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Abstract

The authors obtain function theoretic characterizations of the compactness on the standard
weighted Bergman spaces of the two operators formed by multiplying a composition operator
with the adjoint of another composition operator.
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§1. Introduction

Let ¢ : D — D be a holomorphic self-map of the unit disk D = {z : |2| < 1}. The
composition operator C, induced by ¢ is the linear map on the space of all holomorphic
functions on the unit disc defined by C,(f) = f o ¢. By the Littlewood Subordination
Theorem!” the composition operator C, is bounded on the standard weighted Bergman
spaces L2(dA,). In this paper we consider the compactness of C’WC;Z or C:[}Cy, where C’j; is
the adjoint of Cy, on L2(dA,).

For a > —1, let dA,, denote the normalized measure on D defined by

dAy(2) = (= log |z|?)*dA(2) /T (a + 1).

The standard weighted Bergman space L2 (dA,) is the Hilbert space of holomorphic functions
on D that are also in L?(dA,) with inner product given by

(f. g)a = /D F(2)g(=)dAa(2).

As pointed out in [11], in defining the space L2?(dA,), the measure dA,(z) is frequently
replaced by

(1= [2[*)*dA(2)/T(a +1)
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resulting in the same space and an equivalent norm. We let &« = —1 denote the classical
Hardy space H?. Since weighted Bergman spaces are Hilbert spaces, the adjoint Cy is a
bounded operator on L2(dA,).

The main goal of this paper is to provide a function theoretic characterization of the
inducing maps ¢ and ¢ for which the operators C,,C}, and C};C,, are compact on L2(dA,).

For univalent inducing maps, the compactness of C,Cj, and C7,C,, has been characterized
on the Hardy space in [3]. In this paper the same questions are addressed on the weighted
Bergman spaces. Similar methods of proof yield even more complete results than those
obtained on the Hardy space.

In order to outline our main results we start with some background material. The general
counting function N, 42 defined for o > —1 is

Npoto(w)= > (=loglz)**?,  we@(D)\{p(0)},
zEp~ 1 (w)

and Ny q+2(w) = 0 if w is not in p(D). The points of the inverse image ¢! are regarded

as being repeated according to their ¢-multiplicity. Note that when o = —1 we recover the
Nevanlinna counting function for the Hardy space and when o« = 0 we have the counting
function for the classical Bergman space.

We say the angular derivative of ¢ exists at a point ¢ € D if there exists w € 0D such
that the difference quotient (¢(z) —w)/(z —(¢) has a (finite) limit as z tends non-tangentially
to ¢ through the unit disc. B. D. MacCluer and J. H. Shapiro®! show that C,, is compact on
L2(dA,) for a > —1 if and only if ¢ does not have a finite angular derivative. This angular
derivative criterion completely characterizes the compactness of a composition operator on
the weighted Bergman spaces. They also show that the angular derivative criterion fails on
the Hardy space. The seminal results on compact composition operators in [11] completely
characterizes compactness of a composition operator on the Bergman and the Hardy spaces
by proving that a composition operator, C,, is compact on L2(dA,) for a > —1 if and only
if

lim {Ng,ay2(w)/ (=log|w])**?} = 0.
|w|—1—

In [3] the compactness of C,C},, for general inducing maps, is not completely characterized
on HZ2.

Our main result completely characterizes the compactness of C,Cy, on the Bergman
spaces L2(dA,) in terms of both the angular derivative and general counting functions of
the inducing maps:

Theorem 1.1. Suppose that ¢ and 1 are holomorphic self-maps of D. Then, for a > —1,
the following three conditions are equivalent:

(a) C,Cy is compact on L7 (dAy);

(0) | Jim (N g2 Ny rs2w) (log [w]) 224} = 0

(c) There do not exist points (1 and (o on the unit circle such that ¢ has a finite angular
derivative at (1, ¥ has a finite angular derivative at (s, and ((1) = ¥(2).

Our main result for the operator C;C, on the weighted Bergman spaces is a sharp upper
bound on the essential norm. In [3], for general inducing maps, only a sufficient condition
for compactness on H? is proved.
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Theorem 1.2. Suppose that ¢ and i are holomorphic self-maps of D. Then, fora > —1,

* 2 . N«p,oz 2(<P(Z))N ,Q 2(1/’('3))
I05C i < Hmswe =0 egTo )=+ )

as |p(z)| = 17 or |9(z)| — 1.
An immediate corollary of Theorem 1.2 is that if o > —1,

SN EANSIECILANSTIE)
(log |¢(2)| log [ (2)[)*+2

then C},C, is compact on L7 (dA,).

Finally, if ¢ and ¢ are univalent functions we completely characterize the compactness
of C7,Cy, on the Bergman spaces L2(dA,).

Theorem 1.3. Suppose ¢ and 1) are univalent self-maps of D. Then, for a > —1, the
following three conditions are equivalent:

(a) C;,C, is compact on L2(dAy) for o> —1;
" (Ve eOWNowalby_,
le(z)=1-or ()| =1 L (log |p(2)|log [¢(2)[)*+?
(¢) lim (1|2 = 0;

=1 (L= Jo(z))A = [o(z)]) 7

(d) For each ¢ on the unit circle, either ¢ or ¢ cannot have finite angular derivative at

F=0 as Jp(@) 217 or () -1,

C.

The paper is organized as follows. In Sections 2 and 3 we develop the results used to
prove the three main theorems. Specifically, in Section 2 we develop a connection between
the operator C,,C;; on L2(dA,) and the product of Toeplitz operators on L2(dA,+2). While
in Section 3 we derive two connections between the angular derivatives of ¢ and v and an
asymptotic limit of the their generalized counting functions. In Section 4 we prove Theorem
1.1 and in Section 5 we prove Theorems 1.2 and 1.3.

§2. Composition Operators via Toeplitz Operators

For functions f(z) = 3 f(n)z" belonging to L2(dA,), a > —1, it is well known that the
norm of f has the series representation

2 2 = |f(n)
- dA, — _ 2.1
I = [ eRit. =3 Ci 2.1)
As pointed out in [8], there is a natural connection between L2(dA,) and L2(dA,+2) given

by
115 = 1A 15 for feLi(Aa) (2.2)

Let P, denote the orthogonal projection from L?(dA,) onto L2(dA,). For a function u
in L?(dA,), the Toeplitz operator T, with symbol v is the operator on L2(dA,) defined by

Tuf:Pa(uf) for fe Li(dAoc)'

For each w € D let ky,(2) be the normalized reproducing kernel of L2 (dA,,). For simplicity
of notation we use k,(z) for different normalized reproducing kernels k% (z) of L2(dA,).
Normalized reproducing kernels play a crucial role in the study of compact operators in that
kw(z) converges weakly to zero as |w| — 17. In addition, it follows from [11] that C,, is
compact on L2(dA,) if and only if ||Cuky| — 0 as w — 17,
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The Berezin transform B, (f)(w) is defined by

Bo(f)(w) = (fkw,kw)a for fe Lz(Aa)'

The Berezin transform is useful in studying compact Toeplitz operators on the Bergman
spacel’l. As in [3] and [13], using the inner product formula and local estimates of Toeplitz
operators on the Bergman space L2(dA,), we obtain the following result, which we state
here without proof.

Theorem 2.1. Suppose that f and g are bounded on D\ rD for some 0 <r < 1. If

lim  Bo(f)(2)Ba(g)(z) =0,
|z]—1

then T¢T, is compact on L2(dA,).

In [14] it is shown that if »(0) = O then there is a unitary operator U : zL2(dA,) —
L2(dAgy2) defined by

Uf(z) = f'(2)

such that UC,U* = D, where D,, is the weighted composition operator on L2(dAq+2)
defined by

Dy f(z) = f(e(2)¢(2)-
Moreover D D, is the Toeplitz 1"

o,at2)
Toa(W) = N o(w)/(log 1/]w])®.

Proposition 6.3, in [11], shows that 7, o(w) is bounded on D \ rD for some 0 < r < 1.

Following the approach in [14], we decompose L2(dA,), into € & zL2(dA,), where €
consists of constants. Define the operator U : L2(dA,) — € @® L2(dAn+2) by

Ul f)=cadf.

It is easy to check that U is an unitary operator. For z € D, let 93, denote the operator on
L2(dA,) given by

where

B.f = f(z)
Since 9, is a rank-one operator, we will view it as a compact operator from L2(dA,) to
€. The proof of the following lemma follows directly from the proof of Lemma 5.5 in [3].
Lemma 2.1. Suppose ¢ is a holomorphic self-map of D. Then
«_ |1 PBoo
UC,U* = { 0o D, |’
where D, is the weighted composition operator on L2(dAay2) given by

Dy f(2) = f(p(2))¢'(2)-

We now state the connection between the compactness of the operator 77, |, 1%, ..,
L2(dA,+2) and compactness of the operator C,Cy, on L2(dA,), without proof as it follows
from the proof of Theorem 5.6 in [3].

Lemma 2.2. If T, T is compact on L2(dA,+2), then C,Cy, is compact on

poat2 T Ty, at2
L2(dA,),

on

§3. Generalized Counting Function and Angular Derivatives
The Julia-Carathéodory Theorem![* 11:12] states that a holomorphic self-map of the disc

© has a finite angular derivative at ¢ € 9D if and only if
liminf (1 - [p(2)])/(1 - |2]) < o,
z—C
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where z is allowed to tend unrestrictedly to ¢ through the unit disk.
Lemma 3.1. Suppose that ¢ and ¥ are univalent self-maps of D. For o > —1, the
following are equivalent:

i No,a+2(0(2)) Ny,at2(¢(2))
lim su P, at2 P, )
(a) W(Z)|_>1—moi |£(z)|_>1— { (log \(p(z)\ log ‘w(z)|)a+2 } > 0;
2
(b) limsup (1 —1z]) - 0:

sl=1- (L= le())(A = [¥(2)])

(¢c) There exists a point { on the unit circle such that ¢ and 1 have finite angular
derivatives at C.

The proof of Lemma 3.1 follows from the univalence of the inducing maps and the Julia-
Carathéodory theorem. By Theorem 1.3 the statements in this lemma are equivalent to the
univalently induced operator C,Cj not being compact on L2(dAy).

For a general inducing map the key to characterize the compactness of a composition
operator on L2(dA,) in terms of the inducing maps’ angular derivative is the following two
results from [11].

Lemma 3.2. Suppose w € D\ {0,0(0)} and 2z € o~ (w) is of minimum modulus. Then

N¢,a+2(w) < N%l(w) ( 1—1z] )oHrl
(log 1/[w[)**2 = log 1/|w| \1 —[¢(2)]
Lemma 3.3. Suppose w € D\ {0,p(0)} and z € o~ (w). Then there exists a positive
constant m, depending only on «, such that
m( 1—|z| )a+2 - Ny at2(w) N
1= (2] (log1/|w])+
In the definition of the Berezin transform B,(f), replace the measure dA,(z) by the
measure (o + 1)(1 — |2]?)*dA(z). Then the Berezin transform becomes

Ba(f)(2) = (a +1) / (L= |21 — Juwl*)"

D |1 _ Z@|4+2a

fw)dA(z).
By a change of variables, we have

Ba(f)(2) = /D f 0 9 (w)dA(w),

where ¢, (w) is the Mobius transformation ¢, (w) = 1Z fU .
—Zw
For z,w € D, define the pseudohyperbolic metric
z—w
plz,w) = lpa(w)| = |7

For any z € D and 0 < r < 1 define the pseudohyperbolic disk
D(z,r)={w € D : p(z,w) < r}.
It is well known that D(z,r) is actually a (Euclidean) disk with center [(1—72)/(1—12|z]?)]z
and radius r[(1—|2]?)/(1 —r?|z|?)]. So when r is fixed, if z converges to a point 7 in the unit
circle, then the entire pseudohyperbolic disc D(z,r) converges to n. Moreover, for fixed r,
A(D(z,1)) = (1= |2]*) 72,
1

‘m‘ ~(1—]2?)% for we D(zr). (3.1)
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Here the symbol ~ indicates that either quantity is bounded by a constant multiple of the
other as z and w vary. For more details about the Berezin transform and the pseudohyper-
bolic disc, see [5].

We will use the following lemma to connect an asymptotic limit of the product of the
Berezin transforms of 7, o and 7 , with the existence of the angular derivatives of ¢ and
.

Lemma 3.4. Suppose ¢ is a holomorphic self-map of D and o« > —1. If there exists w
on the unit circle such that

lim Baya(Tpav2)(w) >0,

w—rw

then there exists ( € p~(w) such that ¢'(() exists and is finite.
Proof. Let § > 0. Let {w,} C D be a sequence converging to w € 9D, such that

Ba+2(7¢,a+2)(wn) > = (32)

for some n sufficiently large.

By Littlewood’s Inequality |7, o+2(w)| is bounded near the boundary of the unit disc,
so let 0 < s < 1 and M be such that |7, o42(w)| is bounded by M for s < |w| < 1. Fix r
sufficiently close to 1 such that

1
M|D\rD| < —. .
D\rD| < - (33)

Since the integral of
Te,a(w)(1 — |wn|2)a+2/‘1 - wnw|2a+6
over sD is bounded by
(1 — fwn?)>*?
|1 — w,s|?>t6

/ Torms2 (W)dAn 42(w),
sD

which tends to zero as |w,| — 17, we choose n sufficiently large so that

(1~ Juwa[?)+2 1
[ ) et A ga(o) < o (3.4)

Now split the Berezin transform

Ba+2(7—w,a+2)(wn) = /D To,a+2 © Puw, (A)dAai2(N)

into the sum of three integrals over the regions D, (D\ rD) N, (D\ sD), and (D\rD)N
©w, ($D). Then solving for the integral over rD and using the inequalities (3.2)—(3.4), we
obtain

1
/ Tp,a+2 © ‘pwnO‘)dAa-i-Q(/\) > %

rD

Thus

frD Ngo,a+2 © P, ()\)dAoHr?()‘) > 1

0w 2 (39

By Lemma 3.2, there is a point w!, in the pseudohyperbolic disc D(w,,, ) such that

L 2vad2 1—[z] ott
max Ny ai2(w) < C(1 —|wy,|?) sup ; .
weD (wnp,r) z€p—1(wl) 1- |wn|
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Therefore the inequality (3.5) simplifies to

1— a+1
sup C(A) >

z€p~t(wl) 1- |w'/n|

1
26
Since w!, is in D(wy,r), w!, also converges to w. Choosing 2/, € ¢~*(w!,) such that
1— |2/ |\t 1— |z \ett 1 _ 1
o(A=y sy o)L L
1— || ceoMury \T— ] 15 - 16
and using the fact that
—log|z| <1—|z| for |z]>1/2,

the above inequality becomes

Since w/, converges to w and w!, = p(z!,), we may assume that z/, converges to some point
¢ in the closure of the unit disk D. Thus ¢ is in ¢~ !(w), and by the Julia-Carathéodory
theorem, ¢ does have an angular derivative at (.

This completes the proof of the lemma.

The following lemma connects an asymptotic limit of the product of the generalized
counting functions of ¢ and 1, with the existence of the angular derivatives of ¢ and 1, and
with the asymptotic limit of the product of the Berezin transforms of 7, o4+2 and 7y oyo.
Note that as a consequence of Theorem 1.1, the lemma characterizes when the operator
C,Cy is not compact.

Lemma 3.5. Suppose that ¢ and 1 are holomorphic self-maps of D. For o > —1, the
following three conditions are equivalent:

. N, w)N, w _

(a) hmsup{ Waaiéhlp;paif( )} >0 as |w| —17;

(b) There exist points (1 and (2 on the unit circle such that ¢ has a finite angular
derivative at 1, ¥ has a finite angular derivative at (o, and p(¢1) = ¥((2);

(¢) Tmsup{ Ba2(Tpar2) () Basa(rpasa)@)} > 0 as |uw| - 17,

Proof. We will prove the equivalence of (a) and (b), then (¢)=(b), and finally (a)=>(c).

We will start by showing (a)=-(b). Let {w,} be a sequence in D such that |w,| — 1~
and

lim sup { Nog.at2(Wn) Ny.at2(wn) } > 0. (3.6)

n—00 (log )2+
Choose z, = z(w,) € ¢~ (w,) and 2/, = 2’'(w,) € ¥~ (w,) both of minimum modulus. Set
Cle) = L+ le(0)))/(1 = e (0)]),
C) = (1 +1£0))/(1 = [ (0)]).
Then by Lemma 3.2 and the inequality (3.6),

_ L—zn| \otL 1—|z| yot?
ccwtmae (—rey) (i) >0

Thus
limsup(1 — |zn|)/(1 = |¢(zn)]) > 0,
limsup(1 — |24])/(1 — [(=)]) > 0.
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Hence by the Julia-Carathéodory theorem there exist (; and (5 such that ¢ and 1 have
finite angular derivatives at ¢; and (s respectively. This proves (b).
We will now prove (b)=(a). Set
w = ¢(C1) = P(C2).
Let {w,} be a sequence in ¢(D) ()¢ (D) converging to w. Then

No,a+2(w) Ny at2(w) . Ny.ar2(Wn) Ny a2 (wn)
’ ’ >1 : ’ . 3.7
{ (log |w|)2a+4 } = lnm_>801ip{ (log |wn|)2a+4 } ( )

lim sup
Jw|—1—

Since ¢((1) = w, there exists
Zn = z(wn) € w_l(wn)
such that the sequence {z,} converges to (3. Also since ¥((2) = w there exists z/, = 2’ (wy,) €

¥~ 1(w,) such that the sequence {z/,} converges to (3. Thus Lemma 3.3 and the inequality
(3.7) imply

lim sup
Jw]—1—

N, ,a+2(w)Nw,a+2(w) 1- ‘Zn| 1- |Z;z‘ at2
G ez e il G e ) M

Hence by the Julia-Carathéodory theorem we obtain our desired result

Ny o Np o o
limsup { =2 e R ) ] (3.8)

This proves (a).

The implication (¢)=-(b) is a direct consequence of Lemma 3.4.

In order to finish the proof we will show that (a)=-(c). By Corollary 6.7 in [11], Ny o(w)
has the subharmonic mean value property. Thus we have

Nap,cx+2 (Sow (Z))dAa—i-Z (Z)
frD dAO‘+2

Ncp,a+2(w) S Ar fTD
for some positive constant A,.. So

Bat2(Tpatr2) (W) = | Tpara(N)]kw(N)*dAgs2(N)

S—

%

[ a0 0)
Pw (TD)

= Mc;z)w / DN a+2(Pw(2))dAat2(2)

> C, frD Ncp,a+2(90w(z))dAa+2(Z)
T (1= |w]?)at2 frD dAa+o
CrNp.ata(w)
AL = |wf?)et?
for some constant C,.. Here the second inequality follows from the change of variables
A = @u(z) and the fact that log(1/|)A|) is equivalent to log(1/|w]|) for A € ¢, (rD), and

log(1/|w]) is equivalent to (1 — |w|?) for w near the unit circle. Thus, for w near the unit
circle,

th,a+2 (w)Nw,a-‘rQ (’UJ)
Bot2(Tp,a+2) (W) Baga(Ty,at2)(w) > C (log [w])2a+1 :

The above inequality shows that (a)=(c). The proof is complete.
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¢4. Proof of Theorem 1.1

In this section we will prove Theorem 1.1. Clearly, the equivalence of (b) and (c) follows
from Lemma 3.5. To finish the proof of this theorem we only need to show the equivalence
of (a) and (c).

We start with (c)=-(a). Suppose that (c) holds. Then by the equivalence of the statements
(b) and (c) in Lemma 3.5, we see that

|Z|h—r>q* Ba(Tp,a+2)(w) Ba(Ty,at2)(w) = 0.
By Theorem 2.1, we see that the product T+, , T, .., of Toeplitz operators is compact on
L2(dAqy2). Tt follows from Lemma 2.2 that C,C, is compact on L2 (dAq).

Now we turn to the proof of (a)=-(c). To do so we need the following lemma from [11].

Lemma 4.1. For 0 <r <1, there exists 6 > 0 such that
Ny o
w forall 1-6<]|w|<1.

(—log [w])+?

We will prove the contrapositive of (a)=-(c), which by Lemma 3.5 is: If (; and (s are two
points on the unit circle such that ¢'(¢1) and 9’ (¢2) both exist and ¢((1) = ¥({2) = w, then
Cy,Cy, is not compact on L2(dA,) for a > —1.

We start by observing that we may assume (; = (o = w. Let p; and ps be rotations of the
unit disc such that p;(w) = {; for i = 1,2. Since the composition operators induced p; for
@ = 1,2 are invertible operators, the compactness of C,Cy is equivalent to C,, C,C;C), =
Cwqucpy and ¢ o p; and 9 o ps have the desired properties. Thus we will assume that
¢ (w) and ¢’ (w) exist and p(w) = P(w) = w.

Let k., (z) be the normalized reproducing kernel at the point w € D of L2(dA,),

kuw(2) = Ku(2)/||Kull = (1 = Jw)7/2/(1 —w2)**2, w e D.

Let {wy,} be a sequence in D converging to w. Since k,,, converges weakly to zero as n — oo,
it suffices to show that

ICokulle = m(1 —r)*+2

nhﬁrr;() 1CoCkw, lla > 0.
Using the identity Cj, Ky = Ky () and normalizing Ky, ), we obtain
1CoCrikw, N1 = (1 = [wal*)* 2 Coo Kpuny I

[}

1 —[w,|? ye+t? 2
= (W> 1Cok w1

Now fix 0 < r < 1 and by Lemma 4.1,

Nw,a+2(7/f(wn)) c (wn)

1CoEpal2 > S
el = (1 (w,)[)o+2

for ¢(wy,) sufficiently close to OD. Thus
T (O Ck, I
is bounded below by

i ()

( 1 — |wy| )(H_Q N@7a+2(w(wn)
L=[g(wa)l/ (1= [p(wn)])>+2
Let {w],} be a sequence in D converging to w such that p(w!],) = ¥ (w,). Thus

lim 1- W}(wn)‘ — ‘¢/(w)|

n—oo 1 — |wn|
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and
1 /
lim 1 Jep(wn)|

ne 1 [u

= ¢’ ().
By Lemma 3.3,

N, 1—|wh| yot2

v,a+2(¢(wz)+>2 > o [ )
(1 = [¥(wa)]) 1= [eo(wy,)]

We can conclude by the inequality (4.1) that

1 a+2
Jim [[C,CY, K, |12 > (W) :
This completes the proof.

§5. Proofs of Theorems 1.2 and 1.3

The proof of Theorem 1.2 is based on the approach Shapiro used in [11] to obtain an
upper estimate of the essential norm of a composition operator on the Hardy and weighted
Bergman spaces. We will obtain an upper estimate of the essential norm of C,C,, in the more
general setting following Kriete and MacCluerl®! and the presentation in [4]. We consider
the Hilbert spaces H of holomorphic functions with inner product given by, or equivalent
to,

. ghw = / f ()7 DH(2])dA(2),

where H(r) is non-negative, continuous on (0,1), and integrable on [0,1). We will call such
a Hilbert space a weighted Dirichlet space. The choice H(r) = |logr?|**2 or (1 — r?)+2
gives the weighted Bergman spaces L2(dA,) for a > —1, and a = —1 gives the Hardy space
H?(D). For more information on weighted Dirichlet spaces see [4, p.133]. We will need
the following generalized change of variables formula where z;(w) are the points of ¢~ (w)
repeated according to multiplicity.
Proposition 5.1.[4 Theorem 2.32, p.36]

on D, then
[ 90 @PWEAG) = [ g (W) aatw).

7>1

If g and W are non-negative measurable functions

We also require the following estimates on functions in z"H. Let R, is the orthogonal
projection of H onto z™H.
Proposition 5.2.[% Proposition 3.15, p-133] - Gyyose f € H. Then for each z € D,

(i) [(Bnf)(2)] < (Z |2** ) 1£ll2, and

QZQk 2
() (R \<(Z’“' =) e

where B(k) = ||zk||w

We will use the following general formula for the essential norm of a linear operator on a
Hilbert space which we present in terms of the operator C;ZCw acting on the Hilbert space
H.

Proposition 5.3. Suppose C{ZCso s a bounded operator on H. Then

3 Cleie = lim [ RaClCoRalln
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The proof of Proposition 5.3 follows directly from the proof of Proposition 5.1 in [11].

We now start our proof of the following upper estimate on [|C},Cy|le,% when C}C,, is
bounded on the general weighted Dirichlet space H. We will show that

1C3Coll2 24
< lim sup ZH(|Z](QD(Z))|)ZH(\w](z/)(z))D
T Je() = lor(z)| -1 H(lp(2))H(lv(2)])

We start by applying Proposition 5.3 and representing the norm using the inner product:

C5C et = lim | RuCyCo Rl
= lim sup |<C¢Rnfa C?,Z)Rng>7'[|7
" fvge(H)l

where (#); is the unit ball of #. By fixing f and g in (H)1, we see that [(C, R, f, CyR,g)u|
is bounded by

|Rn f((0) Rng(4(0))] + /D [(Rnf 0 ¢)'(2)(Rng o ¥)'(2)|H(|2])dA(2)- (5.1)

Since R, f and R, g are in (H);, Proposition 5.2 implies that

IR f(y (i:: 5(2|2k)1/2,
| Rng( (i 1/)((])3| )1/2

approach zero as n tends to infinity. Thus we need only concern ourselves with the integral
in Equation (5.1).

Now fix 0 < r < 1 and split the integral in Equation (5.1) into two parts: one over the
set D\ {E1 U Ey} where E; = ¢~ 1(D\ rD) and Ey = ¢~ }(D \ rD) and the other over its
complement. Let I represent the integral over D \ {F; U Es}.

First we will show that the integral I tends to zero as n tends to infinity. To estimate I
we use successively the Cauchy-Schwartz inequality and Propositions 5.1 and 5.2 to obtain
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I= [ Bafop) () Bag o v () H (2D dA:)
D\{E UE>}
(), (oo @RH(D aa)

(), Jmge vy @EmQnase)

:(/<F(D\E1 (Bnfoe)'( (ZH|ZJ ) Alz) )1/2

'</¢(D\Ez)|( ng o V)'( (ZH Jro; (w0 ) Al )>1/2
- </so(D)mrD( Bnfoe)( <ZH 12 (w ) A(z ))1/2

.</w(D)OrD|( eV (;H st 4 ))1/2
< sup [(Rnf o) (w)] sup |(Rng o) (w)|

<L<D>(ZHZJ D)) ([ (S ausn)aac) ™

Using Proposition 5.2 (i) and the fact that f and g are in ()1, we see that the last expression
is bounded by

L2 (22 211, 2 B 1/2
(3 s ) ([ eranane) ™ ( [ weoraiiae)

which in turn is bounded by a multlple of

(Z 5775 el ¥l = b @) 0)

Now as n approaches infinity, this last expression tends to zero. Thus we have shown
1CyClle,n <lim  sup / [(Raf 0 9)'(2)(Rng o ¥) ()| H(|2])dA(2).
" f,9€(H)1 J B1UE,
This is bounded by
sup [ (7o) (2)g o 0 (H(DAAG).
f,9€(H)1 JELUE,
To finish the proof, set

= sup Q(z),
E1UE>

where

2. H(lz(#(2))]) ZH(ij(w(Z))I)f/?

Q@) = (== E TG
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We have
IG5 Colle 2t < sup / I(f o 0)' (g 0 )| H(|))dA(2)

E1UE>

< s [ (o) o) i dAc)

H(|»(2)])

<sesp ([ 1700 P2 i

(
e D 2
([ loow) Py b))

where the last line follows from the Cauchy-Schwarz inequality.

Now we will calculate the two integrals in the last expression above. Because the calcu-
lations are similar we will only explicitly compute the first integral. To calculate the first
integral, use Proposition 5.1 and then recognize the result as the norm of f in H,

N (ECT I
J, oo OO s A

D .
—/le()ZH|Z 3 H (12 (w))dA()
- /D | () PH (] dA(w)

H(dA)

< |I1£153,-
Similarly
H(|y(2)]) 2
(g o) (2) H(|z)dA(2) < [lgll3-
/D 22 H(Jw;((2)]) "
Since || flln = |lgllx = 1, we have arrived at the desired upper estimate on the essential
norm,

* <1l .
1CCollen < lim
In order to prove Theorem 1.2, consider the weight
Hopz(|2]) = (1= [2[1)**2/(a +2).

Since [|C}Cylle,a < C;,Colle, 5, @ proof of which can be found in [10], we obtain our
desired estimate

x o 12 - No,at+2(9(2)) Ny, a+2(¢(2)) }
1030l < mswe { =G g w2
as |p(z)] = 17 or [¥(z)| = 1.

This completes the proof.

We now turn to the proof of Theorem 1.3. The equivalence of (b) and (c) and the
equivalence of (¢) and (d) are established by Lemma 3.1, and Theorem 1.2 immediately
proves (b)=(a). Thus to finish the proof of Theorem 1.3 we only need to prove (a)=(c).
We start with the following technical lemmas.

Lemma 5.1. Suppose ¢ is a holomorphic self-map of D. If p(1) = 1 and ¢'(1) = 1,
then 1_1)1’{1_ (Cokr k) =1

PI‘TOOf. Let 0 < 7 < 1 and using the fact that

<Cgakra kr>a = <KT o, KT>01(1 - T2)a+2’
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we see that

1 B (1 —r(p(r))a”

(Cpkr, kr)a N 1—r2
_ 1 (1 —(r) + (1) —7“<P(7“))°‘+2
(14 )t 1—r
1 1—p(r) a+2
- (1+r)a+2( 1—7 o)

Since ¢(1) = 1 and ¢'(1) = 1, we see that lim (Cyk,,k,)o = 1 and this completes the
r—1-
proof.
Lemma 5.2. Suppose ¢ is a holomorphic self-map of D. If ¥ has a finite angular
derivative at 1, then
1

I klla = — s
Jim [ B

Proof. Since € K, = Ky () and ¥'(1) exist, we see by the Julia-Carathéodory theorem
that
1 — 2 14a/2 1 1+a/2
i Ol = i (LY (L ye
A G = B TP o]
This completes the proof.

Lemma 5.3. Suppose @ is a univalent self-map of D. If (1) =1, ¢'(1) = 1, and |p(¢)|
is less than 1 on 0D\ {1}, then

1Colle.a < 1.
Proof. In [10] and [11] it is shown, for a > —1, that

. Na+2(w) _
[ClIZ. < hmsupm as |w|—17.

8 Tul

For ¢ univalent this simplifies to
1
IC[IZ 0 < sup

ceop |/ (Q)]eF2
Since ¢ only has a finite angular derivative at 1, we see that
1

1
2 < sup = =L
“* T ceap POt @ (1)|+2

1Ce|

This completes the proof.

We will prove the contrapositive of (a)=-(b), in Theorem 1.3, which by Lemma 3.1 is

Theorem 5.1. Suppose ¢ and v are univalent self-maps of the disc and there exists a
point ¢ on the unit circle such that ¢ and ¢ have finite angular derivatives at (. Then CyC,
is not compact on L2(dA,) for a > —1.

Proof. Let ( € 9D. Without loss of generality, we may assume that ¢ = 1 so that ¢ and
1 have an angular derivative at the point 1. We may also assume that ¢(1) =1, ¢'(1) =1,
and ||Cylle,o < 1.

These reductions are accomplished by considering the operator

C;ZC;CngoCﬂCTC’y = CJ,OPCVOTOBOLpopa
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where
p(z) =z arotation of D mapping point 1 to ¢,
B(z) = ¢(¢) z a rotation of D mapping ¢(¢) to the point 1,
1 1-—
oy Lz (-9)
(1=98)z+(1+5s)
14z
33—z
The mapping 7 is a hyperbolic automorphism of D such that
(ToBoypop)(l)=1
Finally ~ is a parabolic non-automorphism of D with fixed point 1. Since v is a linear
fractional non-automorphism, it does not map onto D. Thus it only has an angular derivative

at the point 1, which implies that yo 7o 0o p only has an angular derivative at the point
1. Since yo 7o B oo pis univalent, we see by Lemma 5.3 that

where s = 1/(Bo o p) (1),

v(z)

HC’VOTOﬁOLpOpHG,OL § 1.

Hence the inducing maps ¥ o p and yo 7 o 0 ¢ o p have the desired properties, and if
Cio pC,YOTonOp is not compact, then clearly C7,C, is not compact. We will assume that ¢
and v have the desired properties.

Since the normalized reproducing kernels k,,(z) converge weakly to zero as |w| — 17, it
will suffice to show that

limsup [|CyCukr o > 0,

r—1-
in order to conclude that C’pr’W is not compact.

We now add and subtract the term (Ck;, k) o Cykr to Cy Coky, and then by applying
the reverse triangle inequality we obtain

1C3C ok lla = I{Cpkrs k) o Ok + Oy (Cokr — (Cokirs ki) akr) | o
> [Cokrs kr)alllChkrlla = ICG [allCokr — (Cokr, kr)akrlla-  (5.2)
By Lemmas 5.1 and 5.2, we see that
lim [(Cokr, kr)al|ChErlla = 1/[0 ()72,
r—1-
Thus we only need to show that
lim ||Cuk, — (Cykr, kr)akrlla =0
r—1—
to finish the proof.
Expanding the norm by using the inner product, we see that
ICokr = (Cpkir, kYol |2
= ||C<pkr||i + |<C<pkrv kr>a|2 - 2Re<c<pk’r‘; kr>a<c<pk’r‘a kr>a
= [|Cokrlls = 1{Cookirs Eer)al*.
By the reduction at the beginning of the proof [|C, |2 , <1 and since

limsup [|Coky |12 < [|Cp 20 <1,

r—1-

lim (Cokr, kr)a =1,
r—1-
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we see that

limsup [|Cykr — (Cokr, kr)akrlla < |CL12 4 —1=0.

r—1-
Thus
lim ||Cuk, — (Cpkr, kr)aky|la = 0.
r—1-
Therefore
limsup [[C%Cok 0 > ———
im sup g > ————r.
MEVE A |97 (1)[1+e/2

Hence C7,C,, is not compact.

(1]
(2]

(3]
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