
Chin. Ann. Math.
24B:4(2003),475–484.

ON A HYPER HILBERT TRANSFORM****

CHEN Jiecheng* DING Yong** FAN Dashan***

Abstract

The authors define the directional hyper Hilbert transform and give its mixed norm estimate.
The similar conclusions for the directional fractional integral of one dimension are also obtained

in this paper. As an application of the above results, the authors give the Lp-boundedness for a
class of the hyper singular integrals and the fractional integrals with variable kernel. Moreover,
as another application of the above results, the authors prove the dimension free estimate for
the hyper Riesz transform. This is an extension of the related result obtained by Stein.
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§1. Introduction

For n ≥ 2, let Sn−1 be the unit sphere in Rn with normalized Lebesgue measure dθ. The
classical directional Hilbert transform is defined, initially on the test space S(Rn), by

Hf(x, θ) = p.v.
1

π

∫
R
sgn(t)|t|−1f(x− tθ)dt, (1.1)

where (x, θ) ∈ Rn × Sn−1. Since the Hilbert transform plays a significant role in studying
several different fields in mathematics, it, as well as its related maximal operators, has been
well studied. Among many features of the Hilbert transform, one of the important properties
is the boundedness of its mixed norm

∥Hf∥Lp(Lq) =
{∫

Rn

(∫
Sn−1

|Hf(x, θ)|qdθ
)p/q

dx
}1/p

(1.2)
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(see [6] for more details). For 0 ≤ α < 1, we can formally define a hyper Hilbert transform
Hα,

Hαf(x, θ) = p.v.
1

π

∫
R
sgn(t)|t|−1−αf(x− tθ)dt. (1.3)

However, for the practice reason, we will study a modified operator Hα defined by

Hαf(x, θ) =
1

π

∫ ∞

0

t−1−α{f(x− tθ)− f(x)}dt. (1.4)

Similarly to the case of α = 0, first we can easily obtain the following lemma.
Lemma 1.1.

∥Hαf(·, θ)∥Lp(Rn) ≤ C∥f∥Lp
α(Rn), 1 < p < ∞,

where ∥f∥Lp
α
is the homogeneous Sobolev Lp norm of f , and the constant C is independent

of θ, f and n.
Proof. For fixed θ, pick a rotation R such that Rθ = 1 = (1, 0, · · · , 0). Let R−1 be the

inverse of R. For any function f , we denote the function fR by fR = f(Rx) so that

f(x− tθ)− f(x) = fR−1(Rx− t1)− fR−1(Rx).

Let

x = (x1, x) ∈ R× Rn−1.

Then

∥Hαf(·, θ)∥pLp(Rn) ∼
∫
Rn

∣∣∣ ∫ ∞

0

{fR−1(Rx− t1)− fR−1(Rx)}t−1−αdt
∣∣∣pdx

=

∫
Rn

∣∣∣ ∫ ∞

0

{fR−1(x− t1)− fR−1(x)}t−1−αdt
∣∣∣pdx

=

∫
Rn

∣∣∣ ∫ ∞

0

{fR−1(x1 − t, x)− fR−1(x1, x)}t−1−αdt
∣∣∣pdx

=

∫
Rn−1

∫
R1

∣∣∣ ∫ ∞

0

{fR−1(x1 − t, x)− fR−1(x1, x)}t−1−αdt
∣∣∣pdx1dx.

Let

h(x1) = fR−1(x1, x).

Then it is easy to see that∫ ∞

0

{h(u− t)− h(u)}t−1−αdt = −
∫ 1

0

∫ ∞

0

h′(u− st)t−αdtds = CJ1−α(h
′)(u),

where

Jα(h)(u) =

∫ ∞

0

h(u− t)t−1+αdt.

By checking the Fourier transform, we can see that, up to a constant, Jα is the one-dimension
Riesz potential (see [13]). Thus∥∥∥∫ ∞

0

{h(· − t)− h(·)}t−1−αdt
∥∥∥
Lp(R1)

≤ C∥h′∥Lp
−1+α(R1)

∼= ∥h∥Lp
α(R1).

Therefore, we have

∥Hαf(·, θ)∥pLp(Rn) ≤ C

∫
Rn−1

∥h∥p
Lp

α(R1)
dx.

Now by [17], we can obtain

∥Hαf(·, θ)∥pLp(Rn) ≤ C∥fR−1∥p
Lp

α(Rn)
= C∥f∥p

Lp
α(Rn)

, (1.5)
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and obviously, the constant C is independent of n and θ, and f .
In the second section, we will study the mixed norms of Hαf , as well as the mixed norm

of the directional fractional integral Iαf . Some applications will be obtained in Sections
3 and 4. Parts of our arguments will be based on the ideas in [6], with some non-trivial
computations.

§2. Mixed Norm Estimates

First we establish the following L2 estimate.
Lemma 2.1. For β < 1

2 + α, we have

∥Hαf∥L2(L2
β)

≤ C∥f∥L2
α(Rn).

Proof. Following the idea in [6], since L2
β(S

n−1) is a Hilbert space, we have

∥Hαf∥L2(L2
β)

= ∥Ĥαf∥L2(L2
β)

with

Ĥαf(ξ, θ) =

∫
Rn

e−2πi(x,ξ)Hαf(x, θ)dx = f̂(ξ)

∫ ∞

0

t−1−α{e2πit(ξ,θ) − 1}dt.

Thus we have

Ĥαf(ξ, θ) = Cf̂(ξ)|ξ|α|⟨ξ′, θ⟩|αsgn⟨ξ′, θ⟩,
where ξ′ = ξ/|ξ| and

C = C(⟨ξ′, θ⟩) =


∫ ∞

0

t−1−α{e2πit − 1}dt, if ⟨ξ′, θ⟩ > 0,∫ ∞

0

t−1−α{e−2πit − 1}dt, if ⟨ξ′, θ⟩ < 0.

Now to prove the lemma, it suffices to show that

sup
ξ′

∥Csgn⟨ξ′, θ⟩|⟨ξ′, θ⟩|α∥L2
β(S

n−1) < ∞. (2.1)

For each ξ′ fixed, we need to find the spherical harmonic development of Csgn⟨ξ′, θ⟩|⟨ξ′, θ⟩|α.
Let {Ym,j} be the spherical harmonic polynomials. By the Funk-Hecke formula[11], for large
m, ∫

Sn−1

C(⟨ξ′, θ⟩)sgn⟨ξ′, θ⟩|⟨ξ′, θ⟩|αYm,j(θ)dθ ∼= λmYm,j(ξ
′) (2.2)

with

λm =

∫ 1

−1

C(t)sgn(t)Pm(n, t)|t|α(1− t2)(n−3)/2 dt, (2.3)

where

C(t) =


∫ ∞

0

s−1−α{e2πis − 1}ds, if t > 0,∫ ∞

0

s−1−α{e−2πis − 1}ds, if t < 0.

Moreover, by the Rodrigues representation,

Pm(n, t) = (−1)nRm(n)(1− t2)(3−n)/2 (d /dt )m(1− t2)m+(n−3)/2 (2.4)

with the Rodrigues constant

Rm(n) = 2−mΓ((n− 1)/2)/Γ(m+ (n− 1)/2).
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Now we need to estimate λm. Write λm = C(
∫ 1

0
+
∫ 0

−1
) in (2.3). Clearly we only need to

estimate ∫ 1

0

Pm(n, t)tα(1− t2)(n−3)/2 dt,

since the estimate of another term is the same. By the definition of Pm(n, t) and integration
by parts, ∣∣∣ ∫ 1

0

Pm(n, t)tα(1− t2)(n−3)/2 dt
∣∣∣

=
∣∣∣Rm(n)

∫ 1

0

tα(d /dt )m(1− t2)m+(n−3)/3 dt
∣∣∣

≤ CRm(n)
∣∣∣ ∫ 1

0

tα−1(d /dt )m−1(1− t2)m−1+(n−1)/2 dt
∣∣∣

= CRm(n) /Rm−1(n+ 2)
∣∣∣ ∫ 1

0

tα−1(1− t2)(n−1)/2Pm−1(n+ 2, t)dt
∣∣∣.

By the definition of Rm(n), it is easy to check that Rm(n) /Rm−1(n+ 2) ≤ C, and C is
independent of m. Therefore, let

N = n+ 2, γ = 1− α.

Without loss of generality, we may write

|λm| ≤
∣∣∣ ∫ 1

1
m

Pm(N, t)t−γ(1− t2)(N−3)/2dt
∣∣∣+ ∫ 1

m

0

|Pm(N, t)|t−γ(1− t2)(N−3)/2dt

:= I1 + I2.

From [11, Chapter 8], we know that

|Pm(n, t)| ≤ Cm(2−n)/2(1− t2)(2−n)/2. (2.5)

Thus we have a constant C independent of m such that

I2 ≤ Cm−N/2+γ = Cm−n/2−α.

By (2.4), using integration by parts, we have

I1 ≤ CRm(N)mγ
∣∣∣{( d

dt

)m−1

(1− t2)m+(N−3)/2
}
t=1/m

∣∣∣
+ CRm(N)

∣∣∣ ∫ 1

1
m

t−γ−1
( d

dt

)m−1

(1− t2)m−1+(N−1)/2dt
∣∣∣

:= J1 + J2.

By the definition of Pm,

J2 ≤ CRm(N) /Rm−1(N + 2)
∣∣∣ ∫ 1

1
m

t−γ−1(1− t2)(n−1)/2Pm−1(N + 2, t)dt
∣∣∣

So using (2.5), we have

J2 ≤ Cm−N/2

∫ 1

1
m

t−γ−1(1− t2)−1/2dt ≤ Cm−N/2+γ = Cm−n/2−α. (2.6)

By the definition of Pm(n, t) and (2.5),

J1 = C
[
Rm(N) /Rm−1(N + 2)

]
mγ

∣∣Pm−1(N + 2, 1/m)(1− 1/m2)(N−1)/2
∣∣

≤ Cmγ−N/2 = Cm−n/2−α.
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From the estimates for I1, J1 and J2, we now have the estimate

|λm| ≤ Cm−n/2−α. (2.7)

By the spherical harmonic development and (2.2), we have for each fixed ξ′,

sgn⟨ξ′, θ⟩|⟨ξ′, θ⟩|α =
∞∑

m=1

N(m)∑
j=1

λmYm,j(ξ
′)Ym,j(θ),

where N(m) = O(mn−2), and
N(m)∑
j=1

|Ym,j(ξ
′)|2 = O(mn−2) (see [11] or [16]). Thus

∥sgn⟨ξ′, θ⟩|⟨ξ′, θ⟩|α∥2L2
β(S

n−1)
∼=

∞∑
m=1

N(m)∑
j=1

|λm|2|m|2β |Ym,j(ξ
′)|2

∼=
∞∑

m=1

m−n−2α+2βmn−2

=
∞∑

m=1

m−2−2α+2β < ∞,

since β < 1
2 + α. The lemma is proved.

Next, we define the directional fractional integral Iαf by

Iαf(x, θ) =
∫ ∞

0

tα−1f(x− tθ)dt, 0 < α < 1.

Then following the same proof of Lemma 2.1, we have
Lemma 2.2. For 0 < β < 1

2 − α, 0 < α < 1
2 ,

∥Iα(f)∥L2(L2
β)

≤ C∥f∥L2
−α(Rn).

Theorem 2.1. Let 1 < p ≤ 2.
(i) For 0 < α < 1/2 and σ = 2n/(n+ 2α),

∥Iα(f)∥L2(Lr) ≤ C∥f∥Lσ (2.8)

for any r with 1 ≤ r < 2(n− 1)/(n− 2 + 2α).
(ii) For 0 < α < 1/2, 1 < q < p ≤ 2 with 1/p = 1/q − α/n,

∥Iα(f)∥Lp(Lr) ≤ C∥f∥Lq (2.9)

for any r with

1 ≤ r <
2(n− 1)

2(n− 1)(1− β) + β(n− 2 + 2α)
,

where

β =
1/p′ − α /n

1 /2 − α /n

(iii) For 0 ≤ α < 1 and γ < (1 + 2α)/p′,

∥Hα(f)∥Lp(Lp
γ) ≤ C∥f∥Lp

α(Rn).

Proof. (i) is obvious from Lemma 2.2, by using the Sobolev theorem. For any s >
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n/(n− α), we have

∥Iα(f)∥Ls(L1) =
{∫

Rn

(∫
Sn−1

∣∣∣ ∫ ∞

0

t−1+αf(x− tθ)dt
∣∣∣dθ)s

dx
}1/s

≤
{∫

Rn

(∫ ∞

0

t−1+α

∫
Sn−1

|f(x− tθ)|dθdt
)s

dx
}1/s

= C∥Jα(|f |)∥Ls(Rn),

where Jα(f) =
∫
Rn f(x− y)|y|−n+αdy is the classical fraction integral with order α and it is

known that

∥Jαf∥Ls(Rn) ≤ C∥f∥Lr(Rn)

with 1/s = 1/r − α/n. This shows for any s > n/(n− α) that

∥Iα(f)∥Ls(L1) ≤ C∥f∥Lr . (2.10)

Thus (ii) comes from an interpolation between (2.8) and (2.10). By Lemma 1.1, it is easy
to see that for any 1 < q < ∞,

∥Hα(f)∥Lq(Lq) ≤ ∥f∥Lq
α(Rn). (2.11)

Thus (iii) follows by an interpolation between (2.11) and Lemma 2.1.
Two applications of Theorem 2.1 on the singular and fraction integrals will be studied in

the following section.

§3. Singular and Fractional Integrals

A function Ω(x, z) defined on Rn × Rn is said to belong to L∞(Rn) × Lr(Sn−1), r ≥ 1,
if it satisfies the following conditions:

(i) Ω(x, λz) = Ω(x, z) for all λ > 0 and all x, z ∈ Rn.
(ii) ∥Ω∥L∞×Lr := sup

x∈Rn

(
∫
Sn−1 |Ω(x, z′)|rdσ(z′))1/r < ∞, where z′ = z/|z|.

For 0 ≤ α < 1, we define the operator Tαf(x) with variable singular kernel by

Tαf(x) = p.v.

∫
Rn

Ω(x, x− y)|x− y|−n−αf(y)dy,

where f ∈ S(Rn) and Ω ∈ L∞(Rn)× L1(Sn−1) satisfies∫
Sn−1

Ω(x, y′)dσ(y′) = 0 for any x ∈ Rn. (3.1)

Similarly, the fractional integral with variable kernel is defined by

Fα(f)(x) =

∫
Rn

Ω(x, x− y)|x− y|−n+αf(y)dy for 0 < α < n,

where Ω does not need to satisfy (3.1) (see [4, 5, 8, 10] for more information). We recall the
following theorem by Calderón and Zygmund.

Theorem A.[2, 3] Let 1 < p ≤ 2. If Ω ∈ L∞(Rn)×Lr(Sn−1), r > p′(n− 1)/n satisfying
(3.1), then there is a C > 0 such that

∥T0f∥Lp(Rn) ≤ C∥f∥Lp(Rn) for all f ∈ S(Rn).

As an extension of the above theorem, we will establish the following theorem.
Theorem 3.1. Let 0 ≤ α < 1, 1 < p ≤ 2 and r > p′(n− 1)/(n+ 2α). If Ω ∈ L∞(Rn)×

(Hr ∩ L1)(Sn−1), where Hr is the Hardy space if r ≤ 1 and Hr = Lr if 1 < r < ∞.
Additionally, assume that Ω satisfies (3.1). Then there exists a C > 0 such that

∥Tαf∥Lp(Rn) ≤ C∥f∥Lp
α(Rn).
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Proof. The case α = 0 is well known (see Theorem A). For α > 0, by changing to the
spherical coordinates, we have

|Tαf(x)| =
∣∣∣ ∫

Rn

|y|−n−αΩ(x, y){f(x− y)− f(x)}dy
∣∣∣

= C
∣∣∣ ∫

Sn−1

Ω(x, θ)Hα(f)(x, θ)dθ
∣∣∣.

Thus for any 1 < p ≤ 2 and 0 ≤ γ < (1 + 2α)/p′,

|Tαf(x)| ≤ C sup
x

∥Ω(x, ·)∥
Lp′

−γ(S
n−1)

∥Hα(f)(x, ·)∥Lp
γ(Sn−1).

By (iii) of Theorem 2.1, to prove the theorem, it suffices to show

sup
x

∥Ω(x, ·)∥
Lp′

−γ(S
n−1)

< ∞.

Let J̃γ be the Riesz potential on Sn−1. By [7], we know that

∥Ω(x, ·)∥
Lp′

−γ(S
n−1)

∼=
(∫

Sn−1

|J̃γΩ(x, θ)|p
′
dθ

)1/p′

≤ C∥Ω(x, ·)∥Hr(Sn−1),

where r > p′(n− 1)/(n+ 2α). This proves Theorem 3.1.
Using the exactly same argument, by (i), (ii) of Theorem 2.1, we have the following result

for the fractional integral Fα.
Theorem 3.2. Let 0 < α < 1/2 and Ω ∈ L∞(Rn)× Lr(Sn−1).
(i) If r > 2(n− 1)/(n− 2α), then ∥Fα(f)∥L2(Rn) ≤ C∥f∥Lσ(Rn), where σ = 2n/(n+ 2α).

(ii) If r > 2δ(n− 1)/(n− 2α), where δ = (1/2− α/n)/(1/p′ − α/n), then

∥Fα(f)∥Lp(Rn) ≤ C∥f∥Lq(Rn) with 1/q = 1/p+ α/n.

For a larger range of α, we have the following theorem which is an improvement of
Theorem 4 in [10] for the unweighted 1 < p ≤ 2 case.

Theorem 3.3. Let n/(n− α) < p ≤ 2, 1/q = 1/p+ α/n and Ω ∈ L∞(Rn)× Lr(Sn−1).
If r = q′ = p′n/(n− p′α), then

∥Fα(f)∥Lp(Rn) ≤ C∥f∥Lq(Rn).

Remark 3.1. In Theorem 4 of [10], one needs the condition r > q′.
Proof. We may assume both Ω and f are non-negative. Write

|Fα(f)(x)| ≤ I1(x) + I2(x)

with

I1(x) =

∫
|y|<R

Ω(x, y)|y|−n+αf(x− y)dy,

I2(x) =

∫
|y|>R

Ω(x, y)|y|−n+αf(x− y)dy,

where R is a number to be chosen. Choose a small positive ϵ < α. Then

I1(x) ≤ Rα−ϵFϵ(f)(x).

By Hölder’s inequality, we have

I2(x) ≤ ∥f∥Lq(Rn)

(∫
|y|≥R

|Ω(x, y)|q
′
|y|q

′(α−n)dy
)1/q′

.
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It is easy to check that q′(n− α) > n. Thus by the condition assumed on Ω, we have

I2(x) ≤ CR−(n−α)+n/q′∥f∥Lq(Rn).

Combining the estimates for I1(x) and I2(x), we obtain

|Fα(f)(x)| ≤ CRα−ϵ{Fϵ(f)(x)R
ϵ−n+ n

q′ ∥f∥Lq(Rn)}.

Letting Rϵ−n+n/q′ = Fϵ(f)(x)
/
∥f∥Lq(Rn) , we obtain that

|Fα(f)(x)| ≤ C|Fϵ(f)(x)|1+λ∥f∥−λ
Lq(Rn),

where

λ = (α− ϵ)/(ϵ− n+ n/q′) = −(α− ϵ)/(α− ϵ+ n/p),

1 + λ = n/(n+ p(α− ϵ)).

Now for any n/(n− α) < p ≤ 2, choose small ϵ > 0 such that

r = q′ > 2ζ(n− 1)/(n− 2ϵ)

with ζ = (1/2− ϵ/n)/(1/p′ − ϵ/n). Then by (ii) in Theorem 3.2, we have

∥Fα(f)∥Lp(Rn) ≤ C∥f∥−λ
Lq(Rn)∥Fϵ(f)(x)∥(1+λ)

Lp(1+λ)(Rn)
≤ C∥f∥−λ

Lq(Rn)∥f∥
(1+λ)
Lσ(Rn),

where 1/σ = 1/(p(1 + λ)) + ϵ/n = (n+ p(α− ϵ))/pn+ ϵ/n = 1/p+α/n. Thus σ = q, which
implies

∥Fα(f)∥Lq ≤ C∥f∥Lp .

The theorem is proved.

§4. Dimension Free Estimate

For n ≥ 2, j = 1, 2, · · · , n, the j-th Riesz transform Rj defined on the test space S(Rn)
is given by

Rj(f)(x) = p.v. An

∫
Rn

yj |y|−n−1f(x− y)dy (4.1)

with An = Γ((n + 1)/2)π−(n+1)/2, where f ∈ S(Rn) and y = (y1, y2, · · · , yn). It is well
known that Riesz transforms play a very important role in studying Harmonic Analysis, as
well as in the studying many different topics related to Harmonic Analysis (see [16, 13, 14]
among numerous references). Consider the vector valued Riesz transform

R(f)(x) = (R1(f)(x), · · · , Rn(f)(x)). (4.2)

Then for fixed f and x, the norm of R is

|R(f)|(x) =
( n∑

j=1

|Rj(f)(x)|2
)1/2

. (4.3)

E. M. Stein established an interesting dimension free estimate

∥ |R(f)| ∥Lp(Rn) ≤ C∥f∥Lp(Rn), (4.4)

where 1 < p < ∞ and C = C(p) is a constant independent of n and f . For the details, readers
can see [15], also [9] for an extension of (4.4) to the more general harmonic polynomials. In
this section we will consider the Hyper Riesz Transform, for 0 ≤ α < 1 and j = 1, 2, · · · , n,

Rα,j(f)(x) = p.v. An,α

∫
Rn

yj |y|−n−1−αf(x− y)dy, (4.5)

where

An,α = Γ((n+ α+ 1)/2)π−(n+1)/2.
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Clearly Rα,j(f)(x) exists for each x, since f ∈ S(Rn) and the kernel of Rα,j satisfies the
cancellation condition. The vector-valued hyper Riesz transform now is defined by

Rα(f)(x) = (Rα,1(f)(x), · · · , Rα,n(f)(x)). (4.6)

Theorem 4.1. For 1 < p < ∞ and 0 ≤ α < 1, there exists a constant C = C(p, α),
independent of n and f ∈ S(Rn), such that

∥ |Rα(f)| ∥Lp ≤ C∥f∥Lp
α(Rn). (4.7)

Proof. We will adapt a method of Pisier[12] (see also [1]). For f ∈ S(Rn), 0 ≤ α < 1
and θ ∈ Sn−1, recall that the hyper Hilbert transform acting in the direction θ,

Hθ
αf(x) =

∫ ∞

0

t−1−α(f(x− tθ)− f(x))dt. (4.8)

Now following the argument in [12], also see [1], we equip Rn with the Gaussin proba-

bility measure dγn(y) = (2π)−n/2e−|y|2/2dy and introduce the orthogonal projection Q of

L2(Rn, γn) onto the space of functions of the form
n∑

j=1

ajyj in which the coordinate functions

{yj}nj=1 form an orthogonal basis. Then we can establish the following formula.

Lemma 4.1. For almost all x ∈ Rn,

Q{Hαf(x)}(y) = C

n∑
j=1

Rα,jf(x)yj . (4.9)

Proof. Let θ = y′ = y/|y|. We need to prove for each f ∈ S(Rn) and x ∈ Rn,

aj = aj(x) =

∫
Rn

Hy′

α f(x)yjdγn(y) = (2/π)1/2Rα,jf(x).

By the definition and polar coordinates,∫
Rn

Hy′

α f(x)yjdγn(y) = (2π)−n/2

∫
Sn−1

y′j

∫ ∞

0

sn+αe−s2/2ds

·
∫ ∞

0

t−1−α{f(x− ty′)− f(x)}dtdσ(y′)

∼= C

∫
Sn−1

∫ ∞

0

t−1−αy′j{f(x− ty′)− f(x)}dtdσ(y′)

∼= Rα,jf(x).

Lemma 4.1 is proved.

Let 1 < p < ∞ and γ(p) =
(
( 2π )

1/2
∫∞
0

tpe−t2/2dt
)1/p

. We can find the following identity
in [12], ∥∥∥ n∑

j=1

ajyj

∥∥∥
Lp(Rn,γn)

= γ(p)
∥∥∥ n∑

j=1

ajyj

∥∥∥
L2(Rn,γn)

= γ(p)
( n∑

j=1

|aj |2
)1/2

. (4.10)

By Lemma 4.1 and Lemma 2.1 and following the same argument in [12], we obtain Theorem
4.1.
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