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L,-DICHOTOMY OF LINEAR DIFFERENTIAL
EQUATIONS IN AN ARBITRARY BANACH SPACE
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Abstract

The notion of L,-dichotomy for linear differential equations with possibly unbounded oper-
ator is introduced. By help of Banach fixed point theorem sufficient conditions for the existence
of bounded solutions of nonlinear differential equations with an L;-dichotomous linear part are
obtained.
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¢1. Introduction

We will introduce the notion of L,-dichotomy (1 < p < 00) for linear differential equations

with possibly unbounded operators of the form
dx

dt
The L,-dichotomy is a generalization of the usually exponential dichotomy for such equa-

= A(t)z.

tions which guarantees the existence of bounded solutions of the nonhomogeneous equation
dx
— =A(t)xz + f(t
= Al + (1)

for any f € L, or any bounded f.

By help of Banach fixed point theorem sufficient conditions for the existence of bounded
solutions of nonlinear equations with a L,-dichotomous linear part of the form
dx

i At)x + f(t, )

are obtained.

An upper estimate for the difference of two solutions of these equations is obtained too.
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§2. Problem Statement

Let X be an arbitrary Banach space with norm | - | and identity operator I. Let J =
(0,00). For any operator C': X — X, we shall denote by D(C) the domain of C.

We consider in X the following differential equation

dx
= = Az, (2.1)

where A(t) are linear (possibly unbounded) operators acting on X, with the same domain
D =D(A(t))(te J)and D = X.

Let U(t,s) (¢t,s € J) (see [4]) be the evolutionary operator of (2.1).

Definition 2.1.3] The Equation (2.1) is said to be exponentially dichotomous if there
exist constants M, > 0 and projector family P(t) : X — X (t € J) such that

(i) U(t,s)P(s) = P(t)U(t,s) (t>s, t,s€ J);

(ii) fort > s the restriction U(t, s)|(1—p(s))(x) 5 a homeomorphism between (I —P(s))(X)
and (I — P(s))(X). On (I — P(s))(X), fort < s we set U(t,s) = U"(s,t);

(iti) ||U(t,8)P(s)|| < Me™°¢=9)  (t>s, t,s€ J);

(iv) |U(t,s)(I — P(s))|| < Me™96D  (t<s, t,s€J).

By B(J) we denote the space of all bounded functions z(t) (¢ € J) with the norm

]| = sup |(t)].
teJ

The case when A(t) are bounded operators is considered in detail for example in [2, 1, 5].

Let p € [1, 00).

Definition 2.2. The Equation (2.1) is said to be L,-dichotomous if there exist a projector
family P(s) : X —- X (s eJ) and a constant K such that

(1) / Ut 5)P |pds} <K (teJ):
(j2) the condition (ii) in Definition 2.1 holds;

1
(33) | / |U(t,5)(I = Ps)Pds|” <K (1 ).
It is easty to see that if Equation (2.1) is exponentially dichotomous it is L,-dichotomous.
The following example shows that the opposite is not always true.
Example 2.1. We consider the ordinary differential equation

¥ =Alt)x, teJ, zeR,

here A(t) = ———— (et (t

where A(t) et—i—r(t)(e +7'(t)),
0, n—1<t<n—2ay;
r(t) = ne”sinQ{L(t—n—i—Qan)}, n—2a, <t<n,
20,
1
and Qp = W,n: 172,"'.
The evolutionary operator of the equation is given by the formula

e’ +r(s)

, t>s>0, t,seJ
et +r(t)

Ut,s) = els AMIT  ie Ult,s) =
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Let n > [M] + 1, where M is the constant from Definition 2.1. Then for ¢ = n and

s =n — ay, we obtain
U, )| =U(n,n—ay) > M,

i.e. the equation is nonexponentially dichotomous.

We show that the equation is L;-dichotomous, i.e.
t
/ U, s)|lds <1, teld
0

We have

¢ t s ; 1 ¢
/ ||U(t7s)||ds:/ ), /(es—l—r(s))ds.
0 o e +r(t) et +r(t) Jo

It will be checked that

t
/ (e* 4+ 7(s))ds < €.
0
Case 1. Let n — 1 <t <n—2«qa,. Then

/Ot(ewr(s))ds:et—ug/:

kg2 T o
ke” sin {2 (s k:—i-Qak)}ds

9 2()Lk ak’

n—1 1
_t E t
—671+ W<€.
k=1

Case 2. Let n — 2o, <t < n. Then

t n—1 t
) 1
/ (e° +1(s))ds = e’ — 1+ Z oot ne”/ sin® {;T (s—n+ Qan)}ds
0 k=1 "

—20p, Qp

.1 1

. ™
SRR RET R PR R

Hence
t

t
e
Ul(t d — <1 teJ
[ Wt < s <1 e

i.e. the equation is L;-dichotomous.
By Ly (J) (p' € [1,00)) we denote the space of all functions f : J — X with

/ |f(s)|P ds < oo
J

I = ([ 150as) "

Remark 2.1. It is not hard to check that the notion of Ly-equivalence is stable w. r. to
the following small perturbations on the spaces P(s)(X) and (I — P(s))(X) (s € J),

(U, s) = V(t,8)P(s)|| <e(t,s) for t,s€J, 0<s<t,

and the norm

where

t
/ep(t,s)dngl, K, = const.,
0



488 CHIN. ANN. MATH. Vol.24 Ser.B

and
WU(t,s) —V(t,s)(I —P(s))| <n(t,s) for t,sed, 0<t<s,
where

/ nP(t,s)ds < K3, K = const.
t

We shall consider the homogeneous and nonlinear differential equations with an L,-

dichotomous linear part.

¢3. Main Results

We consider the nonhomogeneous equation

dz
o = Az + f(t), (3.1)

where f(t) € X (t € J).

Theorem 3.1. Let Equation (2.1) be Ly-dichotomous. Then for any f € Lqo(J)(q =
527), Equation (3.1) has a bounded solution.
Proof. The function

2(t) = /0 U(t, 5)P(s) f(s)ds — /t T U s) (I — P(s))f(s)ds (3.2)

is bounded. Really by means of Holder inequality we obtain
t 1 gt 1
o) < [ [ W speids| | [ ireas]”
0 0

[ [T - penieas] [ [ i)’
< 2K] I

By straightforward verification it is easy to show that the function z(t) is a solution of
(3.1).

Remark 3.1. Let £ € X be such that the function U(¢)¢ (¢ € J) is bounded. Then the
function z(t) = U(t)€ + x(¢) is a bounded solution of (3.1).

Theorem 3.2. Let Equation (2.1) be L,-dichotomous. Then Equation (3.1) has a
bounded solution for any bounded function f(t) (t € J).

The proof is analogous to the proof of Theorem 3.1.

Remark 3.2. The bounded solution z(t) will belong to the space L,(.J) if K is not a
constant but a function K € L,(J).

Let B, = {x € X : |z| < r}. Further we consider the nonlinear equation

d
= = Atz + f(t,), (3.3)
where f:J x B, — X.

Definition 3.1. The function x(t) (t € J) is said to be a solution of Equation (3.3) if

() z(t) e DN B, (t € J);



No.4 A. KOSSEVA, S. KOSTADINOV, et al Lp,-DICHOTOMY OF DIFFERENTIAL EQUATIONS 489

(ii) there exists a strong derivative z'(t) (t € J);
(iii) x(t) satisfies (3.3).
Theorem 3.3. Let the following conditions hold:
(1) Equation (2.1) is L,-dichotomous.
(2) U, 0)P(0)|| < K1 (t € J), K1 is a constant.
(3) |f(t,z2) — f(t,21)] < alt)|xe —x1| (t € J, x1,22 € B,), where a € Ly(J),q = 2.
(4) |[f(t,z)| <b(t)(t € J, x € By), where b € Ly(J) and ||b]lq < 5% .
Then for any yo with
WpLs N
and |lallq small enough, Equation (3.3) has exactly one solution x(t) € B, (t € J) with
P(0)x(0) = o
For two solutions z3(t) and 1 (¢) of (3.3), the following estimate is valid
fg a’(s)e(s)ds

[22(t) — 21 (D] < Kilw2(0) — 21 (0) [ 1+ 2 ] (3.4)

Yo € P(0)(X)

where
e(t) = e (38" Jo al()ds e .
Proof. Let D, = {z € B(J) : z(t) € B,,t € J}. Any solution of (3.3) which lies in D,
is a solution of the equation

£(t) = U(L,0)yo + / Ut 5)P(s) (s, 2(s))ds

— /too U(t,s)(I — P(s))f(s,x(s))ds, (3.5)

where yo = P(0)x(0) and vice versa.
We will show that the operator @) defined by

(Qx)(t) = U(t,0)yo +/O Ul(t,s)P(s)f(s,x(s))ds
_ /t T Ut 8) (I — P(s)) (5. 2(s))ds (3.6)

satysfies the conditions of Banach fixed point theorem in the set D, C B(J).

In fact, because P(0)yo = yo, we have
[(Q)(8)] < [U(¢,0)P(0)[llyo] + 2K [bllq < Kilyo| + 2K][bllg < 7.
On the other hand, for z1,z2 € D,, we have
Qw2 — Qu1l[| < 2K||allq][lz2 — z|l]-

For ||a|; small enough, the operator ) is a contraction and has exactly one fixed point

x(t).
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For the difference of two solutions z; (t) and z2(¢), we obtain the estimate

|22(t) — 21 (8)] < [U(L,0)P(0)(22(0) — 21(0))]
+/O [U(t, s)P(s)II[ f (s, 22(s5)) = f(s,21(s))lds
+ /too [U(t, s)(I = P(s))[||f(s,22(5)) = f(s,21(s))|ds

SKN@@%-%@)+2KLAMW®NMB%—MGNV%T~

The estimate (3.4) follows from [6].
Remark 3.3. By unessentially modifications the assertions of Theorems 3.1-3.3 are still

valid if the condition (j3) is replaced by the following condition
t 1
[ -re)pa]” <k e
0
In this case in Theorem 3.3 we can consider the function

z(t) =U(t,0)yo +/O U(t,s)P(s)f(s,xz(s))ds +/0 U(t,s)(I — P(s))f(s,x(s))ds.
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