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Abstract

The authors obtain function theoretic characterizations of the compactness on the standard
weighted Bergman spaces of the two operators formed by multiplying a composition operator

with the adjoint of another composition operator.
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§1. Introduction

Let φ : D → D be a holomorphic self-map of the unit disk D = {z : |z| < 1}. The
composition operator Cφ induced by φ is the linear map on the space of all holomorphic
functions on the unit disc defined by Cφ(f) = f ◦ φ. By the Littlewood Subordination

Theorem[7] the composition operator Cφ is bounded on the standard weighted Bergman
spaces L2

a(dAα). In this paper we consider the compactness of CφC
∗
ψ or C∗

ψCφ where C∗
ψ is

the adjoint of Cψ on L2
a(dAα).

For α > −1, let dAα denote the normalized measure on D defined by

dAα(z) = (− log |z|2)αdA(z)/Γ(α+ 1).

The standard weighted Bergman space L2
a(dAα) is the Hilbert space of holomorphic functions

on D that are also in L2(dAα) with inner product given by

⟨f, g⟩α =

∫
D

f(z)g(z)dAα(z).

As pointed out in [11], in defining the space L2
a(dAα), the measure dAα(z) is frequently

replaced by

(1− |z|2)αdA(z)/Γ(α+ 1)
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resulting in the same space and an equivalent norm. We let α = −1 denote the classical
Hardy space H2. Since weighted Bergman spaces are Hilbert spaces, the adjoint Cψ is a
bounded operator on L2

a(dAα).

The main goal of this paper is to provide a function theoretic characterization of the
inducing maps φ and ψ for which the operators CφC

∗
ψ and C∗

ψCφ are compact on L2
a(dAα).

For univalent inducing maps, the compactness of CφC
∗
ψ and C∗

ψCφ has been characterized

on the Hardy space in [3]. In this paper the same questions are addressed on the weighted
Bergman spaces. Similar methods of proof yield even more complete results than those
obtained on the Hardy space.

In order to outline our main results we start with some background material. The general
counting function Nφ,α+2 defined for α ≥ −1 is

Nφ,α+2(w) =
∑

z∈φ−1(w)

(− log |z|)α+2, w ∈ φ(D) \ {φ(0)},

and Nφ,α+2(w) = 0 if w is not in φ(D). The points of the inverse image φ−1 are regarded
as being repeated according to their φ-multiplicity. Note that when α = −1 we recover the
Nevanlinna counting function for the Hardy space and when α = 0 we have the counting
function for the classical Bergman space.

We say the angular derivative of φ exists at a point ζ ∈ ∂D if there exists ω ∈ ∂D such
that the difference quotient (φ(z)−ω)/(z−ζ) has a (finite) limit as z tends non-tangentially
to ζ through the unit disc. B. D. MacCluer and J. H. Shapiro[9] show that Cφ is compact on
L2
a(dAα) for α > −1 if and only if φ does not have a finite angular derivative. This angular

derivative criterion completely characterizes the compactness of a composition operator on
the weighted Bergman spaces. They also show that the angular derivative criterion fails on
the Hardy space. The seminal results on compact composition operators in [11] completely
characterizes compactness of a composition operator on the Bergman and the Hardy spaces
by proving that a composition operator, Cφ, is compact on L2

a(dAα) for α ≥ −1 if and only
if

lim
|w|→1−

{Nφ,α+2(w)/ (− log |w|)α+2} = 0.

In [3] the compactness of CφC
∗
ψ, for general inducing maps, is not completely characterized

on H2.

Our main result completely characterizes the compactness of CφC
∗
ψ on the Bergman

spaces L2
a(dAα) in terms of both the angular derivative and general counting functions of

the inducing maps:

Theorem 1.1. Suppose that φ and ψ are holomorphic self-maps of D. Then, for α > −1,
the following three conditions are equivalent:

(a) CφC
∗
ψ is compact on L2

a(dAα);

(b) lim
|w|→1−

{Nφ,α+2(w)Nψ,α+2(w)/(log |w|)2α+4} = 0;

(c) There do not exist points ζ1 and ζ2 on the unit circle such that φ has a finite angular
derivative at ζ1, ψ has a finite angular derivative at ζ2, and φ(ζ1) = ψ(ζ2).

Our main result for the operator C∗
ψCφ on the weighted Bergman spaces is a sharp upper

bound on the essential norm. In [3], for general inducing maps, only a sufficient condition
for compactness on H2 is proved.
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Theorem 1.2. Suppose that φ and ψ are holomorphic self-maps of D. Then, for α ≥ −1,

∥C∗
ψCφ∥2e,α ≤ lim sup

{Nφ,α+2(φ(z))Nψ,α+2(ψ(z))

(log |φ(z)| log |ψ(z)|)α+2

}
as |φ(z)| → 1− or |ψ(z)| → 1−.

An immediate corollary of Theorem 1.2 is that if α ≥ −1,

lim
{Nφ,α+2(φ(z))Nψ,α+2(ψ(z))

(log |φ(z)| log |ψ(z)|)α+2

}
= 0 as |φ(z)| → 1− or |ψ(z)| → 1−,

then C∗
ψCφ is compact on L2

a(dAα).

Finally, if φ and ψ are univalent functions we completely characterize the compactness
of C∗

ψCφ on the Bergman spaces L2
a(dAα).

Theorem 1.3. Suppose φ and ψ are univalent self-maps of D. Then, for α > −1, the
following three conditions are equivalent:

(a) C∗
ψCφ is compact on L2

a(dAα) for α > −1;

(b) lim
|φ(z)|→1−or |ψ(z)|→1−

{Nφ,α+2(φ(z))Nψ,α+2(ψ(z))

(log |φ(z)| log |ψ(z)|)α+2

}
= 0;

(c) lim
|z|→1−

(1− |z|)2

(1− |φ(z)|)(1− |ψ(z)|)
= 0;

(d) For each ζ on the unit circle, either φ or ψ cannot have finite angular derivative at
ζ.

The paper is organized as follows. In Sections 2 and 3 we develop the results used to
prove the three main theorems. Specifically, in Section 2 we develop a connection between
the operator CφC

∗
ψ on L2

a(dAα) and the product of Toeplitz operators on L2
a(dAα+2). While

in Section 3 we derive two connections between the angular derivatives of φ and ψ and an
asymptotic limit of the their generalized counting functions. In Section 4 we prove Theorem
1.1 and in Section 5 we prove Theorems 1.2 and 1.3.

§2. Composition Operators via Toeplitz Operators

For functions f(z) =
∑
f̂(n)zn belonging to L2

a(dAα), α ≥ −1, it is well known that the
norm of f has the series representation

∥f∥2α =

∫
D

|f(z)|2dAα =
∞∑
n=0

|f̂(n)|2

(n+ 1)α+1
. (2.1)

As pointed out in [8], there is a natural connection between L2
a(dAα) and L

2
a(dAα+2) given

by

∥f∥2α = ∥(zf)′∥2α+2 for f ∈ L2
a(Aα). (2.2)

Let Pα denote the orthogonal projection from L2(dAα) onto L
2
a(dAα). For a function u

in L2(dAα), the Toeplitz operator Tu with symbol u is the operator on L2
a(dAα) defined by

Tuf = Pα(uf) for f ∈ L2
a(dAα).

For each w ∈ D let kw(z) be the normalized reproducing kernel of L2
a(dAα). For simplicity

of notation we use kw(z) for different normalized reproducing kernels kαw(z) of L2
a(dAα).

Normalized reproducing kernels play a crucial role in the study of compact operators in that
kw(z) converges weakly to zero as |w| → 1−. In addition, it follows from [11] that Cφ is
compact on L2

a(dAα) if and only if ∥Cφkw∥ → 0 as w → 1−.



436 CHIN. ANN. MATH. Vol.24 Ser.B

The Berezin transform Bα(f)(w) is defined by

Bα(f)(w) = ⟨fkw, kw⟩α for f ∈ L2
a(Aα).

The Berezin transform is useful in studying compact Toeplitz operators on the Bergman
space[1]. As in [3] and [13], using the inner product formula and local estimates of Toeplitz
operators on the Bergman space L2

a(dAα), we obtain the following result, which we state
here without proof.

Theorem 2.1. Suppose that f and g are bounded on D \ rD for some 0 < r < 1. If

lim
|z|→1−

Bα(f)(z)Bα(g)(z) = 0,

then TfTg is compact on L2
a(dAα).

In [14] it is shown that if φ(0) = 0 then there is a unitary operator U : zL2
a(dAα) →

L2
a(dAα+2) defined by

Uf(z) = f ′(z)

such that UCφU
∗ = Dφ, where Dφ is the weighted composition operator on L2

a(dAα+2)
defined by

Dφf(z) = f(φ(z))φ′(z).

Moreover D∗
φDφ is the Toeplitz Tτφ,α+2 , where

τφ,α(w) = Nφ,α(w)/(log 1/|w|)α.
Proposition 6.3, in [11], shows that τφ,α(w) is bounded on D \ rD for some 0 < r < 1.

Following the approach in [14], we decompose L2
a(dAα), into C ⊕ zL2

a(dAα), where C
consists of constants. Define the operator U : L2

a(dAα) → C⊕ L2
a(dAα+2) by

U(c⊕ f) = c⊕ f ′.

It is easy to check that U is an unitary operator. For z ∈ D, let Pz denote the operator on
L2
a(dAα) given by

Pzf = f(z).

Since Pz is a rank-one operator, we will view it as a compact operator from L2
a(dAα) to

C. The proof of the following lemma follows directly from the proof of Lemma 5.5 in [3].
Lemma 2.1. Suppose φ is a holomorphic self-map of D. Then

UCφU
∗ =

[
1 Pφ(0)

0 Dφ

]
,

where Dφ is the weighted composition operator on L2
a(dAα+2) given by

Dφf(z) = f(φ(z))φ′(z).

We now state the connection between the compactness of the operator Tτφ,α+2Tτψ,α+2
on

L2
a(dAα+2) and compactness of the operator CφC

∗
ψ on L2

a(dAα), without proof as it follows

from the proof of Theorem 5.6 in [3].
Lemma 2.2. If Tτφ,α+2Tτψ,α+2

is compact on L2
a(dAα+2), then CφC

∗
ψ is compact on

L2
a(dAα).

§3. Generalized Counting Function and Angular Derivatives

The Julia-Carathéodory Theorem[4, 11, 12] states that a holomorphic self-map of the disc
φ has a finite angular derivative at ζ ∈ ∂D if and only if

lim inf
z→ζ

(1− |φ(z)|)/(1− |z|) <∞,
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where z is allowed to tend unrestrictedly to ζ through the unit disk.

Lemma 3.1. Suppose that φ and ψ are univalent self-maps of D. For α > −1, the
following are equivalent:

(a) lim sup
|φ(z)|→1− or |ψ(z)|→1−

{Nφ,α+2(φ(z))Nψ,α+2(ψ(z))

(log |φ(z)| log |ψ(z)|)α+2

}
> 0;

(b) lim sup
|z|→1−

(1− |z|)2

(1− |φ(z)|)(1− |ψ(z)|)
> 0;

(c) There exists a point ζ on the unit circle such that φ and ψ have finite angular
derivatives at ζ.

The proof of Lemma 3.1 follows from the univalence of the inducing maps and the Julia-
Carathéodory theorem. By Theorem 1.3 the statements in this lemma are equivalent to the
univalently induced operator CφC

∗
ψ not being compact on L2

a(dAα).

For a general inducing map the key to characterize the compactness of a composition
operator on L2

a(dAα) in terms of the inducing maps’ angular derivative is the following two
results from [11].

Lemma 3.2. Suppose w ∈ D \ {0, φ(0)} and z ∈ φ−1(w) is of minimum modulus. Then

Nφ,α+2(w)

(log 1/|w|)α+2
≤ Nφ,1(w)

log 1/|w|

( 1− |z|
1− |φ(z)|

)α+1

.

Lemma 3.3. Suppose w ∈ D \ {0, φ(0)} and z ∈ φ−1(w). Then there exists a positive
constant m, depending only on α, such that

m
( 1− |z|
1− |φ(z)|

)α+2

≤ Nφ,α+2(w)

(log 1/|w|)α+2
.

In the definition of the Berezin transform Bα(f), replace the measure dAα(z) by the
measure (α+ 1)(1− |z|2)αdA(z). Then the Berezin transform becomes

Bα(f)(z) = (α+ 1)

∫
D

(1− |z|2)α+2(1− |w|2)α

|1− zw|4+2α
f(w)dA(z).

By a change of variables, we have

Bα(f)(z) =

∫
D

f ◦ φz(w)dAα(w),

where φz(w) is the Möbius transformation φz(w) =
z − w

1− zw
.

For z, w ∈ D, define the pseudohyperbolic metric

ρ(z, w) = |φz(w)| =
∣∣∣ z − w

1− zw

∣∣∣.
For any z ∈ D and 0 < r < 1 define the pseudohyperbolic disk

D(z, r) = {w ∈ D : ρ(z, w) < r}.

It is well known that D(z, r) is actually a (Euclidean) disk with center [(1−r2)/(1−r2|z|2)]z
and radius r[(1−|z|2)/(1−r2|z|2)]. So when r is fixed, if z converges to a point η in the unit
circle, then the entire pseudohyperbolic disc D(z, r) converges to η. Moreover, for fixed r,

A(D(z, r)) ≈ (1− |z|2)−2,∣∣∣ 1

(1− zw)2

∣∣∣ ≈ (1− |z|2)−2 for w ∈ D(z, r). (3.1)
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Here the symbol ≈ indicates that either quantity is bounded by a constant multiple of the
other as z and w vary. For more details about the Berezin transform and the pseudohyper-
bolic disc, see [5].

We will use the following lemma to connect an asymptotic limit of the product of the
Berezin transforms of τφ,α and τψ,α with the existence of the angular derivatives of φ and
ψ.

Lemma 3.4. Suppose φ is a holomorphic self-map of D and α > −1. If there exists ω
on the unit circle such that

lim
w→ω

Bα+2(τφ,α+2)(w) > 0,

then there exists ζ ∈ φ−1(ω) such that φ′(ζ) exists and is finite.

Proof. Let δ > 0. Let {wn} ⊂ D be a sequence converging to ω ∈ ∂D, such that

Bα+2(τφ,α+2)(wn) ≥
1

δ
(3.2)

for some n sufficiently large.

By Littlewood’s Inequality |τφ,α+2(w)| is bounded near the boundary of the unit disc,
so let 0 < s < 1 and M be such that |τφ,α+2(w)| is bounded by M for s < |w| < 1. Fix r
sufficiently close to 1 such that

M |D \ rD| ≤ 1

4δ
. (3.3)

Since the integral of

τφ,α(w)(1− |wn|2)α+2/|1− wnw|2α+6

over sD is bounded by

(1− |wn|2)α+2

|1− wns|2α+6

∫
sD

τφ,α+2(w)dAα+2(w),

which tends to zero as |wn| → 1−, we choose n sufficiently large so that∫
sD

τφ,α+2(w)
(1− |wn|2)α+2

|1− wnw|2α+6
dAα+2(w) ≤

1

4δ
. (3.4)

Now split the Berezin transform

Bα+2(τφ,α+2)(wn) =

∫
D

τφ,α+2 ◦ φwn(λ)dAα+2(λ)

into the sum of three integrals over the regions rD, (D \ rD)∩φwn(D \ sD), and (D \ rD)∩
φwn(sD). Then solving for the integral over rD and using the inequalities (3.2)–(3.4), we
obtain ∫

rD

τφ,α+2 ◦ φwn(λ)dAα+2(λ) ≥
1

2δ
.

Thus ∫
rD
Nφ,α+2 ◦ φwn(λ)dAα+2(λ)

(1− |wn|2)α+2
≥ 1

2δ
. (3.5)

By Lemma 3.2, there is a point w′
n in the pseudohyperbolic disc D(wn, r) such that

max
w∈D(wn,r)

Nφ,α+2(w) ≤ C(1− |w′
n|2)α+2 sup

z∈φ−1(w′
n)

( 1− |z|
1− |w′

n|

)α+1

.
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Therefore the inequality (3.5) simplifies to

sup
z∈φ−1(w′

n)

C
( 1− |z|
1− |w′

n|

)α+1

≥ 1

2δ
.

Since w′
n is in D(wn, r), w

′
n also converges to ω. Choosing z′n ∈ φ−1(w′

n) such that

C
( 1− |z′n|
1− |w′

n|

)α+1

≥ sup
z∈φ−1(w′

n)

C
( 1− |z|
1− |w′

n|

)α+1

− 1

4δ
≥ 1

4δ

and using the fact that

− log |z| ≤ 1− |z| for |z| > 1/2,

the above inequality becomes

1− |φ(z′n)|
1− |z′n|

≤Mrδ.

Since w′
n converges to ω and w′

n = φ(z′n), we may assume that z′n converges to some point
ζ in the closure of the unit disk D. Thus ζ is in φ−1(ω), and by the Julia-Carathéodory
theorem, φ does have an angular derivative at ζ.

This completes the proof of the lemma.

The following lemma connects an asymptotic limit of the product of the generalized
counting functions of φ and ψ, with the existence of the angular derivatives of φ and ψ, and
with the asymptotic limit of the product of the Berezin transforms of τφ,α+2 and τψ,α+2.
Note that as a consequence of Theorem 1.1, the lemma characterizes when the operator
C∗
ψCφ is not compact.

Lemma 3.5. Suppose that φ and ψ are holomorphic self-maps of D. For α > −1, the
following three conditions are equivalent:

(a) lim sup
{Nφ,α+2(w)Nψ,α+2(w)

(log |w|)2α+4

}
> 0 as |w| → 1−;

(b) There exist points ζ1 and ζ2 on the unit circle such that φ has a finite angular
derivative at ζ1, ψ has a finite angular derivative at ζ2, and φ(ζ1) = ψ(ζ2);

(c) lim sup{Bα+2(τφ,α+2)(w)Bα+2(τψ,α+2)(w)} > 0 as |w| → 1−.

Proof. We will prove the equivalence of (a) and (b), then (c)⇒(b), and finally (a)⇒(c).

We will start by showing (a)⇒(b). Let {wn} be a sequence in D such that |wn| → 1−

and

lim sup
n→∞

{Nφ,α+2(wn)Nψ,α+2(wn)

(log |wn|)2α+4

}
> 0. (3.6)

Choose zn = z(wn) ∈ φ−1(wn) and z
′
n = z′(wn) ∈ ψ−1(wn) both of minimum modulus. Set

C(φ) = (1 + |φ(0)|)/(1− |φ(0)|),
C(ψ) = (1 + |ψ(0)|)/(1− |ψ(0)|).

Then by Lemma 3.2 and the inequality (3.6),

C(φ)C(ψ) lim sup
n→∞

( 1− |zn|
1− |φ(zn)|

)α+1( 1− |z′n|
1− |ψ(z′n)|

)α+1

> 0.

Thus

lim sup(1− |zn|)/(1− |φ(zn)|) > 0,

lim sup(1− |z′n|)/(1− |ψ(z′n)|) > 0.
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Hence by the Julia-Carathéodory theorem there exist ζ1 and ζ2 such that φ and ψ have
finite angular derivatives at ζ1 and ζ2 respectively. This proves (b).

We will now prove (b)⇒(a). Set

ω = φ(ζ1) = ψ(ζ2).

Let {wn} be a sequence in φ(D)
∩
ψ(D) converging to ω. Then

lim sup
|w|→1−

{Nφ,α+2(w)Nψ,α+2(w)

(log |w|)2α+4

}
≥ lim sup

n→∞

{Nφ,α+2(wn)Nψ,α+2(wn)

(log |wn|)2α+4

}
. (3.7)

Since φ(ζ1) = ω, there exists

zn = z(wn) ∈ φ−1(wn)

such that the sequence {zn} converges to ζ1. Also since ψ(ζ2) = ω there exists z′n = z′(wn) ∈
ψ−1(wn) such that the sequence {z′n} converges to ζ2. Thus Lemma 3.3 and the inequality
(3.7) imply

lim sup
|w|→1−

{Nφ,α+2(w)Nψ,α+2(w)

(log |w|)2α+4

}
≥ m

( 1− |zn|
1− |φ(zn)|

1− |z′n|
1− |ψ(z′n)|

)α+2

.

Hence by the Julia-Carathéodory theorem we obtain our desired result

lim sup
|w|→1−

{Nφ,α+2(w)Nψ,α+2(w)

(log |w|)2α+4

}
≥ m(|φ′(ζ1)ψ

′(ζ2)|)−(α+2). (3.8)

This proves (a).
The implication (c)⇒(b) is a direct consequence of Lemma 3.4.
In order to finish the proof we will show that (a)⇒(c). By Corollary 6.7 in [11], Nφ,α(w)

has the subharmonic mean value property. Thus we have

Nφ,α+2(w) ≤ Ar

∫
rD
Nφ,α+2(φw(z))dAα+2(z)∫

rD
dAα+2

for some positive constant Ar. So

Bα+2(τφ,α+2)(w) =

∫
D

τφ,α+2(λ)|kw(λ)|2dAα+2(λ)

≥
∫
φw(rD)

τφ,α+2(λ)|kw(λ)|2dAα+2(λ)

≥ Cr
(1− |w|2)α+2

∫
rD

Nφ,α+2(φw(z))dAα+2(z)

≥ Cr
(1− |w|2)α+2

∫
rD
Nφ,α+2(φw(z))dAα+2(z)∫

rD
dAα+2

≥ CrNφ,α+2(w)

Ar(1− |w|2)α+2

for some constant Cr. Here the second inequality follows from the change of variables
λ = φw(z) and the fact that log(1/|λ|) is equivalent to log(1/|w|) for λ ∈ φw(rD), and
log(1/|w|) is equivalent to (1 − |w|2) for w near the unit circle. Thus, for w near the unit
circle,

Bα+2(τφ,α+2)(w)Bα+2(τψ,α+2)(w) ≥ C
Nφ,α+2(w)Nψ,α+2(w)

(log |w|)2α+4
.

The above inequality shows that (a)⇒(c). The proof is complete.
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§4. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. Clearly, the equivalence of (b) and (c) follows
from Lemma 3.5. To finish the proof of this theorem we only need to show the equivalence
of (a) and (c).

We start with (c)⇒(a). Suppose that (c) holds. Then by the equivalence of the statements
(b) and (c) in Lemma 3.5, we see that

lim
|z|→1−

Bα(τφ,α+2)(w)Bα(τψ,α+2)(w) = 0.

By Theorem 2.1, we see that the product Tτφ,α+2Tτψ,α+2
of Toeplitz operators is compact on

L2
a(dAα+2). It follows from Lemma 2.2 that CφC

∗
ψ is compact on L2

a(dAα).

Now we turn to the proof of (a)⇒(c). To do so we need the following lemma from [11].
Lemma 4.1. For 0 < r < 1, there exists δ > 0 such that

∥Cφkw∥2α ≥ m(1− r)2α+2 Nφ,α+2(w)

(− log |w|)α+2
for all 1− δ ≤ |w| ≤ 1.

We will prove the contrapositive of (a)⇒(c), which by Lemma 3.5 is: If ζ1 and ζ2 are two
points on the unit circle such that φ′(ζ1) and ψ

′(ζ2) both exist and φ(ζ1) = ψ(ζ2) = ω, then
CφC

∗
ψ is not compact on L2

a(dAα) for α > −1.
We start by observing that we may assume ζ1 = ζ2 = ω. Let ρ1 and ρ2 be rotations of the

unit disc such that ρi(ω) = ζi for i = 1, 2. Since the composition operators induced ρi for
i = 1, 2 are invertible operators, the compactness of CφC

∗
ψ is equivalent to Cρ1CφC

∗
ψC

∗
ρ2 =

Cφ◦ρ1C
∗
ψ◦ρ2 , and φ ◦ ρ1 and ψ ◦ ρ2 have the desired properties. Thus we will assume that

φ′(ω) and ψ′(ω) exist and φ(ω) = ψ(ω) = ω.
Let kw(z) be the normalized reproducing kernel at the point w ∈ D of L2

a(dAα),

kw(z) = Kw(z)/∥Kw∥ = (1− |w|2)1+α/2/(1− wz)α+2, w ∈ D.

Let {wn} be a sequence in D converging to ω. Since kwn converges weakly to zero as n→ ∞,
it suffices to show that

lim
n→∞

∥CφC∗
ψkwn∥α > 0.

Using the identity C∗
ψKw = Kψ(w) and normalizing Kψ(wn), we obtain

∥CφC∗
ψkwn∥2α = (1− |wn|2)α+2∥CφKψ(wn)∥

2
α

=
( 1− |wn|2

1− |ψ(wn)|2
)α+2

∥Cφkψ(wn)∥
2
α.

Now fix 0 < r < 1 and by Lemma 4.1,

∥Cφkψ(a)∥2α ≥ Nφ,α+2(ψ(wn))

(1− |ψ(wn)|)α+2
cr(wn)

for ψ(wn) sufficiently close to ∂D. Thus

lim
n→∞

∥CφC∗
ψkwn∥2α

is bounded below by

lim
n→∞

cr(wn)
( 1− |wn|
1− |ψ(wn)|

)α+2 Nφ,α+2(ψ(wn))

(1− |ψ(wn)|)α+2
. (4.1)

Let {w′
n} be a sequence in D converging to ω such that φ(w′

n) = ψ(wn). Thus

lim
n→∞

1− |ψ(wn)|
1− |wn|

= |ψ′(ω)|
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and

lim
n→∞

1− |φ(w′
n)|

1− |w′
n|

= |φ′(ω)|.

By Lemma 3.3,

Nφ,α+2(ψ(wn))

(1− |ψ(wn)|)α+2
≥ C

( 1− |w′
n|

1− |φ(w′
n)|

)α+2

.

We can conclude by the inequality (4.1) that

lim
n→∞

∥CφC∗
ψkwn∥2α ≥ C

( 1

|ψ′(ω)φ′(ω)|

)α+2

.

This completes the proof.

§5. Proofs of Theorems 1.2 and 1.3

The proof of Theorem 1.2 is based on the approach Shapiro used in [11] to obtain an
upper estimate of the essential norm of a composition operator on the Hardy and weighted
Bergman spaces. We will obtain an upper estimate of the essential norm of C∗

ψCφ in the more

general setting following Kriete and MacCluer[6] and the presentation in [4]. We consider
the Hilbert spaces H of holomorphic functions with inner product given by, or equivalent
to,

⟨f, g⟩H = f(0)g(0) +

∫
D

f
′
(z)g′(z)H(|z|)dA(z),

where H(r) is non-negative, continuous on (0,1), and integrable on [0, 1). We will call such
a Hilbert space a weighted Dirichlet space. The choice H(r) = | log r2|α+2 or (1 − r2)α+2

gives the weighted Bergman spaces L2
a(dAα) for α > −1, and α = −1 gives the Hardy space

H2(D). For more information on weighted Dirichlet spaces see [4, p.133]. We will need
the following generalized change of variables formula where zj(w) are the points of φ−1(w)
repeated according to multiplicity.

Proposition 5.1.[4,Theorem 2.32, p.36] If g and W are non-negative measurable functions
on D, then ∫

D

g(φ(z))|φ
′
(z)|2W (z)dA(z) =

∫
φ(D)

g(w)
(∑
j≥1

W (zj(w))
)
dA(w).

We also require the following estimates on functions in znH. Let Rn is the orthogonal
projection of H onto znH.

Proposition 5.2.[4,Proposition 3.15, p.133] Suppose f ∈ H. Then for each z ∈ D,

(i) |(Rnf)(z)| ≤
( ∞∑
k=n

|z|2k

β(k)2

)1/2

∥f∥H, and

(ii) |(Rnf)′(z)| ≤
( ∞∑
k=n

k2|z|2k−2

β(k)2

)1/2

∥f∥H,

where β(k) = ∥zk∥H .
We will use the following general formula for the essential norm of a linear operator on a

Hilbert space which we present in terms of the operator C∗
ψCφ acting on the Hilbert space

H.
Proposition 5.3. Suppose C∗

ψCφ is a bounded operator on H. Then

∥C∗
ψCφ∥e,H = lim

n→∞
∥RnC∗

ψCφRn∥H.
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The proof of Proposition 5.3 follows directly from the proof of Proposition 5.1 in [11].

We now start our proof of the following upper estimate on ∥C∗
ψCφ∥e,H when C∗

ψCφ is
bounded on the general weighted Dirichlet space H. We will show that

∥C∗
ψCφ∥2e,H

≤ lim sup
|φ(z)|→1 or |ψ(z)|→1

∑
H(|zj(φ(z))|)

∑
H(|wj(ψ(z))|)

H(|φ(z)|)H(|ψ(z)|)
.

We start by applying Proposition 5.3 and representing the norm using the inner product:

∥C∗
ψCφ∥e,H = lim

n→∞
∥RnC∗

ψCφRn∥H
= lim

n
sup

f,g∈(H)1

|⟨CφRnf, CψRng⟩H|,

where (H)1 is the unit ball of H. By fixing f and g in (H)1, we see that |⟨CφRnf, CψRng⟩H|
is bounded by

|Rnf(φ(0))Rng(ψ(0))|+
∫
D

|(Rnf ◦ φ)′(z)(Rng ◦ ψ)′(z)|H(|z|)dA(z). (5.1)

Since Rnf and Rng are in (H)1, Proposition 5.2 implies that

|Rnf(φ(0))| ≤
( ∞∑
k=n

|φ(0)|2k

β(k)2

)1/2

,

|Rng(ψ(0))| ≤
( ∞∑
k=n

|ψ(0)|2k

β(k)2

)1/2

approach zero as n tends to infinity. Thus we need only concern ourselves with the integral
in Equation (5.1).

Now fix 0 < r < 1 and split the integral in Equation (5.1) into two parts: one over the
set D \ {E1 ∪ E2} where E1 = φ−1(D \ rD) and E2 = ψ−1(D \ rD) and the other over its
complement. Let I represent the integral over D \ {E1 ∪ E2}.

First we will show that the integral I tends to zero as n tends to infinity. To estimate I
we use successively the Cauchy-Schwartz inequality and Propositions 5.1 and 5.2 to obtain
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I =

∫
D\{E1∪E2}

|(Rnf ◦ φ)′(z)(Rng ◦ ψ)′(z)|H(|z|) dA(z)

≤
(∫

D\E1

|(Rnf ◦ φ)′(z)|2H(|z|) dA(z)
)1/2

·
(∫

D\E2

|(Rng ◦ ψ)′(z)|2H(|z|) dA(z)
)1/2

=
(∫

φ(D\E1)

|(Rnf ◦ φ)′(w)|2
(∑
j≥1

H(|zj(w)|)
)
dA(z)

)1/2

·
(∫

ψ(D\E2)

|(Rng ◦ ψ)′(w)|2
(∑
j≥1

H(|wj(w)|)
)
dA(z)

)1/2

=
(∫

φ(D)∩rD
|(Rnf ◦ φ)′(w)|2

(∑
j≥1

H(|zj(w)|)
)
dA(z)

)1/2

·
(∫

ψ(D)∩rD
|(Rng ◦ ψ)′(w)|2

(∑
j≥1

H(|wj(w)|)
)
dA(z)

)1/2

≤ sup
|w|≤r

|(Rnf ◦ φ)′(w)| sup
|w|≤r

|(Rng ◦ ψ)′(w)|

·
(∫

φ(D)

(∑
j≥1

H(|zj(w)|)
)
dA(z)

)1/2(∫
ψ(D)

(∑
j≥1

H(|wj(w)|)
)
dA(z)

)1/2

.

Using Proposition 5.2 (i) and the fact that f and g are in (H)1, we see that the last expression
is bounded by( ∞∑

k=n

k2

β(k)2
r2k−2

)(∫
D

|φ′(z)|2H(|z|) dA(z)
)1/2(∫

D

|ψ′(z)|2H(|z|) dA(z)
)1/2

,

which in turn is bounded by a multiple of( ∞∑
k=n

k2

β(k)2
r2k−2

)
(∥φ∥H∥ψ∥H − |φn(0)||ψn(0)|).

Now as n approaches infinity, this last expression tends to zero. Thus we have shown

∥C∗
ψCφ∥e,H ≤ lim

n
sup

f,g∈(H)1

∫
E1∪E2

|(Rnf ◦ φ)′(z)(Rng ◦ ψ)′(z)|H(|z|)dA(z).

This is bounded by

sup
f,g∈(H)1

∫
E1∪E2

|(f ◦ φ)′(z)(g ◦ ψ)′(z)|H(|z|)dA(z).

To finish the proof, set

γr = sup
E1∪E2

Q(z),

where

Q(z) =
(∑H(|zj(φ(z))|)

∑
H(|wj(ψ(z))|)

H(|φ(z)|)H(|ψ(z)|)

)1/2

.
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We have

∥C∗
ψCφ∥e,H ≤ sup

∫
E1∪E2

|(f ◦ φ)′(g ◦ ψ)′|H(|z|)dA(z)

≤ γr sup

∫
D

|(f ◦ φ)′(g ◦ ψ)′|H(|z|)
Q(z)

dA(z)

≤ γr sup
(∫

D

|(f ◦ φ)′|2 H(|φ(z)|)∑
H(|zj(φ(z))|)

H(|z|)dA(z)
)1/2

·
(∫

D

|(g ◦ ψ)′|2 H(|ψ(z)|)∑
H(|wj(ψ(z))|)

H(|z|)dA(z)
)1/2

,

where the last line follows from the Cauchy-Schwarz inequality.
Now we will calculate the two integrals in the last expression above. Because the calcu-

lations are similar we will only explicitly compute the first integral. To calculate the first
integral, use Proposition 5.1 and then recognize the result as the norm of f in H,∫

D

|(f ◦ φ)′(z)|2 H(|φ(z)|)∑
H(|zj(φ(z))|)

H(|z|)dA(z)

=

∫
D

|f ′(w)|2 H(|w|)∑
H(|zj(w)|)

∑
H(|zj(w)|)dA(z)

=

∫
D

|f ′(w)|2H(|w|)dA(w)

≤ ∥f∥2H.
Similarly ∫

D

|(g ◦ ψ)′(z)|2 H(|ψ(z)|)∑
H(|wj(ψ(z))|)

H(|z|)dA(z) ≤ ∥g∥2H.

Since ∥f∥H = ∥g∥H = 1, we have arrived at the desired upper estimate on the essential
norm,

∥C∗
ψCφ∥e,H ≤ lim

r→1
γr.

In order to prove Theorem 1.2, consider the weight

Hα+2(|z|) = (1− |z|2)α+2/(α+ 2).

Since ∥C∗
ψCφ∥e,α ≤ ∥C∗

ψCφ∥e,Hα+2 , a proof of which can be found in [10], we obtain our
desired estimate

∥C∗
ψCφ∥2e,α ≤ lim sup

{Nφ,α+2(φ(z))Nψ,α+2(ψ(z))

(log |φ(z)| log |ψ(z)|)α+2

}
as |φ(z)| → 1− or |ψ(z)| → 1−.

This completes the proof.
We now turn to the proof of Theorem 1.3. The equivalence of (b) and (c) and the

equivalence of (c) and (d) are established by Lemma 3.1, and Theorem 1.2 immediately
proves (b)⇒(a). Thus to finish the proof of Theorem 1.3 we only need to prove (a)⇒(c).
We start with the following technical lemmas.

Lemma 5.1. Suppose φ is a holomorphic self-map of D. If φ(1) = 1 and φ′(1) = 1,
then lim

r→1−
⟨Cφkr, kr⟩ = 1.

Proof. Let 0 < r < 1 and using the fact that

⟨Cφkr, kr⟩α = ⟨Kr ◦ φ,Kr⟩α(1− r2)α+2,



446 CHIN. ANN. MATH. Vol.24 Ser.B

we see that

1

⟨Cφkr, kr⟩α
=

(1− rφ(r)

1− r2

)α+2

=
1

(1 + r)α+2

(1− φ(r) + φ(r)− rφ(r)

1− r

)α+2

=
1

(1 + r)α+2

(1− φ(r)

1− r
+ φ(r)

)α+2

.

Since φ(1) = 1 and φ′(1) = 1, we see that lim
r→1−

⟨Cφkr, kr⟩α = 1 and this completes the

proof.

Lemma 5.2. Suppose ψ is a holomorphic self-map of D. If ψ has a finite angular
derivative at 1, then

lim
r→1−

∥C∗
ψkr∥α =

1

|ψ′(1)|1+α/2
.

Proof. Since C∗
ψKr = Kψ(r) and ψ

′(1) exist, we see by the Julia-Carathéodory theorem
that

lim
r→1−

∥C∗
ψkr∥α = lim

r→1−

( 1− r2

1− |ψ(r)|2
)1+α/2

=
( 1

|ψ′(1)|

)1+α/2

.

This completes the proof.

Lemma 5.3. Suppose φ is a univalent self-map of D. If φ(1) = 1, φ′(1) = 1, and |φ(ζ)|
is less than 1 on ∂D \ {1}, then

∥Cφ∥e,α ≤ 1.

Proof. In [10] and [11] it is shown, for α ≥ −1, that

∥Cφ∥2e,α ≤ lim sup
Nα+2(w)

(log 1
|w| )

α+2
as |w| → 1−.

For φ univalent this simplifies to

∥Cφ∥2e,α ≤ sup
ζ∈∂D

1

|φ′(ζ)|α+2
.

Since φ only has a finite angular derivative at 1, we see that

∥Cφ∥2e,α ≤ sup
ζ∈∂D

1

|φ′(ζ)|α+2
=

1

|φ′(1)|α+2
= 1.

This completes the proof.

We will prove the contrapositive of (a)⇒(b), in Theorem 1.3, which by Lemma 3.1 is

Theorem 5.1. Suppose φ and ψ are univalent self-maps of the disc and there exists a
point ζ on the unit circle such that φ and ψ have finite angular derivatives at ζ. Then C∗

ψCφ
is not compact on L2

a(dAα) for α > −1.

Proof. Let ζ ∈ ∂D. Without loss of generality, we may assume that ζ = 1 so that φ and
ψ have an angular derivative at the point 1. We may also assume that φ(1) = 1, φ′(1) = 1,
and ∥Cφ∥e,α ≤ 1.

These reductions are accomplished by considering the operator

C∗
ψC

∗
ρCρCφCβCτCγ = C∗

ψ◦ρCγ◦τ◦β◦φ◦ρ,
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where

ρ(z) = ζ z a rotation of D mapping point 1 to ζ,

β(z) = φ(ζ) z a rotation of D mapping φ(ζ) to the point 1,

τ(z) =
(1 + s)z + (1− s)

(1− s)z + (1 + s)
where s = 1/(β ◦ φ ◦ ρ)′(1),

γ(z) =
1 + z

3− z
.

The mapping τ is a hyperbolic automorphism of D such that

(τ ◦ β ◦ φ ◦ ρ)′(1) = 1.

Finally γ is a parabolic non-automorphism of D with fixed point 1. Since γ is a linear
fractional non-automorphism, it does not map ontoD. Thus it only has an angular derivative
at the point 1, which implies that γ ◦ τ ◦β ◦φ ◦ρ only has an angular derivative at the point
1. Since γ ◦ τ ◦ β ◦ φ ◦ ρ is univalent, we see by Lemma 5.3 that

∥Cγ◦τ◦β◦φ◦ρ∥e,α ≤ 1.

Hence the inducing maps ψ ◦ ρ and γ ◦ τ ◦ β ◦ φ ◦ ρ have the desired properties, and if
C∗
ψ◦ρCγ◦τ◦β◦φ◦ρ is not compact, then clearly C∗

ψCφ is not compact. We will assume that φ
and ψ have the desired properties.

Since the normalized reproducing kernels kw(z) converge weakly to zero as |w| → 1−, it
will suffice to show that

lim sup
r→1−

∥C∗
ψCφkr∥α > 0,

in order to conclude that C∗
ψCφ is not compact.

We now add and subtract the term ⟨Cφkr, kr⟩αC∗
ψkr to C∗

ψCφkr, and then by applying
the reverse triangle inequality we obtain

∥C∗
ψCφkr∥α = ∥⟨Cφkr, kr⟩αC∗

ψkr + C∗
ψ(Cφkr − ⟨Cφkr, kr⟩αkr)∥α

≥ |⟨Cφkr, kr⟩α|∥C∗
ψkr∥α − ∥C∗

ψ∥α∥Cφkr − ⟨Cφkr, kr⟩αkr∥α. (5.2)

By Lemmas 5.1 and 5.2, we see that

lim
r→1−

|⟨Cφkr, kr⟩α|∥C∗
ψkr∥α = 1/|ψ′(1)|1+α/2.

Thus we only need to show that

lim
r→1−

∥Cφkr − ⟨Cφkr, kr⟩αkr∥α = 0

to finish the proof.

Expanding the norm by using the inner product, we see that

∥Cφkr − ⟨Cφkr, kr⟩αkr∥2α
= ∥Cφkr∥2α + |⟨Cφkr, kr⟩α|2 − 2Re⟨Cφkr, kr⟩α⟨Cφkr, kr⟩α
= ∥Cφkr∥2α − |⟨Cφkr, kr⟩α|2.

By the reduction at the beginning of the proof ∥Cφ∥2e,α ≤ 1 and since

lim sup
r→1−

∥Cφkr∥2α ≤ ∥Cφ∥2e,α ≤ 1,

lim
r→1−

⟨Cφkr, kr⟩α = 1,
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we see that

lim sup
r→1−

∥Cφkr − ⟨Cφkr, kr⟩αkr∥α ≤ ∥Cφ∥2e,α − 1 = 0.

Thus

lim
r→1−

∥Cφkr − ⟨Cφkr, kr⟩αkr∥α = 0.

Therefore

lim sup
r→1−

∥C∗
ψCφkr∥α >

1

|ψ′(1)|1+α/2
.

Hence C∗
ψCφ is not compact.
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