric). So inevitably, in each term, one of the δ’s is contracted with two different

A’s, giving an expression

AmnδnpApr = (A2)mr

that is a generator of the ideal I. So F (A) is contained in I.
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On the other hand, consider

F (A) · F (B) = Ai3i4Aj3j4Ai5j5ϵi1i2i3i4i5ϵj1j2j3j4j5

·Bk3k4Bt3t4Bk5t5ϵi1i2k3k4k5ϵj1j2t3t4t5 . (4.5)

We can evaluate this by using (2.5) to express the products

ϵi1i2i3i4i5ϵi1i2k3k4k5 and ϵj1j2j3j4j5ϵj1j2t3t4t5

in terms of products of δ’s. When we do this, the indices of A’s and B’s are contracted, and

we get a sum of terms, each of which is a product of traces of words in A and B. The sum

includes a positive multiple of S3, and additional terms that are contained in I because the

trace of any word with more than two letters is in I. This proves that S3 ∈ I for SO(5).

To prove in a similar fashion that SN−2 ∈ I for SO(N), we should start with N−2 factors

of A and contract some of their indices with a product of two ϵ’s to define a polynomial

F (A). To prove along the above lines that F (A) ∈ I, we need to have at least N +1 indices

of the product of ϵ’s contracted with A’s. Let us verify that this is just possible. As we have

seen above, three A’s can be contracted twice each with the product of ϵ’s, giving a total of

6 contractions. The remaining N − 5 A’s can each have only one index contracted with the

product of ϵ’s, since two contractions will give a vanishing result by virtue of (4.2) or (4.3)

(which have obvious analogs for N > 5). The total number of contractions will hence be

6 + (N − 5) = N + 1,

exactly what we need. It does not matter with which antisymmetric tensor the last N − 5

A’s are contracted. So we define

F (A)i1i2j1j2···jN−3s1s2···sN−5

= ϵi1i2t1t2···tN−2
ϵj1j2···jN−3k1k2k3At1t2Ak1k2At3k3At4s1At5s2 · · ·AtN−2sN−5

. (4.6)

F (A) is contained in I for the familiar reason: upon using (2.5) to replace the product of

antisymmetric tensors with a sum of products of δ’s, we get a sum of terms in each of which

some δ is contracted with two A’s, giving a generator of I.

Hence the quantity

F (A) · F (B) = F (A)i1i2j1j2···jN−3s1s2···sN−5F (B)i1i2j1j2···jN−3s1s2···sN−5 (4.7)

is contained in I. On the other hand, explicitly

F (A) · F (B)

= ϵi1i2t1t2···tN−2ϵj1j2···jN−3k1k2k3At1t2Ak1k2At3k3At4s1At5s2 · · ·AtN−2sN−5

ϵi1i2u1u2···uN−2
ϵj1j2···jN−3n1n2n3Bu1u2Bn1n2Bu3n3Bu4s1Bu5s2 · · ·BuN−2sN−5. (4.8)

Using (2.5) to replace

ϵi1i2t1t2···tN−2ϵi1i2u1u2···uN−2

and likewise

ϵj1j2···jN−3k1k2k3ϵj1j2···jN−3n1n2n3

with sums of products of δ’s, we learn in the familiar fashion that F (A) · F (B) is equal to

SN−2 plus a sum of terms (proportional to traces of longer words in A and B) that are

contained in I. Combining these results, we deduce that SN−2 ∈ I.
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§5. Implications of Instanton Calculations

For any simple Lie group G, a one-instanton solution on R4 is obtained by picking a

minimal SU(2) subgroup of G, and embedding in G the one-instanton solution of SU(2).

Under such a minimal SU(2), the Lie algebra g of G decomposes as the adjoint representation

of SU(2) plus a certain number of pairs of copies of the spin one-half representation, as well

as SU(2) singlets. Because the same SU(2) representations arise for any G, the relevant

properties of the one-instanton computation are largely independent of G. A computation

for all simple Lie groups was performed in [7].

For instanton number one, the instanton moduli are the position and size and “SU(2)

orientation” of the instanton and the choice of minimal embedding of SU(2) in G.

In the field of the instanton, the gluino field (which is a fermi field with values in the

adjoint representation of G) has 2h zero modes, all of one chirality. This is the right number

to give an expectation value to an operator with the quantum numbers of a product of

h copies of S. In [3], general properties of chiral operators were used to show that in

a supersymmetric vacuum the expectation value of a product of chiral operators such as

⟨S(x1)S(x2) · · ·S(xh)⟩ is independent of the choice of points xi ∈ R4 as long as the xi are

distinct, ensuring there are no ambiguities in defining the operator products. Moreover, a

one-instanton computation was performed on R4, with the result

⟨S(x1)S(x2) · · ·S(xh)⟩1 inst = c0Λ
3h (5.1)

for some constant c0. The computation is made by evaluating S(xi) as bilinear expressions

in the fermion zero modes (corrections to this vanish by holomorphy) and then integrating

over instanton moduli space. The subscript “1 inst” in (5.1) refers to the fact that we are

recording here the result of a one-instanton computation, which may or may not give the

exact quantum answer.

Our main goal in the present section is to argue from properties of the one-instanton

moduli space that Sh−1 /∈ I. For this, we do not need to know whether the one-instanton

computation gives the exact quantum answer or not; in fact, we do not even need to know

if the quantum theory really exists. The argument we will give could be formulated as a

conventional mathematical proof that Sh−1 /∈ I, using properties of instanton moduli space.

We will also sketch how instantons are used to deduce the quantum anomaly that makes

Sh a non-zero multiple of the identity in the quantum chiral ring (rather than vanishing, as

it does classically). For this, one does need to know something about the quantum theory,

so after arguing that Sh−1 /∈ I, we will recall some issues concerning the relation of the

instanton computation to the quantum theory.

It is possible to take h − 1 of the xi to coincide without running into any difficulty

or ambiguity and in particular without running into a singular contribution from small

instantons. (See [6, Equation (7.17)], where this choice is made.) So

⟨S(x)Sh−1(y)⟩1 inst = c0Λ
3h. (5.2)

From this we can deduce the desired result that Sh−1 /∈ I. Indeed, because of the Q-

invariance of the one-instanton computation, a formula Sh−1 = {Qα̇, Y
α̇} would imply

the vanishing of (5.2) (it would lead to a representation of (5.2) as the integral of a total

derivative over instanton moduli space). Since it does not vanish, Sh−1 /∈ I.
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This completes what we have to say about nonvanishing of Sh−1 in the classical the-

ory. Now let us discuss how the quantum anomaly in Sh comes about. If we simply set

x = y in (5.2), we find that the function that must be integrated over instanton moduli

space is identically zero. The reason for this is that at each point y ∈ R4 and for any

given one-instanton solution, two of the fermion zero modes vanish. (They are a suitable

linear combination, depending on y and on the position of the instanton, of the zero modes

generated by global supersymmetries and superconformal transformations.) Hence, when

Sh(y) is evaluated using the fermion zero modes, one gets identically zero before doing any

integral over instanton moduli space. This is compatible with (but stronger than) the kind

of behavior of Sh that one would expect from the classical result Sh ∈ I (this result would

make us expect a perhaps not identically zero total derivative on moduli space).

In the quantum theory, however, we should be careful in defining an operator product

such as Sh. This is conveniently done by point-splitting, taking a product such

S(x1)S(x2) · · ·S(xh)

and, after performing the computation, taking the limit as the xi coincide. In the present

case, there is no problem in setting h− 1 of the xi equal (since no singular small-instanton

contributions appear in (5.2) as long as x ̸= y). But we should be careful to define Sh(y) as

lim
x→y

S(x)Sh−1(y). When we do this, clearly we get

⟨Sh(y)⟩1 inst = c0Λ
3h. (5.3)

If we assume that the one-instanton amplitude coincides with the exact quantum answer,

we would deduce from this that the classical ring relation Sh = 0 is deformed quantum

mechanically to Sh = c0Λ
3h. However, it is believed that the exact quantum answer is

actually

⟨Sh(y)⟩ = cΛ3h (5.4)

with a different constant c, so that the quantum ring relation is really Sh = cΛ3h. The

discrepancy between the one-instanton computation of the anomaly coefficient and the exact

result is still somewhat surprising; for a detailed analysis and references, see Section 7 of

[6]. One simple statement[8] is that if the one-instanton computation is done on R3 × S1

instead of R4, with an arbitrary radius for the S1, one gets the result (5.4), with what is

believed to be the correct coefficient c, independent of the radius (as long as the radius is

finite). Since the statement Sh = cΛ3h+{Qα̇, Y
α̇} is an operator statement, independent of

any particular choice of state, the coefficient c can be computed, in principle, on any chosen

four-manifold and with any chosen boundary conditions. Compactification on S1 with small

radius and a non-trivial Wilson loop expectation value at infinity gives a suitable framework

for a reliable computation of the anomaly coefficient in a weakly coupled context. (The proof

that Sh−1 /∈ I could also have been carried out in just the same way after compactification

on S1.) The direct computation on R4 is presumably affected by some infrared divergences

in the relation between the perturbative vacuum in which the computation is done and the

true quantum vacuum.5

5Since completion of this paper, the conjecture studied here has been proved for the case of the exceptional
Lie group G2 by P. Etinghof and V. Kac, “On the Cachazo-Douglas-Seiberg-Witten conjecture for simple

Lie algebras,” math. QA/0305175.
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