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Abstract

This paper considers the pointwise estimate of the solutions to Cauchy problem for quasilin-
ear hyperbolic systems, which bases on the existence of the solutions by using the fundamental

solutions. It gives a sharp pointwise estimates of the solutions on domain under consideration.
Specially, the estimate is precise near each characteristic direction.
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§1. Introduction

In this paper, we consider the following first order quasilinear strictly hyperbolic systems
of balance laws

ut +A(u)ux = B(u), (1.1)

where u(x, t) = (u1, · · · , un)t(x, t) is the unknown vector function, (x, t) ∈ R×R+, A(u) =
(aij) is an n × n matrix with suitably smooth elements aij (i, j = 1, 2, · · · , n), and B(u) is
a given smooth vector function. By strictly hyperbolicity, for any given u on the domain
under consideration, A(u) has n real eigenvalues λ1(u), · · · , λn(u) and a complete system
of left (resp. right) eigenvectors. For i = 1, · · · , n, let li(u) = (li1(u), · · · , lin(u)) (resp.
ri(u) = (ri1(u), · · · , rin(u))t) be a left (resp. right) eigenvector corresponding to λi(u),

li(u)A(u) = λi(u)li(u) (resp. A(u)ri(u) = λi(u)ri(u)). (1.2)

We have

det lij ̸= 0 (equivalently det rij ̸= 0). (1.3)

Here λi(u), lij(u), rij(u) are supposed to have the same regularity as aij (i, j = 1, · · · , n).
And u(x, t) is considered in a neighborhood of u = 0. Without loss of generality, we suppose

0 < λ1(u) < · · · < λn(u), (1.4)
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in the neighborhood of u = 0, and furthermore we suppose that on the domain under
consideration

li(u) · rj(u) ≡ δij , i, j = 1, · · · , n, (1.5)

ri(u)
t · ri(u) ≡ 1, i, j = 1, · · · , n, (1.6)

where δij stands for the Kronecker’s symbol.
Throughout this paper, we always assume that the term B(u) satisfies

B(0) = 0, ∇B(0) = 0, (1.7)

namely B(u) is a nonlinear term of higher order. The Cauchy problem is (1.1) with the
following initial data

u(x, 0) = ϕ(x), (1.8)

where ϕ(x) is a “small” C2 vector function of x with suitably decay properties as |x| → ∞.
We will investigate the global existence and the precise pointwise estimates of the solutions
to the Cauchy problem (1.1) and (1.8).

In the case that B(u) = 0, (1.1) is homogenous system as follows

ut +A(u)ux = 0. (1.9)

Suppose that ϕ(x) possesses a compact support and A(u) and ϕ(x) are C2 functions. In a
neighborhood of u = 0, if the systems (1.1) is genuinely nonlinear in the sense of Lax, or a
part of the characteristics are genuinely nonlinear while the other part of the characteristics
are linearly degenerate in the same sense, John[2] and Liu[6] studied the blow-up phenomenon
of C2 solutions to the Cauchy problem (1.8) and (1.9) for small initial data. Hörmander[1]

reproved the result given in [2] and obtained the sharp estimate for the life- span of C2

solutions. By introducing the concept of weakly linear degenerate, Li et al[8] gave a complete
result on the global existence of C1 solutions to the Cauchy problem (1.8) and (1.9) for small
initial data with compact support. And Li et al[3, 9] generalized the result to the case that
ϕ(x) has no compact support but possesses suitably decay properties as |x| → ∞ and for
inhomogeneous system (1.1). They obtained that the solutions of the systems have some
decay property except for the neighborhood around the characteristics.

In this paper, we try to obtain the whole pointwise estimates of the solutions for the above
case in [3, 9]. As we know, the estimate near the characteristics is important to hyperbolic
system, but it is more difficult than outside the neighborhood around the characteristics.
In general, one only can prove that solutions are bounded near the characteristics. One
of the key point in our study is how to get the pointwise estimates of the solutions near
the characteristics. In fact, by using the fundamental solution (i.e. Green function) in
dealing with the hyperbolic system with diffuse structure[5, 7, 10], we obtain a sharp pointwise
estimates of the solution on whole domain under consideration. Specially, we obtain the
explicit expressions of the time-asymptotic behavior of solution near each characteristic
direction. Since they are not of diffuse structure, the Green function is not decay for time,
so we need more precise estimate.

On the other hand, since it is difficult to deal with the above problem in multi-dimension
space by the characteristics method. We hope to extend the notion of weakly degener-
ate and study the time asymptotic behavior of solutions in multi-dimensions by using the
fundamental solution method. But, we consider the case in one-dimension.

We suppose ϕ(x) ∈ C4, and denote

θ = sup
x∈R

{(1 + |x|)1+µ(|ϕ|+ |ϕ′|+ |ϕ′′|+ |ϕ′′′|+ |ϕ′′′′|)}, (1.10)

where µ > 1. Set

vi(u) = li(u) · u, wi(u) = li(u) · ux, bi(u) = li(u) ·B(u). (1.11)
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The definitions of weakly linear degenerate, matching condition and normalized coordinate
can be seen in [3], here we omit it. Throughout this paper we denote the generic constants
by C, and denote λi = λi(0) in the sequel. Our main result is as follows:

Theorem 1.1. Under the hypotheses mentioned above, suppose that A(u) and B(u) are
C4 in a neighborhood of u = 0. Furthermore, suppose that the system (1.1) is weakly linearly
degenerate and B(u) satisfies the matching condition. Then there exists θ0 > 0 which is so
small that for any given θ ∈ [0, θ0], the Cauchy problem (1.1) and (1.9) admits a unique
global C1 solution u = u(x, t) on t ≥ 0, and there exists C which is independent of θ, such
that

|vi(x, t)| ≤ Cθ(1 + |x− λit|)1+µ, (1.12)

|wi(x, t)| ≤ Cθ(1 + |x− λit|)1+µ. (1.13)

Finally in this section, we enclose a lemma and some formulas given in [3, 8].

Let

d

dit
=

∂

∂t
+ λi(u)

∂

∂x

be the directional derivative along the i-th characteristic. From (1.11)–(1.13), for i =
1, · · · , n,


dvi
dit

=

n∑
j,k=1

βijk(u)vjwk +

n∑
j,k=1

υijk(u)vjbk(u) + bi(u),

dwi

dit
=

n∑
j,k=1

γijk(u)wjwk +
n∑

j,k=1

ξijk(u)wjbk + (bi(u))x,

(1.14)

where

βijk(u) = (λk(u)− λi(u))li(u)∇rj(u)rk(u), (1.15)

υijk(u) = −li(u)∇rj(u)rk(u), (1.16)

ξijk(u) = li(▽rkrj −▽rjrk), (1.17)

γijk(u) =
1

2
{(λj(u)− λk(u))li(u)∇rk(u)rj(u)

−∇λk(u)rj(u)δik + (j|k)}, (1.18)

where δij is Kronecker’s symbol, and (j|k) stands for all terms obtained by changing j and
k in the previous terms. Hence, we have

βiji(u) ≡ 0 for all j. (1.19)
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We get some relations in the normalized coordinates similar in [3]:

ri(uiei) ≡ ei = (0, · · · ,
i
1, · · · , 0)t, (1.20)

βijj(ujej) ≡ 0 for all |uj | small and j = 1, · · · , n, (1.21)

γijj(ujej) ≡ 0 for all |uj | small and j = 1, · · · , n, (1.22)

bi(u) =
∑
j ̸=k

bijk(u)ujuk for all i = 1, · · · , n, (1.23)

(bi(u))x =
n∑

k=1

b̃ik(u)wk for all i = 1, · · · , n, (1.24)

b̃ik(u) =
∑
j ̸=k

[ ∫ 1

0

∂b̃ik
∂ui

(su1, · · · , uk, · · · , sun)ds
]
uj for b̃ik(ukek) = 0.

(1.25)

§2. Preliminaries

In [3] for all T > 0, in the normalized coordinate, we know that there exists C > 0
independent of θ and T , such that

|u(x, t)|C1(R×[0,T ]) ≤ Cθ (2.1)

for θ being small. We can see that the solutions u(x, t) ∈ C2(R × [0, T ]) if we employ the
same method as in [3] to the system (1.1) and (1.8). In the following, we will prove our
results in the normalized coordinate. Firstly, it is easy to prove the following two lemmas
as follows:

Lemma 2.1. There exists a positive constant C independent of (x, t), such that the
following inequality holds:

|vi(x, t)| = |li(u)u| ≤ Cθ, (2.2)

|wi(x, t)| = |li(u)u| ≤ Cθ. (2.3)

Lemma 2.2. There exists a positive constant C independent of (x, t) and θ, such that∫ t

0

(1 + |x− λit− (λj − λi)s|)−(1+µ)ds ≤ C for all j ̸= i. (2.4)

Denote

Fi,j,k = (1 + |x− λit− (λj − λi)s|)−(1+µ)(1 + |x− λit− (λk − λi)s|)−(1+µ). (2.5)

Lemma 2.3. There exists a positive constant C independent of (x, t) and θ, such that∫ t

0

Fi,j,kds ≤ C(1 + |x− λit|)−(1+µ) for all j ̸= k. (2.6)

Proof. It is easy to prove for k = i or j = i. Without loss of generality, we suppose
j > i. We rewrite the left term in (2.4), for all (x, t) ∈ R×R+, in the form∫ t

0

Fi,j,kds =

∫
[0,t]∩I1

Fi,j,kds+

∫
[0,t]∩I2

Fi,j,kds+

∫
[0,t]∩I3

Fi,j,kds

.
= A1 +A2 +A3, (2.7)

where

I1 = {s | |x− λit| ≥ (1 + η)(λj − λi)s},
I2 = {s | |x− λit| ≤ (1− η)(λj − λi)s},
I3 = {s | (1− η)(λj − λi)s ≤ |x− λit| ≤ (1 + η)(λj − λi)s}
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for η being small and defined later.
For s ∈ I1 and s ∈ I2 respectively,

|x− λit− (λj − λi)s| ≥ |x− λit| − (λj − λi)s ≥
η

1 + η
|x− λit|,

|x− λit− (λj − λi)s| ≥ (λj − λi)s− |x− λit| ≥
η

1− η
|x− λit|.

Thus from Lemma 2.2 and direct calculation, we have

A1, A2 ≤ C(1 + |x− λit|)−(1+µ). (2.8)

For s ∈ I3 = I31 ∪ I32 with

I31 = {s | (1− η)(λj − λi)s < x− λit < (1 + η)(λj − λi)s}, (2.9)

I32 = {s | (1− η)(λj − λi)s < −(x− λit) < (1 + η)(λj − λi)s}. (2.10)

If s ∈ I32, then

x− λit− (λj − λi)s ≤ −(2− η)(λj − λi)s ≤ −2− η

1 + η
|x− λit|.

It is easy to see that

A32 =

∫
[0,t]∩I32

Fijkds ≤ C(1 + |x− λit|)−(1+µ). (2.11)

If s ∈ I31, we choose η ≤ min
m ̸=l

|λm−λl|
2(λn−λ1)

, then

|x− λit− (λk − λi)s| ≥ |(λk − λj)s| − |x− λit− (λj − λi)s|

≥ η(λj − λi)s ≥
η

1 + η
|x− λit|.

Thus we have

A31 =

∫
[0,t]∩I31

Fijkds ≤ C(1 + |x− λit|)−(1+µ). (2.12)

From (2.7)–(2.12), the inequality (2.6) is true, and we complete the proof of the lemma.
Choosing some δ0 which is small and satisfies λi+1 − λi ≥ 4δ0, λ1 ≥ 4δ0, we denote

D = {(x, t)| (λ1 − δ0)t < x < (λn + δ0)t},
Di = {(x, t)| |x− λit| < δ0t},
D+ = {(x, t)| x− λnt ≤ δ0t},
D− = {(x, t)| x− λ1t ≥ δ0t}.

By the definition of Di, it is easy to obtain the following lemma.
Lemma 2.4. There exist positive constants C independent of (x, t), such that

C−1t ≤ |x− λit| ≤ Ct for all (x, t) ∈ D \Di, i = 1, · · · , n. (2.13)

Set

M(t) = max
{
max

i
sup
(x,t)

(1+|x−λit|)1+µ|vi(x, t)|,max
i

sup
(x,t)

(1+|x−λit|)1+µ|wi(x, t)|
}
. (2.14)

Now, we will prove the following lemma.
Lemma 2.5. There exists a positive constant C, for all i = 1, · · · , n, such that

(1 + |x− λit|)1+µ|ui(x, t)| ≤ CM(t). (2.15)



462 CHIN. ANN. MATH. Vol.24 Ser.B

Proof. In fact, for any (x, t) ∈ D \Di, i = 1, · · · , n,

ui(x, t) = uT (x, t)ei =
n∑

k=1

vkr
T
k (u)ei, (2.16)

where ei is defined by (1.20). Then from (2.13) we have

(1 + |x− λit|)1+µ|ui(x, t)| = (1 + |x− λit|)1+µ
∣∣∣ n∑
k=1

vkr
T
k (u)ei

∣∣∣
≤ C

n∑
k=1

(1 + |x− λkt|)1+µ|vkrTk (u)ei| ≤ CM(t). (2.17)

If there exists i, such that (x, t) ∈ Di, then for all j ̸= i from (1.20),

(1 + |x− λjt|)1+µ|uj(x, t)| ≤ (1 + |x− λjt|)1+µ
∑
k ̸=i

|vkrTk (u)ej |

+ (1 + |x− λjt|)1+µ|vi[rTi (u)− rTi (uiei)]ej |. (2.18)

By Hadamard’s formula, we have

rj(u)− rj(uiei) =

∫ 1

0

∑
k ̸=j

∂rj
∂uk

(su1, · · · , uj , · · · , sun)dsuk.

Then, from (2.1), (2.2) we have

(1 + |x− λjt|)1+µ|uj(x, t)|

≤ C
∑
k ̸=i

(1 + |x− λkt|)1+µ|vkrTk (u)ej |+ C(1 + |x− λjt|)1+µ|vi|
∑
k ̸=i

|uk|

≤ CM(t) + Cθ
∑
k ̸=i

(1 + |x− λkt|)1+µ|uk(x, t)|. (2.19)

If θ is small enough, we can get the following inequality∑
k ̸=j

(1 + |x− λkt|)1+µ|uk(x, t)| ≤ CM(t). (2.20)

For j = i, we can obtain

(1 + |x− λit|)1+µ|ui(x, t)|

≤ (1 + |x− λit|)1+µ
∑
k ̸=i

|vkrki|+ (1 + |x− λit|)1+µ|virii|

≤ CM(t). (2.21)

For any (x, t) ̸∈ D, x ≤ (λ1 − δ0)t, or x ≥ (λn + δ0)t. We only consider the case of
x ≤ (λ1 − δ0)t. Then x− λit ≤ (λ1 − λi − δ0)t for all i = 1, · · · , n. Thus

x− λit ≤ x− λ1t ≤ x− λit+ (λi − λ1)
x− λit

λ1 − λi − δ0
≤ δ0

λi − λ1 − δ0
(x− λit),

then

(1 + |x− λit|)1+µ|ui(x, t)| = (1 + |x− λit|)1+µ
n∑

k=1

|vkrTk (u)ei|

≤ C
n∑

k=1

(1 + |x− λkt|)1+µ|vk(u)| ≤ CM(t). (2.22)
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By (2.20) to (2.22), the lemma is proved.

§3. Proof of the Theorem

In [3] Kong proved the existence and uniqueness of the solutions for the Cauchy problem
(1.1) and (1.8). Here we need to obtain the estimates (1.12) and (1.13). We know that
vi(x, t) and wi(x, t) satisfy (1.11), where λi, li, ri are functions in the neighborhood of u = 0,
and they are bounded by some constants.

We will prove the main theorem from (1.14). Our proof includes the two order derivatives
of the solutions which will depend on the existence of C4 solutions. And the proof of the
existence of the solutions is similar to that in [3], so we will not repeat it. In fact, by
differentiating two sides of the second equation of (1.14) with respect to x, and denoting
ρi =

∂wi

∂x for all i = 1, · · · , n, we have

dρi
dit

=
∑
j ̸=k

∂γijk
∂x

(u)wjwk + 2
∑
j ̸=k

γijk(u)ρjwk −▽λiuxρi

+ (bi(u))xx +
n∑

j,k=1

(ξijk(u)wibi)x. (3.1)

Similarly we differentiate two sides of (3.1) with respect to x, and denote αi =
∂ρi

∂x , then we
obtain that, for all i = 1, · · · , n,

dαi

dit
=

n∑
j,k=1

(∂2γijk
∂x2

)
(u)wjwk + 4

n∑
j,k=1

(∂γijk
∂x

)
(u)ρjwk

+ 2
n∑

j,k=1

γijkρjρk + 2
n∑

j,k=1

γijkwjαk +
∂2

∂x2
λi · ρi +▽λiuxαi

+ (bi(u))xxx +
n∑

j,k=1

(ξijk(u)wjbk)xx. (3.2)

Firstly, we have the following lemma.
Lemma 3.1. Under the hypotheses mentioned above, if A(u) and B(u) are C2 in a

neighborhood of u = 0, suppose furthermore that the system (1.1) is weakly linearly degen-
erate and B(u) satisfies the matching condition. Then there exists θ0 > 0 so small that for
any given θ ∈ [0, θ0], the Cauchy problem (1.1) and (1.8) admits a unique global C4 solution
u = u(x, t) on t ≥ 0. For all i = 1, · · · , n,

|vi(x, t)| ≤ Cθ(1 + |x− λit|)−(1+µ), (x, t) ∈ R2 \Di, (3.3)

|wi(x, t)| ≤ Cθ(1 + |x− λit|)−(1+µ), (x, t) ∈ R2 \Di, (3.4)

|ρi(x, t)| ≤ Cθ(1 + |x− λit|)−(1+µ), (x, t) ∈ R2 \Di, (3.5)

|αi(x, t)| ≤ Cθ(1 + |x− λit|)−(1+µ), (x, t) ∈ R2 \Di. (3.6)

Furthermore, we have

|ρi(x, t)| ≤ Cθ, |αi(x, t)| ≤ Cθ, (x, t) ∈ R2. (3.7)

Proof. It is easy by using the method in [3].
Secondly, We will give the estimates of vi, wi. But we need a rough estimate for ρi if we

want to reduce the estimate of wi. We prove the theorem in three steps.
Step 1. The rough estimate of ρi
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We linearized (3.1) at the neighborhood of u = 0,( ∂

∂t
+ λi

∂

∂x

)
ρi =

n∑
j,k=1

∂γijk
∂x

(u)wjwk + 2

n∑
j,k=1

γijk(u)wjρk −▽λi(u)uxρi

+ (bi(u))xx +
n∑

j,k=1

(ξijk(u)wjbk)x − (λi(u)− λi)αi

.
= f(x, t). (3.8)

For fixed (x, t) ∈ Di, suppose that the line Y −x = λi(S−t) intersects the line Y = (λi+δ0)S
(resp. Y = (λi − δ0)S) at the point (y, y

λi+δ0
) (resp. (y, y

λi−δ0
)). Without loss of generality,

we only consider the first case, i.e. y = λi+δ0
δ0

(x − λit). As we know that the line between

(x, t) and (y, y
λi+δ0

) included in Di, so we integrate (3.7) from y
λi+δ0

to t,

ρi(x, t) = ρi

(
y,

y

λi + δ0

)
+

∫ t

y
λi+δ0

∫
R

δ(x− y − λi(t− s))f(y, s)dyds

= ρi

(
y,

y

λi + δ0

)
+

∫ t

y
λi+δ0

f(x− λi(t− s), s)ds. (3.9)

We now estimate the right side terms of (3.8). From (3.5),∣∣∣ρi(y, y

λi + δ0

)∣∣∣ ≤ Cθ
(
1 +

∣∣∣y − λiy

λi + δ0

∣∣∣)−(1+µ)

≤ Cθ(1 + |x− λit|)−(1+µ). (3.10)

From Lemma 2.3 and (2.14),∫ t

y
λi+δ0

∣∣∣∑
j ̸=k

∂γijk
∂x

wjwk

∣∣∣(x− λi(t− s), s)ds

≤ CM2(t)

∫ t

y
λi+δ0

∑
j ̸=k

Fi,j,kds ≤ CM2(t)(1 + |x− λit|)−(1+µ). (3.11)

From (1.22), using Hadamard’s formula and (2.1), we have∫ t

y
λi+δ0

∣∣∣∑
j ̸=i

∂γijj
∂x

w2
j (x− λi(t− s), s)

∣∣∣ds ≤ CθM(t)(1 + |x− λit|)−(1+µ). (3.12)

From the definition of M(t) and the relation (1.22) for j = i,∫ t

y
λi+δ0

∣∣∣∂γiii
∂x

w2
i (x− λi(t− s), s)

∣∣∣ds ≤ CθM(t)(1 + |x− λit|)−(1+µ). (3.13)

From (3.5) in Lemma 3.1,

|ρk(x− λi(t− s), s)| ≤ Cθ(1 + |x− λi(t− s)− λks|)−(1+µ) for all k ̸= i. (3.14)

From Lemma 2.3 and (3.5),∫ t

y
λi+δ0

∣∣∣ ∑
j ̸=i,k ̸=i

γijkwjρk(x− λi(t− s), s)
∣∣∣ds ≤ CθM(t)(1 + |x− λit|)−(1+µ),

∫ t

y
λi+δ0

∣∣∣ n∑
k=1

γiikwiρk(x− λi(t− s), s)
∣∣∣ds ≤ CθM(t)(1 + |x− λit|)−(1+µ).

Since (x− λi(t− s), s) ∈ Di, for l ̸= i,

|x− λi(t− s)− λls| ≥ |λl − λi|s− |x− λit| ≥ δ0s ≥ |x− λit|. (3.15)
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From (3.7) in Lemma 3.1,∫ t

y
λi+δ0

∣∣∣∑
j ̸=i

γijiwjρi(x− λi(t− s), s)
∣∣∣ds

≤ CθM(t)

∫ t

y
λi+δ0

(1 + |x− λi(t− s)− λjs|)−(1+µ)ds

≤ CθM(t)(1 + |x− λit|)−(1+µ)t. (3.16)

Because in the normalized coordinate, ∇λi · ri(uiei) = 0, from Lemma 2.2, (3.4)–(3.6),
and using Hadamard’s formula for ∇λi · ri(u), we have∫ t

y
λi+δ0

∣∣∣[∑
k ̸=i

wk ▽ λirkρi(x− λi(t− s), s) + wi ▽ λiriρi(x− λi(t− s), s)
]∣∣∣ds

≤ CθM(t)

∫ t

y
λi+δ0

∑
k ̸=i

(1 + |x− λit− (λj − λi)s|)−(1+µ)ds

≤ CθM(t)(1 + |x− λit|)−(1+µ)t. (3.17)

We can calculate directly

(bi(u))xx =

n∑
k,j=1

b̃ijk(u)wjwk +

n∑
k=1

b̃ik(u)ρk,

where b̃ijk(ujej) =
∂b̃ik
∂uj

(ujej) = 0. The estimate of the term (bi(u))xx is similar to the above

terms. For the estimate of
n∑

j,k=1

(ξijk(u)wjbk)x, we only need to consider the term bi(u) and

bi(u)x. From (1.23)–(1.25), Lemmas 2.3 and 2.5,∣∣∣ ∫ t

0

bi(u)(x− λis, t− s)ds
∣∣∣

≤ C

∫ t

0

∑
j ̸=k

|ujuk(x− λis, t− s)|ds

≤ CM2(t)

∫ t

0

∑
j ̸=k

Fi,j,kds ≤ C(1 + |x− λit|)−(1+µ)M2(t). (3.18)

It is similar to the estimate of bi(u)x, and∣∣∣ ∫ t

0

(bi(u))x(x− λis, t− s)ds
∣∣∣ ≤ C(1 + |x− λit|)−(1+µ)M2(t).

Now, we need to estimate the last term. When (x− λi(t− s), s) ∈ Di, from (3.5), (3.7) and
λi = λi(uiei) = 0,

|λi − λi(u)| =
∣∣∣ ∫ t

0

∑
k ̸=i

∂

∂uk
λi(su1, su2, · · · , sun)dsuk

∣∣∣, (3.19)

∫ t

y
λi+δ0

|(λi − λi(u))αi(x− λi(t− s), s)|ds ≤ CθM(t)t(1 + |x− λit|)−(1+µ).
(3.20)

Combining these inequalities above, we obtain that for (x, t) ∈ Di,

|ρi(x, t)| ≤ Cθ(1 + |x− λit|)−(1+µ) + CθM(t)t(1 + |x− λit|)−(1+µ). (3.21)
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Step 2. The estimate of vi

Now, we will get estimates of vi from the first equation of (1.14). First of all, we linearize
this equation at the neighborhood of u = 0,( ∂

∂t
+ λi

∂

∂x

)
vi =

n∑
j,k=1

βijk(u)vjwk +
n∑

j,k=1

υijk(u)vjbk(u) + bi(u) + (λi − λi(u))
∂vi
∂x

.
= f1(x, t). (3.22)

Then we get the expression of solutions for the systems, where δ is the Dirac function,

vi(x, t) =

∫
R

δ(x− y − λit)vi(y, 0)dy +

∫ t

0

∫
R

δ(x− y − λi(t− s))f1(y, s)dsdy

= vi(x− λit, 0) +

∫ t

0

[ n∑
j,k=1

βijk(u)vjwk +
n∑

j,k=1

υijk(u)vjbk(u) + bi(u)

+ (λi − λi(u))
(
wi −

n∑
j,k=1

li ▽ rjrkvjwk

)]
(x− λis, t− s)ds

.
= B1 +B2 +B3 +B4 +B5. (3.23)

From (1.8), we know that

|B1| = |vi(x− λit, 0)| = |li(u) · u(x− λit, 0)|

≤ Cθ(1 + |x− λit|)−(1+µ).

Rewrite B2 as

B2 =

∫ t

0

∑
j ̸=k,k ̸=i

βijk(u)vjwkds+

∫ t

0

∑
k ̸=i

βikk(u)vkwkds

.
= B21 +B22. (3.24)

From (2.14), (2.4) and Lemma 2.3,

|B21| ≤ C

∫ t

0

∑
j ̸=k

Fi,j,kds ≤ C(1 + |x− λit|)−(1+µ)M2(t). (3.25)

From (1.21), in the normalized coordinate, we get

βiii(u) = βiii(u)− βiii(uiei) =

∫ 1

0

∑
k ̸=i

∂βiii

∂uk
(su1, · · · , ui, · · · , sun)dsuk. (3.26)

From (2.2), (2.14), (3.26) and (2.15), we have the following inequality

|B22| ≤ C

∫ t

0

∑
j ̸=k,k ̸=i

|ujvkwk(x− λis, t− s)|ds

≤ C(1 + |x− λit|)−(1+µ)M2(t). (3.27)

From (3.24)–(3.27), we have

|B2| ≤ C(1 + |x− λit|)−(1+µ)M2(t). (3.28)

Noting (2.2), (3.17), thus

|B4| ≤ C(1 + |x− λit|)−(1+µ)M2(t). (3.29)



No.4 WANG, W. K. & YANG, X. F. POINTWISE ESTIMATES OF SOLUTIONS 467

Furthermore, it is easy to check the following inequality

|B3| =
∣∣∣ ∫ t

0

n∑
j,k=1

γijk(u)vjbk(x− λis, t− s)ds
∣∣∣

≤ C
∣∣∣ ∫ t

0

∑
k

bk(u)(x− λis, t− s)ds
∣∣∣

≤ C(1 + |x− λit|)−(1+µ)M2(t). (3.30)

Now we estimate the term B5,

B5 =

∫ t

0

(λi − λi(u))wi(x− λis, t− s)ds

−
∫ t

0

(λi − λi(u))
n∑

j,k=1

li ▽ rjrkvjwk(x− λis, t− s)ds

.
= B51 +B52. (3.31)

Notice that from (2.15), (3.19) and (2.6),

|B51| ≤
∫ t

0

|(λi − λi(u))wi(x− λi(t− s), s)|ds

≤ CM2(t)(1 + |x− λit|)−(1+µ). (3.32)

For the estimate of B52, because of (1.21), (3.19) and (3.28), we have

|B52| ≤
∫ t

0

∣∣∣∑
k ̸=i

λi − λi(u)

λk(u)− λi(u)
βijkvjwk

∣∣∣(x− λi(t− s), s)ds

≤ CM2(t)(1 + |x− λit|)−(1+µ). (3.33)

Now we can get that

|vi(x, t)| ≤ Cθ(1 + |x− λit|)−(1+µ) + CM2(t)(1 + |x− λit|)−(1+µ). (3.34)

Step 3. The estimate of wi

We linearize the second equation of (1.14). Then( ∂

∂t
+ λi

∂

∂x

)
wi =

n∑
j,k=1

γijk(u)wjwk +
n∑

j,k=1

(ξijk(u)wjbk)x

+ (bi(u))x + (λi − λi(u))ρi
.
= f2(x, t). (3.35)

We just need to estimate wi(x, t) for (x, t) ∈ Di because of (3.4) for (x, t) ∈ R2 \Di, here y
has the same meaning as in Step 1. Similar to Step 2, it follows that

wi(x, t) = wi

(
y,

y

λi + δ0

)
+

∫ t

y
λi+δ0

f2(x− λi(t− s), s)ds. (3.36)

From (3.4) we know that

|wi(y,
y

λi + δ0
)| ≤ Cθ(1 + |x− λit|)−(1+µ).

The estimate of f2(x, t) is similar to that of vi(x, t) except for the last term.
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We will use (3.19), (3.21), Lemmas 2.5 and 2.2, and furthermore we need the condition
µ > 1.

(1 + |x− λit|)1+µ

∫ t

y
λi+δ0

|[λi − λi(u)]ρi(x− λi(t− s), s)|ds

≤ CθM(t) + CθM2(t)

∫ t

y
λi+δ0

∑
j ̸=i

(1 + |x− λi(t− s)− λjs|)−(1+µ)sds.
(3.37)

Because (x, t) ∈ Di, we have

|x− λi(t− s)− λjs| ≥ |λj − λi|s− |x− λit| ≥ δ0s for
y

λi + δ0
≤ s ≤ t.

Furthermore since µ > 1,∫ t

y
λi+δ0

∑
j ̸=i

(1 + |x− λi(t− s)− λjs|sds ≤ C

∫ t

y
λi+δ0

(1 + s)−(1+µ)sds ≤ C. (3.38)

From (2.14) and the above estimates,

(1 + |x− λit|)1+µ|wi(x, t)| ≤ Cθ + CθM(t) + CM2(t). (3.39)

Combining the inequalities (3.34), (3.39), we see that there is a positive constant C such
that

M(t) ≤ Cθ + CθM(t) + CM2(t). (3.40)

Since θ is sufficiently small, by continuity we have

M(t) ≤ Cθ. (3.41)

This completes the proof of the main theorem.
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