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Lp-DICHOTOMY OF LINEAR DIFFERENTIAL
EQUATIONS IN AN ARBITRARY BANACH SPACE
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Abstract

The notion of Lp-dichotomy for linear differential equations with possibly unbounded oper-
ator is introduced. By help of Banach fixed point theorem sufficient conditions for the existence
of bounded solutions of nonlinear differential equations with an Lp-dichotomous linear part are

obtained.
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§1. Introduction

We will introduce the notion of Lp-dichotomy (1 ≤ p < ∞) for linear differential equations

with possibly unbounded operators of the form

dx

dt
= A(t)x.

The Lp-dichotomy is a generalization of the usually exponential dichotomy for such equa-

tions which guarantees the existence of bounded solutions of the nonhomogeneous equation

dx

dt
= A(t)x+ f(t)

for any f ∈ Lp or any bounded f .

By help of Banach fixed point theorem sufficient conditions for the existence of bounded

solutions of nonlinear equations with a Lp-dichotomous linear part of the form

dx

dt
= A(t)x+ f(t, x)

are obtained.

An upper estimate for the difference of two solutions of these equations is obtained too.
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§2. Problem Statement

Let X be an arbitrary Banach space with norm | · | and identity operator I. Let J =

(0,∞). For any operator C : X → X, we shall denote by D(C) the domain of C.

We consider in X the following differential equation

dx

dt
= A(t)x, (2.1)

where A(t) are linear (possibly unbounded) operators acting on X, with the same domain

D = D(A(t)) (t ∈ J) and D = X.

Let U(t, s) (t, s ∈ J) (see [4]) be the evolutionary operator of (2.1).

Definition 2.1.[3] The Equation (2.1) is said to be exponentially dichotomous if there

exist constants M, δ > 0 and projector family P (t) : X → X (t ∈ J) such that

(i) U(t, s)P (s) = P (t)U(t, s) (t ≥ s, t, s ∈ J);

(ii) for t ≥ s the restriction U(t, s)|(I−P (s))(X) is a homeomorphism between (I−P (s))(X)

and (I − P (s))(X). On (I − P (s))(X), for t < s we set U(t, s) = U−1(s, t);

(iii) ∥U(t, s)P (s)∥ ≤ Me−δ(t−s) (t ≥ s, t, s ∈ J);

(iv) ∥U(t, s)(I − P (s))∥ ≤ Me−δ(s−t) (t < s, t, s ∈ J).

By B(J) we denote the space of all bounded functions x(t) (t ∈ J) with the norm

|||x||| = sup
t∈J

|x(t)|.

The case when A(t) are bounded operators is considered in detail for example in [2, 1, 5].

Let p ∈ [1,∞).

Definition 2.2. The Equation (2.1) is said to be Lp-dichotomous if there exist a projector

family P (s) : X → X (s ∈ J) and a constant K such that

(j1)
[ ∫ t

0

∥U(t, s)P (s)∥pds
] 1

p ≤ K (t ∈ J);

(j2) the condition (ii) in Definition 2.1 holds;

(j3)
[ ∫ ∞

t

∥U(t, s)(I − P (s))∥pds
] 1

p ≤ K (t ∈ J).

It is easy to see that if Equation (2.1) is exponentially dichotomous it is Lp-dichotomous.

The following example shows that the opposite is not always true.

Example 2.1. We consider the ordinary differential equation

x′ = A(t)x, t ∈ J, x ∈ R,

where A(t) = − 1

et + r(t)
(et + r′(t)),

r(t) =

{
0, n− 1 ≤ t < n− 2αn;

nen sin2
{ π

2αn
(t− n+ 2αn)

}
, n− 2αn ≤ t < n,

and αn =
1

2n+1nen
, n = 1, 2, · · · .

The evolutionary operator of the equation is given by the formula

U(t, s) = e
∫ t
s
A(τ)dτ , i.e. U(t, s) =

es + r(s)

et + r(t)
, t ≥ s > 0, t, s ∈ J.
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Let n ≥ [M ] + 1, where M is the constant from Definition 2.1. Then for t = n and

s = n− αn, we obtain

∥U(t, s)∥ = U(n, n− αn) > M,

i.e. the equation is nonexponentially dichotomous.

We show that the equation is L1-dichotomous, i.e.∫ t

0

∥U(t, s)∥ds < 1, t ∈ J.

We have ∫ t

0

∥U(t, s)∥ds =
∫ t

0

es + r(t)

et + r(t)
ds =

1

et + r(t)

∫ t

0

(es + r(s))ds.

It will be checked that ∫ t

0

(es + r(s))ds < et.

Case 1. Let n− 1 ≤ t < n− 2αn. Then∫ t

0

(es + r(s))ds = et − 1 +
n−1∑
k=1

∫ k

k−2αk

kek sin2
{ π

2αk
(s− k + 2αk)

}
ds

= et − 1 +

n−1∑
k=1

1

2k+1
< et.

Case 2. Let n− 2αn ≤ t < n. Then∫ t

0

(es + r(s))ds = et − 1 +
n−1∑
k=1

1

2k+1
+ nen

∫ t

n−2αn

sin2
{ π

2αn
(s− n+ 2αn)

}
ds

= et − 1

2
− 1

π2n+2
sin

{ π

αn
(t− n+ 2αn)

}
< et.

Hence ∫ t

0

∥U(t, s)∥ds < et

et + r(t)
≤ 1, t ∈ J,

i.e. the equation is L1-dichotomous.

By Lp′(J) (p′ ∈ [1,∞)) we denote the space of all functions f : J → X with∫
J

|f(s)|p
′
ds < ∞

and the norm

∥f∥p′ =
(∫

J

|f(s)|p
′
ds
) 1

p′
.

Remark 2.1. It is not hard to check that the notion of Lp-equivalence is stable w. r. to

the following small perturbations on the spaces P (s)(X) and (I − P (s))(X) (s ∈ J),

∥(U(t, s)− V (t, s))P (s)∥ ≤ ϵ(t, s) for t, s ∈ J, 0 ≤ s ≤ t,

where ∫ t

0

ϵp(t, s)ds ≤ K1, K1 = const.,
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and

∥(U(t, s)− V (t, s))(I − P (s))∥ ≤ η(t, s) for t, s ∈ J, 0 ≤ t ≤ s,

where ∫ ∞

t

ηp(t, s)ds ≤ K2, K2 = const.

We shall consider the homogeneous and nonlinear differential equations with an Lp-

dichotomous linear part.

§3. Main Results

We consider the nonhomogeneous equation

dx

dt
= A(t)x+ f(t), (3.1)

where f(t) ∈ X (t ∈ J).

Theorem 3.1. Let Equation (2.1) be Lp-dichotomous. Then for any f ∈ Lq(J) (q =
p

p−1 ), Equation (3.1) has a bounded solution.

Proof. The function

x(t) =

∫ t

0

U(t, s)P (s)f(s)ds−
∫ ∞

t

U(t, s)(I − P (s))f(s)ds (3.2)

is bounded. Really by means of Hölder inequality we obtain

|x(t)| ≤
[ ∫ t

0

∥U(t, s)P (s)∥pds
] 1

p
[ ∫ t

0

|f(s)|qds
] 1

q

+
[ ∫ ∞

t

∥U(t, s)(I − P (s))∥pds
] 1

p
[ ∫ ∞

t

|f(s)|qds
] 1

q

≤ 2K∥f∥q.

By straightforward verification it is easy to show that the function x(t) is a solution of

(3.1).

Remark 3.1. Let ξ ∈ X be such that the function U(t)ξ (t ∈ J) is bounded. Then the

function z(t) = U(t)ξ + x(t) is a bounded solution of (3.1).

Theorem 3.2. Let Equation (2.1) be Lp-dichotomous. Then Equation (3.1) has a

bounded solution for any bounded function f(t) (t ∈ J).

The proof is analogous to the proof of Theorem 3.1.

Remark 3.2. The bounded solution x(t) will belong to the space Lp(J) if K is not a

constant but a function K ∈ Lp(J).

Let Br = {x ∈ X : |x| < r}. Further we consider the nonlinear equation

dx

dt
= A(t)x+ f(t, x), (3.3)

where f : J ×Br → X.

Definition 3.1. The function x(t) (t ∈ J) is said to be a solution of Equation (3.3) if

(i) x(t) ∈ D ∩Br (t ∈ J);
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(ii) there exists a strong derivative x′(t) (t ∈ J);

(iii) x(t) satisfies (3.3).

Theorem 3.3. Let the following conditions hold:

(1) Equation (2.1) is Lp-dichotomous.

(2) ∥U(t, 0)P (0)∥ ≤ K1 (t ∈ J), K1 is a constant.

(3) |f(t, x2)− f(t, x1)| ≤ a(t)|x2 − x1| (t ∈ J, x1, x2 ∈ Br), where a ∈ Lq(J), q = p
1−p .

(4) |f(t, x)| ≤ b(t) (t ∈ J, x ∈ Br), where b ∈ Lq(J) and ∥b∥q ≤ r
2K .

Then for any y0 with

|y0| ≤
r − 2K∥b∥q

K1
, y0 ∈ P (0)(X)

and ∥a∥q small enough, Equation (3.3) has exactly one solution x(t) ∈ Br (t ∈ J) with

P (0)x(0) = y0.

For two solutions x2(t) and x1(t) of (3.3), the following estimate is valid

|x2(t)− x1(t)| ≤ K1|x2(0)− x1(0)|
[
1 + 2K

∫ t

0
aq(s)ε(s)ds

1− [1− ε(t)]
1
q

]
, (3.4)

where

ε(t) = e−(2K)q
∫ t
0
aq(s)ds, t ∈ J.

Proof. Let Dr = {x ∈ B(J) : x(t) ∈ Br, t ∈ J}. Any solution of (3.3) which lies in Dr

is a solution of the equation

x(t) = U(t, 0)y0 +

∫ t

0

U(t, s)P (s)f(s, x(s))ds

−
∫ ∞

t

U(t, s)(I − P (s))f(s, x(s))ds, (3.5)

where y0 = P (0)x(0) and vice versa.

We will show that the operator Q defined by

(Qx)(t) = U(t, 0)y0 +

∫ t

0

U(t, s)P (s)f(s, x(s))ds

−
∫ ∞

t

U(t, s)(I − P (s))f(s, x(s))ds (3.6)

satysfies the conditions of Banach fixed point theorem in the set Dr ⊂ B(J).

In fact, because P (0)y0 = y0, we have

|(Qx)(t)| ≤ ∥U(t, 0)P (0)∥|y0|+ 2K∥b∥q ≤ K1|y0|+ 2K∥b∥q ≤ r.

On the other hand, for x1, x2 ∈ Dr, we have

|||Qx2 −Qx1||| ≤ 2K∥a∥q|||x2 − x1|||.

For ∥a∥q small enough, the operator Q is a contraction and has exactly one fixed point

x(t).
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For the difference of two solutions x1(t) and x2(t), we obtain the estimate

|x2(t)− x1(t)| ≤ |U(t, 0)P (0)(x2(0)− x1(0))|

+

∫ t

0

∥U(t, s)P (s)∥|f(s, x2(s))− f(s, x1(s))|ds

+

∫ ∞

t

∥U(t, s)(I − P (s))∥|f(s, x2(s))− f(s, x1(s))|ds

≤ K1|x2(0)− x1(0)|+ 2K
[ ∫ ∞

0

(a(s)|x2(s)− x1(s)|)qds
] 1

q

.

The estimate (3.4) follows from [6].

Remark 3.3. By unessentially modifications the assertions of Theorems 3.1–3.3 are still

valid if the condition (j3) is replaced by the following condition[ ∫ t

0

∥U(t, s)(I − P (s))∥pds
] 1

p ≤ K, t ∈ J.

In this case in Theorem 3.3 we can consider the function

x(t) = U(t, 0)y0 +

∫ t

0

U(t, s)P (s)f(s, x(s))ds+

∫ t

0

U(t, s)(I − P (s))f(s, x(s))ds.
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[ 5 ] Massera, J. L. & Schäffer, J. J., Linear differential equations and function spaces, Academic press, New

York and London, 1966, 456.

[ 6 ] Willett, D. & Wong, J. S. W., On the discrete analogues of some generalizations of Gronwall’s inequality,
Monatsh. Math., 69:4(1965), 362–367.


