
Chin. Ann. Math.
24B:4(2003),449–456.

A RANDOM FUNCTIONAL CENTRAL LIMIT
THEOREM FOR PROCESSES OF PRODUCT
SUMS OF LINEAR PROCESSES GENERATED

BY MARTINGALE DIFFERENCES***

WANG Yuebao* YANG Yang** ZHOU Haiyang**

Abstract

A random functional central limit theorem is obtained for processes of partial sums and

product sums of linear processes generated by non-stationary martingale differences. It devel-
ops and improves some corresponding results on processes of partial sums of linear processes
generated by strictly stationary martingale differences, which can be found in [5].
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§1. Introduction

In this article, let {εt : t ∈ Z} be a sequence of r.v.’s defined on an identical probability
space (Ω,F , P ). Ft = σ(εs : s ≤ t), t ∈ Z. {aj : j ∈ Z} is a sequence of constants, satisfying

∞∑
j=−∞

|aj | < ∞. (1.1)

We say that Xt =
∞∑

j=−∞
ajεt−j , t ∈ N is a linear process generated by {εt : t ∈ Z}. Linear

processes are of special importance in time-series analysis (see [6]), as well as in many fields
such as mathematical statistics, insurance and finance and so on (see [8, 3], etc.). Therefore
many show great interests in limit properties of all kinds of linear processes, for example,
Fakhre-Zakeri and Farshidi[4] got the random central limit theorem for linear processes
generated by i.i.d. r.v.’s, Fakhre-Zakeri and Lee[5] achieved the random functional central
limit theorem for strictly stationary linear processes generated by martingale differences.
Recently Kim and Baek[7] obtained the functional central limit theorem for linear processes
generated by strictly stationary LPQD r.v.’s, etc.
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In above studies, Fakhre-Zakeri and Lee[5] required that {εt : t ∈ Z} should be a sequence
of strictly stationary martingale differences and satisfy the condition (1.1) and

E(εt|Ft−1) = 0, E(εt
2|Ft−1) = σ2, a.s. (1.2)

This article has two objects. First substitute the strictly stationary condition with the
condition that there exists an r.v. ε defined on (Ω,F , P ) and a positive constant C, such
that

sup
t∈Z

P (|εt| > x) ≤ CP (|ε| > x) for any x ≥ 0, (1.3)

{
E(ε2) < ∞, if {εt : t ∈ Z} is independent or strictly stationary;

E(ε2 log+ |ε|) < ∞, else.
(1.4)

Second, on the base of obtaining the random functional central limit theorem for processes
of partial sums of linear processes generated by non-stationary martingale differences, prove
the theorem for processes of product sums of linear processes above mentioned. For this, we
firstly give some signs.

For any n,m ∈ N, set

Vn(m) =
∑

1≤i1<···<im≤n

m∏
j=1

Xij , if n ≥ m; Vn(m) = 0, if n < m.

ξn(u) = n−1/2τ−1(S[nu] + (nu− [nu])X[nu]+1), u ∈ [0, 1], n ∈ N.

Un(m,u) = n−m/2τ−m(V[nu](m) + V[nu](m− 1)(nu− [nu])X[nu]+1),

u ∈ [0, 1], n ∈ N,

where Sn = Vn(1), τ2 = σ2
( ∞∑

j=−∞
aj

)2

and [nu] is the integral part of nu. Denote the

random elements of ξn(u) and Un(m,u) by ξn and Un(m) respectively. ξn and Un(m) are
respectively called the process of partial sum and the process of product sum of the linear
process {εt : t ∈ Z}. Besides, denote by W the Wiener measure on C[0, 1].

We shall give some lemmas in Section 2, including the functional central limit theorem
for processes of partial sums of linear processes generated by non-stationary martingale
differences. Its corresponding results on processes of product sums will be discussed in
Section 3.

§2. Some Lemmas

First, we extend the lemma 3 in [5] to the case of non-stationary.
Lemma 2.1. Let {εt,Ft : t ∈ Z} be a sequence of martingale differences, satisfying the

conditions (1.2), (1.3) and

E(ε2) < ∞. (2.1)

{Xt : t ∈ N} is the linear process generated by {εt : t ∈ Z} and {aj : j ∈ Z}, satisfying

the condition (1.1). And set X̃t =
( ∞∑

j=−∞
aj

)
εt, t ∈ N, S̃k =

k∑
t=1

X̃t, Sk =
k∑

t=1
Xt, k ∈ N.

Then

max
1≤k≤n

n−1/2|S̃k − Sk| → 0, n → ∞, in probability. (2.2)

Proof. By the proof of Lemma 3 in [5], in order to prove (2.2), it suffices to prove that
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for any l ∈ N,

Zn,l = n−1/2 max
1≤k≤n

∣∣∣ l∑
j=1

aj

j∑
i=1

εk−j+1

∣∣∣ → 0, n → ∞, in probability. (2.3)

For this, we point out that with the help of the condition (1.3) and E(ε2) < ∞, it is clear

that {εt2 : t ∈ Z} is uniformly integrable. Hence for any fixed l ∈ N,
{ l∑

i=1

ε2t+i : t ∈ Z
}

is

uniformly integrable. Thus, for any δ > 0, set d = l−1
( ∞∑

j=−∞
|aj |

)−2

δ2, then

P (Zn,l ≥ δ) ≤ P
(

max
1≤k≤n

l∑
i=1

|εk−i+1|
l∑

j=i

|aj | ≥ n1/2δ
)

≤ P
(

max
1≤k≤n

l∑
i=1

ε2k−i+1 ≥ dn
)

=
n∑

k=1

P
(

max
1≤s≤k−1

l∑
i=1

ε2s−i+1 < dn,
l∑

i=1

ε2k−i+1 ≥ dn
)

≤ d−1n−1
n∑

k=1

E
( l∑

i=1

ε2k−i+1

)
I
( l∑

i=1

ε2k−i+1 ≥ dn
)

≤ d−1 sup
t∈Z

E
( l∑

i=1

ε2t+i

)
I
( l∑

i=1

ε2t+i ≥ dn
)
→ 0, n → ∞.

Denote by ξ̃n the random element defined on C[0, 1] of {X̃t : t ∈ N}, n ∈ N. Then by

Lemma 2.1, we have ξn − ξ̃n → 0, n → ∞, in probability. And it is easy to verify the
conditions in [1]

n∑
i=1

E(X̃i

2
|Fi−1)

(
E
( n∑

i=1

X̃i

)2)−1

→ 1, n → ∞, in probability,
(2.4)(

E
( n∑

i=1

X̃i

)2)−1 n∑
i=1

EX̃i

2
I
(
|X̃i| ≥ δ

(
E
( n∑

i=1

X̃i

)2)1/2)
→ 0, n → ∞ for any δ > 0.

(2.5)

So quite similarly to the proofs of Theorem 1 and Theorem 2 in [5], we can get the Renyi’s
central limit theorem and random functional central limit theorem for processes of partial
sums of linear processes generated by non-stationary martingale differences.

Lemma 2.2. Let {εt,Ft : t ∈ Z} be a sequence of martingale differences, satisfying (1.2),
(1.3) and (2.1). {Xt : t ∈ N} is a linear process generated by {εt : t ∈ Z} and {aj : j ∈ Z},
satisfying the condition (1.1). Then for any k ∈ N and B ∈ Fk, P (B) > 0, we have

lim
n→∞

P (n−1/2tSn ≤ x|B) = (2π)−1/2

∫ x

−∞
e−y2/2dy, x ∈ R. (2.6)

Further, all the finite-dimensional distributions of ξn converge weakly under the probability
measure P (·|B) to the finite-dimensional distribution of the Wiener measure.

Lemma 2.3. Let the condition in Lemma 2.2 be satisfied, and {Nn : n ∈ N} be a sequence
of positive integer-valued random variables defined on the probability space (Ω,F , P ). If

n−1Nn → N, n → ∞, in probability, (2.7)
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where N is a real-valued random variable with

P (0 < N < ∞) = 1, (2.8)

then the process {ξNn(u) : u ∈ [0, 1], n ∈ N} converges weakly to the Wiener measure.
Denote ξNn ⇒ W, n → ∞.

Lemma 2.4. Let {xi : i ∈ N} be a sequence of real numbers. Then for any n,m ∈ N
and n ≥ m, we have

vn(m) =
∑

1≤i1<···<im≤n

m∏
j=1

xij =
∑

m∑
j=1

rjsj=m

A(m, rj , sj : 1 ≤ j ≤ m)
m∏
j=1

( n∑
i=1

xi
rj
)sj

, (2.9)

where A(m, rj , sj : 1 ≤ j ≤ m),
m∑
j=1

rjsj = m are constants irrelevant to n and {xi : i ∈ N}.

Remark 2.1. Now we take the example of m = 4 to explain the scope of the sum and
the product in (2.9). In view of

m = 4 = 1× 4 = 1× 2 + 2× 1 = 2× 2 = 3× 1 + 1× 1 = 4× 1,

we have

vn(4) = A(4, 1, 4)
( n∑

i=1

xi

)4

+A(4, 1, 2, 2, 1)
( n∑

i=1

xi

)2( n∑
i=1

x2
i

)
+A(4, 2, 2)

( n∑
i=1

x2
i

)2

+A(4, 3, 1, 1, 1)
( n∑

i=1

x3
i

)( n∑
i=1

xi

)
+A(4, 4, 1)

( n∑
i=1

x4
i

)
.

Proof. For m we use the mathematical induction. When m = 1, 2, (2.9) is obvious.
Assume when m ≤ k − 1, (2.9) holds. Then m = k. Set

f(k, xi : 1 ≤ i ≤ n) =
( n∑

i=1

xi

)k

− k!vn(k).

We know that f(k, xi : 1 ≤ i ≤ n) is a k-homogeneous symmetric polynomial. By using the
principal theorem of symmetric polynomial, it follows that there exists a unique polynomial
g(k, yi : 1 ≤ i ≤ k − 1) such that

f(k, xi : 1 ≤ i ≤ n) = g(k, vn(k) : 1 ≤ i ≤ k − 1). (2.10)

In view of the inductive assumption, put vn(k), 1 ≤ i ≤ k − 1 into the right-hand side of
(2.10). After arrangement, we immediately obtain that (2.9) holds when m = k and the
coefficients are still irrelevant to n and {xi : i ∈ N}.

Lemma 2.5. Let {Yi : i ∈ N} be a sequence of real-valued r.v.’s, {Nn : n ∈ N} be a
sequence of positive integer-valued r.v.’s and N be a real-valued r.v. They are all defined on
the same probability space (Ω,F , P ). If the conditions (2.7), (2.8) are satisfied and

b−1
n

n∑
i=1

Yi → 0, 0 < bn ↑ ∞, n → ∞, a.s. (2.11)

Then

b−1
Nn

max
1≤k≤Nn

∣∣∣ k∑
i=1

Yi

∣∣∣ → 0, n → ∞, in probability. (2.12)

Proof. For any η > 0, (2.8) yields that there exist M2 > M1 > 0, such that

P (N ≤ M1) < η/4 and P (N ≥ M2) < η/4. (2.13)

And by (2.7), for any M1 > δ > 0, there exists n1 ∈ N such that when n ≥ n1,

P (|n−1Nn −N | ≥ δ) < η/4. (2.14)
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And by (2.11), we know that

b−1
n max

1≤k≤n

∣∣∣ k∑
i=1

Yi

∣∣∣ → 0, n → ∞, a.s.

Then for any θ > 0 and M1,M2, δ above-mentioned, there exists n2 ∈ N such that when
n ≥ n2,

P
(
b−1
n(M2+δ) max

1≤k≤n(M2+δ)

∣∣∣ k∑
i=1

Yi

∣∣∣ ≥ (M1 − δ)(M2 + δ)−1θ
)
< η/4. (2.15)

Thus, when n ≥ n0 = max{n1, n2}, in view of (2.13)–(2.15), we conclude

P
(
b−1
Nn

max
1≤k≤Nn

∣∣∣ k∑
i=1

Yi

∣∣∣ ≥ θ
)

≤ P
(
b−1
Nn

max
1≤k≤Nn

∣∣∣ k∑
i=1

Yi

∣∣∣ ≥ θ, |n−1Nn −N | < δ,M1 < N < M2

)
+ P (|n−1Nn −N | ≥ δ) + P (N ≤ M1) + P (N ≥ M2)

< P
(
b−1
n(M2+δ) max

1≤k≤n(M2+δ)

∣∣∣ k∑
i=1

Yi

∣∣∣ ≥ (M1 − δ)(M2 + δ)−1θ
)
+ (3δ)/4 < η.

§3. The Main Results and Their Proofs

Now we give a non-random functional central limit theorem for processes of product sums.
For this we introduce some other notations first. Denote the coefficient of( n∑

i=1

xi

)m−2s( n∑
i=1

xi
2
)s

in (2.9) by A(m, s), s = 0, · · · , [m2 ]. And for any m ∈ N, set

U(m,u) =

[m2 ]∑
s=0

A(m, s)(W (u))m−2sus, u ∈ [0, 1].

Its corresponding random element defined on C[0, 1] is U(m).
Theorem 3.1. Let the conditions in Lemma 2.2 and (1.4) be satisfied. Then for any

m ∈ N,

Un(m) ⇒ U(m), n → ∞. (3.1)

On the base of Theorem 3.1, we obtain the random functional central limit theorem for
processes of product sums.

Theorem 3.2. Let the conditions in Lemma 2.3 and (1.4) be satisfied. Then for any
m ∈ N,

UNn(m) ⇒ U(m), n → ∞. (3.2)

Proof of Theorem 3.1. Set Ũn(m,u) =
[m2 ]∑
s=0

A(m, s)(ξn(u))
m−2sus, u ∈ [0, 1]. Its

corresponding random element on C[0, 1] is Ũn(m), n ∈ N. First we prove Un(m)−Ũn(m) →
0, n → ∞, in probability. It suffices to prove that for any η > 0,

P
(

sup
u∈[0,1]

|Un(m,u)− Ũn(m,u)| ≥ η
)
→ 0, n → ∞. (3.3)
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By Lemma 2.4, we see that

Un(m,u) =
∑

m∑
j=1

rjsj=m

A(m, rj , sj : 1 ≤ j ≤ m)

·
m∏
j=1

(
τ−rjn−rj/2

( [nu]∑
i=1

X
rj
i + (nu− [nu])rj +X

rj
[nu]+1

))sj
, u ∈ [0, 1].

It will be discussed in the following according to different rj , 1 ≤ j ≤ m respectively. To be
concise, denote rj , 1 ≤ j ≤ m by r.

When 3 ≤ r ≤ m, it follows from Jensen’s inequality, the condition (1.1), Fubini theorem
and Hölder’s inequality that

sup
u∈[0,1]

n−r/2
∣∣∣ [nu]∑
i=1

Xr
i + (nu− [nu])rXr

[nu]+1

∣∣∣ ≤ n−r/2
n∑

i=1

|Xi|r

≤
(
n−3/2

n∑
i=1

|Xi|3
)r/3

≤
(
n−3/2

n∑
i=1

( ∞∑
j=−∞

|ajεi−j |
)3)r/3

=
( ∑

−∞<j,k,l<∞

|ajakal|n−3/2
n∑

i=1

|εi−jεi−kεi−l|
)r/3

≤
( ∑

−∞<j,k,l<∞

|ajakal|
(
n−3/2

n∑
i=1

|εi−j |3
)1/3

·
(
n−3/2

n∑
i=1

|εi−k|3
)1/3(

n−3/2
n∑

i=1

|εi−l|3
)1/3)r/3

. (3.4)

And in view of (1.3), (1.4), and the standard Marcinkiewicz strong law of large numbers, it
is easy to prove

n−3/2
n∑

i=1

|εi−j |3 → 0, n → ∞, a.s. (3.5)

By (3.5), (3.4), (1.1) and the dominated convergence theorem,

sup
u∈[0,1]

n−r/2
∣∣∣ [nu]∑
i=1

Xr
i + (nu− [nu])rXr

[nu]+1

∣∣∣ → 0, n → ∞, a.s. (3.6)

When r = 2, we discuss it in two cases. First we prove

sup
u∈[0,1]

n−1
∣∣∣ [nu]∑
i=1

X2
i + (nu− [nu])2X2

[nu]+1

∣∣∣ = n−1
n∑

i=1

X2
i

=
∞∑

j=−∞
a2jn

−1
n∑

i=1

ε2i−j + 2
∑

−∞<j<k<∞

ajakn
−1

n∑
i=1

εi−jεi−k → τ2, n → ∞, a.s.
(3.7)
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And by the conditions (1.2)–(1.4) and Theorem 2.19 in Hall and Heyde (1980), we have

n−1
n∑

i=1

ε2i−j → σ2, n → ∞, a.s. (3.8)

Observe that j < k, then it is easy to know that {εi−jεi−k,Fi−j : i ∈ N} is still a sequence
of martingale differences. And by (1.2),

E
( ∞∑

i=1

i−2ε2i−k

)
= σ2

∞∑
i=1

i−2 < ∞.

Then it yields that

σ2
∞∑
i=1

i−2ε2i−k =
∞∑
i=1

i−2E(ε2i−jε
2
i−k|Fi−j−1) < ∞, a.s.

Thus taking into account of Theorem 2.15 in Hall and Heyde (1980) and Kronecker lemma,
we see that

n−1
n∑

i=1

εi−jεi−k → 0, n → ∞, a.s. (3.9)

With the help of (3.8), (3.9), the condition (1.1) and the dominated convergence theorem,
we arrive at (3.7) immediately.

On the other hand, by (3.7) we have

sup
u∈[0,1]

n−1
∣∣∣ [nu]∑
i=1

X2
i + (nu− [nu])2X2

[nu]+1 − nuτ2
∣∣∣

≤ sup
u∈[0,1]

n−1
∣∣∣ [nu]∑
i=1

(X2
i − τ2)

∣∣∣+ sup
u∈[0,1]

n−1|X2
[nu]+1 − τ2|

+ sup
u∈[0,1]

τ2n−1(nu− [nu]− (nu− [nu])2)

≤ n−1 max
1≤k≤n

∣∣∣ k∑
i=1

(X2
i − τ2)

∣∣∣+ n−1 max
1≤i≤n+1

|X2
i − τ2|+ n−1τ2

≤ 4(n+ 1)−1 max
1≤k≤n+1

∣∣∣ k∑
i=1

(X2
i − τ2)

∣∣∣+ n−1τ2 → 0, n → ∞, a.s.
(3.10)

When r = 1, in Lemma 2.3, take Nn = n, n ∈ N. Then we have ξn ⇒ W, n → ∞.
And h1(X) = sup

u∈[0,1]

(X(u))m−2s, s = 0, · · · , [m2 ] is a continuous functional in X. Hence by

Theorem 5.1 in [2], we have

sup
u∈[0,1]

(τ2n)−(m−2s)/2
( [nu]∑

i=1

Xi + (nu− [nu])X[nu]+1

)m−2s

= sup
u∈[0,1]

(ξn(u))
m−2s ⇒ sup

u∈[0,1]

(W (u))m−2s, n → ∞, s = 0, · · · ,
[m
2

]
.

(3.11)

By (3.4), (3.6), (3.7), (3.10) and (3.11), we get that (3.3) holds. And by (3.3) we know
that to prove (3.1), we shall only prove

Ũn(m) ⇒ U(m), n → ∞. (3.12)
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For this, set Y (u) = Yn(u) = u, u ∈ [0, 1]. Their corresponding random elements on C[0, 1]
are Y and Yn respectively, n ∈ N. Lemma 2.2 tells us that (ξn, Yn) ⇒ (W,Y ), n → ∞. And

Ũn(m) and U(m) are the same continuous functionals of (ξn, Yn) and (W,Y ) respectively,
thus (3.12) holds.

Proof of Theorem 3.2. Continuing to use the notations and proof idea in Theorem
3.1, we shall only prove

UNn(m)− ŨNn(m) → 0, n → ∞, in probability. (3.13)

When 3 ≤ r ≤ m, by (3.6) and Lemma 2.5,

Nn
−r/2 sup

u∈[0,1]

∣∣∣ [Nnu]∑
j=1

Xr
i +(Nnu− [Nnu])

rXr
[Nnu]+1

∣∣∣ → 0, n → ∞, in probability. (3.14)

When r = 2, on one hand, by (3.7) and Lemma 2.5,

N−1
n sup

u∈[0,1]

∣∣∣ [Nnu]∑
j=1

X2
i + (Nnu− [Nnu])

2X2
[Nnu]+1

∣∣∣ → τ2, n → ∞, in probability. (3.15)

On the other hand, in view of (3.10) and Lemma 2.5,

N−1
n sup

u∈[0,1]

∣∣∣ [Nnu]∑
j=1

X2
i + (Nnu− [Nnu])

2X2
[Nnu]+1 −Nnuτ

2
∣∣∣

→ 0, n → ∞, in probability. (3.16)

When r = 1, Lemma 2.3 yields ξNn ⇒ W , thus

(τ2Nn)
−(m−2s)/2 sup

u∈[0,1]

( [Nnu]∑
i=1

Xi + (Nnu− [Nnu])X[Nnu]+1

)m−2s

= sup
u∈[0,1]

(ξNn(u))
m−2s ⇒ sup

u∈[0,1]

(W (u))m−2s, n → ∞, s = 0, · · · ,
[m
2

]
.

(3.17)

It follows from (3.14), (3.17) and Slutsky theorem that (3.13) holds.
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