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Abstract

For a class of mixed initial-boundary value problem for general quasilinear hyperbolic sys-
tems with zero eigenvalues, the authors establish the local exact controllability with boundary

controls acting on one end or on two ends and internal controls acting on a part of equations
in the system.
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§1. Introduction

Consider the following first order quasilinear hyperbolic system

∂u

∂t
+A(u)

∂u

∂x
= F (u), (1.1)

where u = (u1, · · · , un)T is the unknown vector function of (t, x), A(u) is an n × n matrix
with suitably smooth elements aij(u) (i, j = 1, · · · , n) and F : Rn → Rn is a vector function
with suitably smooth components fi(u) (i = 1, · · · , n) such that

F (0) = 0. (1.2)

By the definition of hyperbolicity, on the domain under consideration, the matrix A(u)
has n real eigenvalues λi(u) (i = 1, · · · , n) and a complete set of left eigenvectors li(u) =
(li1(u), · · · , lin(u)) (i = 1, · · · , n):

li(u)A(u) = λi(u)li(u). (1.3)

We have

det |lij(u)| ̸= 0. (1.4)

Under the assumption that the eigenvalues satisfy the following conditions:

λr(u) < 0 < λs(u) (r = 1, · · · ,m; s = m+ 1, · · · , n), (1.5)
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the local exact boundary controllability for the quasilinear hyperbolic system (1.1) with
general nonlinear boundary conditions was considered by Li Tatsien and Rao Bopeng in
[1]–[2] (see also [3]). In an earlier work [4], M. Cirina also discussed this kind of problem
under much stronger assumptions.

In this paper we will discuss the quasilinear hyperbolic system (1.1) with zero eigenvalues.
This case is of great importance in applications, but the method used in [1]–[4] can not be
applied directly. For fixing the idea, we assume that on the domain under consideration,
the eigenvalues of A(u) satisfy the following conditions:

λp(u) < λq(u) ≡ 0 < λr(u) (p = 1, · · · , l; q = l + 1, · · · ,m; r = m+ 1, · · · , n). (1.6)

Noting that, in order to solve the simplest equation with zero eigenvalue

∂u

∂t
= 0, (1.7)

it is not necessary to have a boundary condition, then any boundary control gives no effect
on the solution. Therefore, differently from the situation that the eigenvalues satisfy (1.5), in
order to realize the exact controllability for quasilinear hyperbolic systems with zero eigen-
values, we should use not only suitable boundary controls but also suitable internal controls.
To this end, it is necessary to rewrite system (1.1) into the corresponding characteristic form

li(u)
(∂u
∂t

+ λi(u)
∂u

∂x

)
= F̃i(u) , li(u)F (u) (i = 1, · · · , n), (1.8)

in which the i-th equation includes only the directional derivative of unknown function u

with respect to t along the i-th characteristic direction
dx

dt
= λi(u), and

F̃i(0) = 0 (i = 1, · · · , n). (1.9)

Since in the sequel, we will add some internal controls to those equations which correspond
to zero eigenvalues in the characteristic form (1.8), we discuss the following system

lp(u)
(∂u
∂t

+ λp(u)
∂u

∂x

)
= F̃p(u) (p = 1, · · · , l),

lq(u)
∂u

∂t
= F̃q(u) + cq(t, x) (q = l + 1, · · · ,m),

lr(u)
(∂u
∂t

+ λr(u)
∂u

∂x

)
= F̃r(u) (r = m+ 1, · · · , n),

(1.10)

where li(u), λi(u) and F̃i(u) (i = 1, · · · , n) are all assumed to be C1 functions and

cq(t, x) = aq(t, x)
∂vq(t, x)

∂t
+ bq(t, x) (q = l + 1, · · · ,m), (1.11)

in which aq and vq (q = l+1, · · · ,m) are C1 vector functions of (t, x) and bq (q = l+1, · · · ,m)
are C1 functions of (t, x).

We give the initial condition

t = 0 : u = φ(x), 0 ≤ x ≤ 1 (1.12)

and the nonlinear boundary conditions

x = 0 : vr = Gr(t, v1, · · · , vl, vl+1, · · · , vm) +Hr(t) (r = m+ 1, · · · , n), (1.13)

x = 1 : vp = Gp(t, vl+1, · · · , vm, vm+1, · · · , vn) +Hp(t) (p = 1, · · · , l), (1.14)

where

vi = li(u)u (i = 1, · · · , n), (1.15)
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Gp, Gr,Hp,Hr (p = 1, · · · , l; r = m+ 1, · · · , n) and φ are all C1 functions with respect to
their arguments, and, without loss of generality, we assume that

Gp(t, 0, · · · , 0) ≡ 0, Gr(t, 0, · · · , 0) ≡ 0 (p = 1, · · · , l; r = m+ 1, · · · , n). (1.16)

Although cq(t, x) (q = l+1, · · · ,m) given by (1.11) have a lower regularity, if we assume
that the conditions of C1 compatibility are satisfied at the points (0,0) and (0,1) respectively,
the mixed initial-boundary value problem (1.10)–(1.14) admits a unique local C1 solution
u = u(t, x) on the domain

R(δ) = {(t, x)|0 ≤ t ≤ δ, 0 ≤ x ≤ 1}, (1.17)

where δ > 0 is a suitably small constant (see [5]).
In order to get the exact controllability, for a given and probably quite large T > 0, in §2

we will give the existence and uniqueness of C1 solution (called the semi-global C1 solution)
to the corresponding mixed initial-boundary value problem on the domain

R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ 1}. (1.18)

Then, by mean of boundary controls Hp(t) (p = 1, · · · , l) and (or) Hr(t) (r = m+1, · · · , n)
and internal controls cq(t, x) (q = l + 1, · · · ,m), the local exact controllability for system
(1.1) will be realized in §3 and §4.

§2. Existence and Uniqueness of Semi-Global C1 Solution

Lemma 2.1. Assume that li, λi, F̃i, Gp, Gr,Hp, Hr (i = 1, · · · , n; p = 1, · · · , l; r =
m + 1, · · · , n) and φ are all C1 functions with respect to their arguments, and (1.6), (1.9)
and (1.16) hold. Assume furthermore that cq (q = l + 1, · · · ,m) are given by (1.11), in
which aq and vq (q = l + 1, · · · ,m) are C1 vector functions of (t, x) and bq (q = l +
1, · · · ,m) are C1 functions of (t, x). Assume finally that the conditions of C1 compatibility
are satisfied at the points (0, 0) and (0, 1) respectively. For any given T > 0, the mixed initial-
boundary value problem (1.10) and (1.12)–(1.14) admits a unique semi-global C1 solution
u = u(t, x) with sufficiently small C1 norm on the domain (1.18), provided that the C1 norms
∥φ∥C1[0,1], ∥(Hp,Hr)∥C1[0,T ] and ∥(vq, bq)∥C1[R(T ]) (p = 1, · · · , l; q = l + 1, · · · ,m; r =
m+ 1, · · · , n) are small enough (depending on T ).

The proof of this lemma can be found in [7] (see also [6]).

§3. Exact Controllability with Boundary
Controls Acting on Two Ends

The main result in this section is
Theorem 3.1. Assume that li, λi, F̃i, Gp and Gr (i = 1, · · · , n; p = 1, · · · , l; r =

m+1, · · · , n) are all C1 functions with respect to their arguments. Assume furthermore that
(1.6), (1.9) and (1.16) hold. Let

T > max
p=1,··· ,l

r=m+1,··· ,n

( 1

|λp(0)|
,

1

λr(0)

)
. (3.1)

For any given initial data φ ∈ C1[0, 1] and final data ψ ∈ C1[0, 1] with small C1 norm, there
exist boundary controls Hp(t), Hr(t) ∈ C1[0, T ] (p = 1, · · · , l; r = m + 1, · · · , n) with small
C1 norm, and internal controls cq(t, x) (q = l+ 1, · · · ,m) given by (1.11), in which aq(t, x)
and vq(t, x) (q = l + 1, · · · ,m) are C1 vector functions and bq (q = l + 1, · · · ,m) are C1

functions on R(T ) and the C1 norms of bq and vq (q = l + 1, · · · ,m) are suitably small ,
such that the mixed initial-boundary value problem (1.10) and (1.12)–(1.14) admits a unique
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C1 solution u = u(t, x) with small C1 norm on the domain R(T ), which verifies the final
condition

t = T : u = ψ(x), 0 ≤ x ≤ 1. (3.2)

In order to prove Theorem 3.1, we construct the following system of characteristic form
lp(u)

(∂u
∂t

+ λp(u)
∂u

∂x

)
= F̃p(u) (p = 1, · · · , l),

lq(u)
(∂u
∂t

+ λ̄q(u)
∂u

∂x

)
= F̃q(u) (q = l + 1, · · · ,m),

lr(u)
(∂u
∂t

+ λr(u)
∂u

∂x

)
= F̃r(u) (r = m+ 1, · · · , n),

(3.3)

in which we assume that

λ̄q(u) = λ1(u) or λn(u) (q = l + 1, · · · ,m). (3.4)

Since (3.3) is a system without zero eigenvalues, according to the Proposition in [1], we have

Lemma 3.1. Let T > 0 be defined by (3.1). Assume that li(u), λi(u) and F̃i(u) (i =
1, · · · , n) are all C1 functions with respect to their arguments. For any given initial data φ ∈
C1[0, 1] and final data ϕ ∈ C1[0, 1] with small C1 norm, the hyperbolic system (3.3) admits
a unique C1 solution u = u(t, x) with small C1 norm on the domain R(T ) = {(t, x)|0 ≤ t ≤
T, 0 ≤ x ≤ 1}, which satisfies the initial data

t = 0 : u = φ(x), 0 ≤ x ≤ 1 (3.5)

and the final data (3.2).

By Lemma 3.1, we can prove Theorem 3.1.

In fact, substituting a C1 solution u = u(t, x) given by Lemma 3.1 into the boundary
conditions (1.13) and (1.14), we get the desired boundary controls

Hp(t) = (vp −Gp(t, vl+1, · · · , vm, vm+1, · · · , vn))|x=1 (p = 1, · · · , l), (3.6)

Hr(t) = (vr −Gr(t, v1, · · · , vl, vl+1, · · · , vm)|x=0 (r = m+ 1, · · · , n), (3.7)

where vi (i = 1, · · · , n) are defined by (1.15). Noting (1.16), the C1 norms of Hp (p =
1, · · · , l) and Hr (r = m+ 1, · · · , n) are small. On the other hand, substituting u = u(t, x)
into the second part of system (1.10), we get the desired internal controls

cq(t, x) = lq(u(t, x))
∂u(t, x)

∂t
− F̃q(u(t, x)) (q = l + 1, · · · ,m), (3.8)

which corresponds to (1.11) in which

aq(t, x) = lq(u(t, x)), bq(t, x) = −F̃q(u(t, x)), vq(t, x) = u(t, x) (q = l + 1, · · · ,m). (3.9)

Noting (1.9), the C1[R(T )] norms of bq(t, x) and vq(t, x) (q = l + 1, · · · ,m) are also small.

Obviously, u = u(t, x) verifies the corresponding mixed initial-boundary valued problem
(1.10) and (1.12)–(1.14) on the domain R(T ). By Lemma 2.1, u = u(t, x) is the semi-
global C1 solution to this mixed problem on the domain R(T ) , which satisfies also the final
condition (3.2). Thus, we obtain the desired exact controllability, in which the boundary
controls Hp (p = 1, · · · , l) and Hr (r = m + 1, · · · , n) are given by (3.6)–(3.7) and the
internal controls cq(t, x) (q = l + 1, · · · ,m) are given by (3.8).

In §4 we will prove that for a class of mixed initial-boundary value problem, the number of
boundary controls can be diminished, provided that the exact controllability time is doubled.
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§4. Exact Controllability with
Boundary Controls Acting on One End

Suppose that the number of positive eigenvalues equals that of negative eigenvalues:

l = n−m. (4.1)

Suppose furthermore that the boundary condition (1.13) [resp. (1.14)] can be equivalently
rewritten as

x = 0 : vp = Gp(t, vl+1, · · · , vm, vm+1, · · · , vn) +Hp(t) (p = 1, · · · , l) (4.2)

[resp. x = 1 : vr = Gr(t, v1, · · · , vl, vl+1, · · · , vm) +Hr(t) (r = m+ 1, · · · , n)] (4.2)′

with

Gp(t, 0, · · · , 0) ≡ 0 (p = 1, · · · , l) (4.3)

[resp. Gr(t, 0, · · · , 0) ≡ 0 (r = m+ 1, · · · , n)]. (4.3)′

Then

small C1 norm of ∥Hr∥ ⇔ small C1 norm of ∥Hp∥ (4.4)

[resp. small C1 norm of ∥Hp∥ ⇔ small C1 norm of ∥Hr∥], (4.4)′

in which p = 1, · · · , l; r = m+ 1, · · · , n.
Theorem 4.1. Under the assumptions of Theorem 3.1, suppose furthermore that (4.1)–

(4.3) hold and Gp (t, ·)(p = 1, · · · , l) [resp. Gr(t, ·) (r = m+1, · · · , n)] are C1 functions with
respect to their arguments. Let

T > 2 max
p=1,··· ,l

r=m+1,··· ,n

( 1

|λp(0)|
,

1

λr(0)

)
. (4.5)

Suppose finally that Hr(t) (r = m+ 1, · · · , n) [resp. Hp(t) (p = 1, · · · , l)] are given C1[0, T ]
functions with small C1norm. For any given initial data φ ∈ C1[0, 1] and final data ψ ∈
C1[0, 1] with small C1 norm, such that the conditions of C1 compatibility are satisfied at
the points (0, 0) and (T, 0) [resp. (0, 1) and (T, 1)] respectively, there exist boundary controls
Hp(t) ∈ C1[0, T ] (p = 1, · · · , l) [resp. Hr(t) ∈ C1[0, T ] (r = m + 1, · · · , n)] with small C1

norm and internal controls cq(t, x) (q = l+ 1, · · · ,m) given by (1.11), in which aq(t, x) and
vq(t, x) (q = l + 1, · · · ,m) are C1 vector functions and bq(t, x) (q = l + 1, · · · ,m) are C1

functions on R(T ) and the C1 norms of bq and vq (q = l + 1, · · · ,m) are suitably small,
such that the mixed initial-boundary value problem (1.10) and (1.12)–(1.14) admits a unique
C1 solution u = u(t, x) with small C1 norm on the domain R(T ), which verifies the final
condition (3.2).

In order to prove Theorem 4.1, we consider system (3.3) in which

λ̄q(u) = λ1(u) < 0 [resp. λ̄q(u) = λn(u) > 0] (q = l + 1, · · · ,m). (4.6)

It suffices to establish the following
Lemma 4.1. Under the assumptions of Theorem 4.1, for any given initial data φ ∈

C1[0, 1] and final data ϕ ∈ C1[0, 1] with small C1 norm, such that the conditions of C1

compatibility are satisfied at the points (0, 0) and (T, 0) [resp. (0, 1) and (T, 1)] respectively,
the quasilinear hyperbolic system (3.3) (with (4.6)) with the boundary condition (1.13) [resp.
(1.14)] admits a unique C1 solution u = u(t, x) with small C1 norm on the domain R(T ),
which satisfies the initial condition (1.12) and the final condition (3.2).

In fact, assume that u = u(t, x) is a C1 solution given by Lemma 4.1, the boundary
control can be given by

Hp(t) = (vp −Gp(t, vl+1, · · · , vm, vm+1, · · · , vn))|x=1 (p = 1, · · · , l) (4.7)
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[resp. Hr(t) = (vr −Gr(t, v1, · · · , vl, vl+1, · · · ,m))|x=0 (r = m+ 1, · · · , n)]. (4.7)′

Noting (1.16), the C1[0, T ] norms of Hp(t) (p = 1, · · · , l) [resp. Hr(t) (r = m+1, · · · , n)] are
small. On the other hand, the internal controls can be still given by (3.8)–(3.9). By (1.9),
the C1 norms of bq(t, x) and vq(t, x) (q = 1, · · · , l) are also small.

Since in system (3.3) the number of positive eigenvalues is not equal to that of negative
eigenvalues, we should prove Lemma 4.1 in a way slightly different from that in [2]. For
fixing the idea, in what follows we consider only the case that the boundary controls are
given at the end x = 1.

Noting (4.5), there exist an ε0 > 0 such that

T > 2 max
p=1,··· ,l

r=m+1,··· ,n
|u|≤ε0

( 1

|λp(u)|
,

1

λr(u)

)
. (4.8)

Let

T1 = max
p=1,··· ,l

r=m+1,··· ,n
|u|≤ε0

( 1

|λp(u)|
,

1

λr(u)

)
. (4.9)

We first consider the forward mixed initial-boundary value problem for system (3.3) (with
(4.6)) with the initial data (3.5) and the boundary conditions (1.13) and

x = 1 : vp̄ = gp̄(t) (p̄ = 1, · · · ,m), (4.10)

where gp̄(t) ∈ C1[0, T1] (p̄ = 1, · · · ,m) are any given functions of t with small C1 norm, such
that the conditions of C1 compatibility are satisfied at the point (0,1). By Lemma 2.1, there
exists a unique semi-global C1 solution u = u(1)(t, x) with small C1 norm on the domain

{(t, x)|0 ≤ t ≤ T1, 0 ≤ x ≤ 1}. (4.11)

Thus, we can determine the value of u = u(1)(t, x) on x = 0 as

x = 0 : u = a(t), 0 ≤ t ≤ T1 (4.12)

and the C1[0, T1] norm of a(t) is suitably small.
Similarly, we consider the backward mixed initial-boundary value problem for system

(3.3) (with (4.6)) with the initial condition (3.2) and the boundary conditions (4.2) and

x = 0 : vq = g̃q(t) (q = l + 1, · · · ,m), (4.13)

x = 1 : vr = gr(t) (r = m+ 1, · · · , n), (4.14)

where g̃q(t), gr(t) ∈ C1[T − T1, T ] (q = l + 1, · · · ,m; r = m + 1, · · · , n) are any given
functions of t with small C1 norm, such that the conditions of C1 compatibility are satisfied
at the points (T, 0) and (T, 1) respectively. Once again by Lemma 2.1, there exists a unique
semi-global C1 solution u = u(2)(t, x) with small C1 norm on the domain

{(t, x)|T − T1 ≤ t ≤ T, 0 ≤ x ≤ 1}. (4.15)

Thus, we can determine the value of u = u(2)(t, x) on x = 0 as

x = 0 : u = b(t), T − T1 ≤ t ≤ T (4.16)

and the C1[T − T1, T ] norm of b(t) is suitably small.
Noting that both a(t) and b(t) satisfy the boundary condition (1.13), we can find a

function c(t) ∈ C1[0, T ] with small C1 norm, such that

c(t) =

{
a(t), 0 ≤ t ≤ T1,

b(t), T − T1 ≤ t ≤ T
(4.17)
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and c(t) satisfies the boundary condition (1.13) on the whole interval [0,T].
Now, we change the order of t and x, then system (3.3) (with (4.6)) is rewritten in the

following form

lp(u)
(∂u
∂x

+
1

λp(u)

∂u

∂t

)
= F̃ p(u) ,

F̃p(u)

λp(u)
(p = 1, · · · , l),

lq(u)
(∂u
∂x

+
1

λ̄q(u)

∂u

∂t

)
= F̃ q(u) ,

F̃q(u)

λ̄q(u)
(q = l + 1, · · · ,m),

lr(u)
(∂u
∂x

+
1

λr(u)

∂u

∂t

)
= F̃ r(u) ,

F̃r(u)

λr(u)
(r = m+ 1, · · · , n).

(4.18)

We still have

F̃ (0) = 0 (4.19)

and the corresponding eigenvalues satisfy

1

λp(u)
< 0 <

1

λr(u)
(p = 1, · · · , l; r = m+ 1, · · · , n) (4.20)

and
1

λ̄l+1(u)
= · · · = 1

λ̄m(u)
=

1

λ1(u)
< 0. (4.21)

Moreover, we can still define vi (i = 1, · · · , n) by the same formula (1.15).
We now consider the mixed initial-boundary value problem for system (4.18) with the

initial condition

x = 0 : u = c(t), 0 ≤ t ≤ T (4.22)

and the boundary conditions

t = 0 : vr = Φr(x) (r = m+ 1, · · · , n), 0 ≤ x ≤ 1, (4.23)

t = T : vp̄ = Ψp̄(x) (p̄ = 1, · · · ,m), 0 ≤ x ≤ 1, (4.24)

where

Φi(x) = li(φ(x))φ(x) (i = 1, · · · , n), (4.25)

Ψi(x) = li(ψ(x))ψ(x) (i = 1, · · · , n), (4.26)

the C1 norms of which are suitably small. It is easy to see that the conditions of C1

compatibility are satisfied at the points (0, 0) and (T, 0) respectively. Therefore, by Lemma
2.1, there exist a unique semi-global C1 solution u = u(t, x) with small C1 norm on the
domain

R(T ) = {(t, x)|0 ≤ t ≤ T, 0 ≤ x ≤ 1}. (4.27)

In order to finish the proof of Lemma 4.1, it is only necessary to check that

t = 0 : u = φ(x), 0 ≤ x ≤ 1, (4.28)

t = T : u = ψ(x), 0 ≤ x ≤ 1. (4.29)

In fact, the C1 solutions u = u(t, x) and u = u(1)(t, x) satisfy simultaneously the system
(4.18) (namely (3.3)) with the initial condition

x = 0 : u = c(t), 0 ≤ t ≤ T1 (4.30)

and the boundary condition (4.23). Because of the uniqueness of C1 solution (see [8]) and
the choice of T1 given by (4.9), on the domain

{(t, x)|0 ≤ t ≤ T1(1− x), 0 ≤ x ≤ 1} (4.31)
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we have

u(t, x) ≡ u(1)(t, x). (4.32)

In particular, we get (4.28). (4.29) can be obtained in a similar way. Thus u = u(t, x) is a
C1 solution desired by Lemma 4.1. The proof of Lemma 4.1 is complete.

§5. Remarks

Remark 5.1. When A and F in system (1.1) depend also on x, Lemma 2.1 (see [7]) and
Theorems 3.1 and 4.1 are also valid.

Remark 5.2. The exact controllability time given in Theorem 3.1 or Theorem 4.1 is
optimal.

Remark 5.3. In Theorem 3.1, the number of internal controls is equal to the number of
zero eigenvalues, while the number of boundary controls is equal to the sum of the numbers
of positive and negative eigenvalues.

Remark 5.4. In Theorem 4.1, the number of internal controls is still equal to the number
of zero eigenvalues, while the number of boundary controls is equal to half of the sum of the
numbers of positive and negative eigenvalues.

Remark 5.5. The boundary controls and internal controls given in Theorem 3.1 or
Theorem 4.1 are not unique.
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