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Abstract

In this paper, the authors investigate the joint distribution of end points of excursion away

from a closed set straddling on a fixed time and use this result to compute the Lévy system
and the Dirichlet form of the boundary process.
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§1. Introduction

Excursion theory is one of the most important problems in the theory of Markov processes.

Excursions away from a closed set are the collection of pieces of the path of a Markov process

being away from a closed subset of the state space. K. Itô[9] first showed that the excursions

away a single point maybe characterized by a Poisson point process with a characteristic

measure which is called the excursion law. Since then many authors left their works on this

problem. Among them, B. Maisonneuve[10] established an exit system, which consists of an

excursion law and an additive functional, to characterize excursion in general framework.

In the present article, we are mainly concerned with excursions straddling on a fixed time

t. Firstly in §2 we will compute the joint distribution of end points of such an excursion. In

this direction, some work has been done by Getoor and Sharpe[6] where the Maisonneuve’s

exit system is assumed in advance. However we use the property of duality and our approach

is similar to that employed in [8], where Hsu treated the reflecting Brownian motion. Thus

our result is more concrete and useful. Then in §3 we shall apply this result and the technique

of time change to constructing the Lévy system and find the Dirichlet form of the boundary

process, which is obtained from the original process by being taken away those excursions.
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§2. Joint Distribution of Endpoints of Excursions

Let E be a locally compact Hausdorff space with countable base. Suppose that we are

given two strong Markov processesX = {Ω,F ,Ft, Xt, θt, P
x} and X̂ = {Ω̂, F̂ , F̂t, X̂t, θ̂t, P̂

x}
with E the state space satisfying the following assumptions:

(A.1) Both X and X̂ are continuous and conservative. For simplicity, assume that Ω is

the set of continuous functions from [0,∞) to E and X and X̂ are both realized on Ω. Ω̂ is

nothing but a copy of Ω. Thus X and X̂ are distinguished by their laws.

(A.2) Transition semigroups have densities in duality with a reference measure. That is,

set

Pt(x,B) := P x(Xt ∈ B),

P̂t(x,B) = P̂ x(Xt ∈ B), x ∈ E, B ⊂ E.

Assume that there exists a non-negative Radon measure m on E and a non-negative con-

tinuous function p(t, x, y) on (0,+∞)× E × E such that

Ptf(x) =

∫
E

p(t, x, y)f(y)m(dy),

P̂tf(x) =

∫
E

p(t, y, x)f(y)m(dy) for f ∈ C(E).

(A.3) Let V be a fixed non-empty proper closed subset which is finely perfect and co-finely

perfect, i.e., each point of V is regular for itself, i.e., P x(T = 0) = 1 and P̂ x(T̂ = 0) = 1 for

x ∈ V , where T = TV and T̂ = T̂V are the first hitting times of V for X and X̂, respectively.

(A.4) Set D = V c. There exist non-negative measure µ on V and non-negative functions

h(x, b) and ĥ(x, b) on D × V such that

Ex[f(XT )] =

∫
V

h(x, b)f(b)µ(db),

Êx[f(X̂T )] =

∫
V

f(b)ĥ(x, b)µ(db) for f ∈ C(V ).

Assume that the µ-measure on every relatively open set of V is strictly positive.

(A.5) There exist continuous functions Hu(x, b) and Ĥu(x, b) on (0,+∞)×D × V such

that

h(x, b) =

∫ +∞

0

Hu(x, b)du,

ĥ(x, b) =

∫ +∞

0

Ĥu(x, b)du.

In addition, ∫
D

P 0
v (x, dy)Hu(y, b) = Hu+v(x, b),∫

D

Ĥu(y, b)P̂
0
v (x, dy) = Ĥu+v(x, b),

where P 0
t (x,B) := P x(Xt ∈ B, t < T ) and P̂ 0

t (x,B) := P̂ x(Xt ∈ B, t < T ) for x ∈ D,B ⊂
D, which are the transition functions of the X killed at leaving D, both are absolutely

continuous with respect to m and the density functions p0(t, ·, ·) and p̂0(t, ·, ·) are dual with

respect to m.
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Remark 2.1. (A.1)–(A.3) are common for any conservative diffusion. In that situation,

(A.4) and (A.5) will be satisfied for a set V with smooth boundary. As being seen later,

those conditions may be weaken for some of our consequences. A reflecting Brownian motion

on a C3 domain satisfies all above assumptions.

Before stating some lemmas, we would like to introduce some notation. Let q > 0. For

f ∈ C(E), set uq(x, y) =
∫∞
0
e−qtp(t, x, y)dt and

Uqf(x) = Ex

∫ ∞

0

e−qtf(Xt)dt.

Clearly, Uqf(x) =
∫
E
uqq(x, y)f(y)m(dy). Denote

Uq
Df(x) := Ex

∫ T

0

e−qtf(Xt)dt (2.1)

for a bounded measurable function f on D, and

uqD(x, y) := uq(x, y)− Ex[e−qTuq(XT , y)] for x, y ∈ E. (2.2)

Then

Uq
Df(x) =

∫
D

uqD(x, y)f(y)m(dy) (2.3)

for x ∈ D and bounded function f on D. Indeed, by Dynkin’s formula,∫
E

uq(x, y)f(y)m(dy) = Ex

∫ +∞

0

e−qtf(Xt)dt

= Ex

∫ T

0

e−qtf(Xt)dt+ Ex[e−qTUqf(XT )].

Integrating both sides of (2.2) on y with f(y)m(dy) and combining this with the above

expression, we can see that (2.3) is valid. Furthermore, for x ∈ D and y ∈ V , set

hq(x, b) := h(x, b)− q

∫
D

uqD(x, y)h(y, b)m(dy). (2.4)

The joint distribution of (T,XT ) is expressed as follows.

Lemma 2.1. The assumption (A.5) holds if and only if for f ∈ C(V ), x ∈ D and t > 0,

Ex[e−qT f(XT )] =

∫
V

∫ ∞

0

e−quHu(x, b)f(b)µ(db)du.

Proof. Assume (A.5) holds. At first, we would like to show that for f ∈ C(V ) and

x ∈ D,

Ex[e−qT f(XT )] =

∫
V

hq(x, b)f(b)µ(db). (2.5)

Set hf(x) :=
∫
V
h(x, b)f(b)µ(db) for f ∈ C(V ). By (A.4) and (2.3),

q

∫
D

uqD(x, y)hf(y)m(dy) = q

∫
D

uqD(x, y)Ey[f(XT )]m(dy).

By using the Markov property on t, the above expression is equal to

qEx

∫ T

0

e−qtEXt [f(XT )]dt = q

∫ +∞

0

e−qtEx[f(XT ); t < T ]dt

= qEx
[ ∫ T

0

e−qtdtf(XT )
]
= Ex[f(XT )]− Ex[e−qT f(XT )].
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Integrating both sides of (2.4) on b with f(y)m(dy) and combining this with the above, one

obtains (2.5). Then it is enough to prove that for x ∈ D and b ∈ V ,

hq(x, b) =

∫ ∞

0

e−quHu(x, b)du.

In fact, by the definition (2.4) of hq(x, b),

hq(x, b) =

∫ ∞

0

Hu(x, b)du− q

∫
D

uqD(x, y)m(dy)

∫ ∞

0

Hu(y, b)du.

The second term in the right side can be rewritten as

q

∫ ∞

0

e−qtdt

∫
D

P 0
t (x, dy)

∫ ∞

0

Hu(y, b)du

= q

∫ ∞

0

∫ ∞

0

e−qtHu+t(y, b)du dt

=

∫ ∞

0

Hu(x, b)

∫ u

0

qe−qtdt du

by the assumption (A.5). Thus we have

hq(x, b) =

∫ ∞

0

Hu(x, b)
(
1−

∫ u

0

qe−qtdt
)
du

=

∫ ∞

0

e−quHu(x, b)du.

Conversely, computing the Laplace transform, we have∫ ∞

0

∫
D

P 0
v (x, dy)

∫
V

Hu(y, b)f(b)µ(db)e
−qudu

=

∫
D

P 0
v (x, dy)

∫
V

hq(y, b)f(b)µ(db)

= Ex[EXv [e−qT f(XT )]; v < T ]

= Ex[e−q(T−v)f(XT );T > v]

= eqv
∫ ∞

v

∫
V

Hu(x, b)f(b)µ(db)e
−qudu

=

∫ ∞

0

∫
V

Hu+v(x, b)f(b)µ(db)e
−qudu.

Thus (A.5) holds. That completes the proof.

When x ∈ D, by Markov property, we have

Ex[f(XT ), T > t] =

∫
D

P 0
t (x, dy)E

y[f(XT )].

Thus (A.5) is also equivalent to that the right side is absolute continuous as a function of t.

Denote Au(b, b
′) :=

∫
D
Ĥv(x, b)Hu−v(x, b

′)m(dx) for 0 < v < u, b, b′ ∈ V .

Lemma 2.2. The kernel Au defined above is independent of the choice of v ∈ (0, u).

Proof. From the duality, it follows that

m(dx)P 0
t (x, dy) = P̂ 0

t (y, dx)m(dy).
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Thus for 0 < v < w < u, by (A.5),∫
D

Ĥw(x, b)Hu−w(x, b
′)m(dx)

=

∫
D

∫
D

Ĥv(y, b)P̂
0
w−v(x, dy)Hu−w(x, b

′)m(dx)

=

∫
D

∫
D

Ĥv(y, b)P
0
w−v(y, dx)Hu−w(x, b

′)m(dy)

=

∫
D

Ĥv(y, b)Hu−v(y, b
′)m(dy).

This implies the lemma.

We define

N(b, b′) :=

∫ ∞

0

Au(b, b
′)du, b, b′ ∈ V,

which is called the Feller’s kernel, as named in the case of Brownian motion. It also holds

that ∫ ∞

u

At(b, b
′)dt =

∫
D

ĥ(x, b)Hu(x, b
′)m(dx).

The next lemma gives the conditioned joint distribution of (T,XT ).

Lemma 2.3. Let f ∈ C(V ) and t > 0. Then for s < t and x, y ∈ E,

P x(f(XT );T < s | Xt = y) =

∫ s

0

∫
V

Hu(x, z)f(z)
p(t− u, z, y)

p(t, x, y)
µ(dz)du.

Proof. Take a Borel set A ⊂ E. By using the strong Markov property on T , we have

P x(f(XT ), T < s,Xt ∈ A)

= P x(f(XT ), Xt−T (θT (·)) ∈ A, T < s)

= Ex[f(XT )E
x[Xt−T (θT (·)) ∈ A | FT ], T < s]

= Ex[f(XT )P (t− T,XT , A), T < s]

=

∫
A

∫ s

0

∫
V

Hu(x, z)f(z)p(t− u, z, y)µ(dz)dum(dy),

which shows our assertion.

We now give the main result of this section: the joint distribution of end points of

excursions away from V straddling on a fixed time. Our approach is similar to that employed

in [8]. For a fixed t > 0, define

L(t) := sup{0 < s < t : Xs ∈ V }, R(t) := inf{s > t : Xs ∈ V },

(sup ∅ = 0 and inf ∅ = ∞ by convention) the last exit time of V before t and the first hitting

time of V after t respectively. Since the path is continuous and D is open, Xt ∈ D implies

that L(t) < t < R(t). However fine and co-fine perfectness guarantees that the converse is

true too. ClearlyXR(t) ∈ V andXL(t) ∈ V since V is closed. When x ∈ V , P x(L(t) > 0) = 1

since x is regular for V . The path {Xu : u ∈ (L(t), R(t))} is called the excursion (away from

V ) straddling on t.

Theorem 2.1. Let t > 0 and a, b ∈ V . For s < t < u, s < t1 < t2 < · · · < tk < u,
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dy1, dy2, · · · , dyk ⊂ D, we have

P x(L(t) ∈ ds,XL(t) ∈ da,Xti ∈ dyi, i = 1, 2, · · · , k,XR(t) ∈ db,R(t) ∈ du)

= dsp(s, x, a)µ(da)Ĥt1−s(y1, a)m(dy1)
k∏

i=2

P 0
ti−ti−1

(yi−1, dyi)µ(db)Hu−tk(yk, b)du.

Proof. For simplicity, we prove this formula for k = 2. Take ϕj , ψj , χj (j = 1, 2) as non-

negative bounded continuous functions on [0,∞), V and D, respectively. For t1 < t < t2,

by Markov property at t,

Ex[ϕ1(L(t))ψ1(XL(t))χ1(Xt1)χ2(Xt2)ϕ2(R(t))ψ2(XR(t))]

= Ex[Ex(ϕ1(L(t))ψ1(XL(t))χ1(Xt1)χ2(Xt2)ϕ2(R(t))ψ2(XR(t)))|Xt]

=

∫
D

Ex[ϕ1(L(t))ψ1(XL(t))χ1(Xt1)|Xt = y]

· Ex[ϕ2(R(t))ψ2(XR(t))χ2(Xt2)|Xt = y]p(t, x, y)m(dy),

where

Ex[ϕ2(R(t))ψ2(XR(t))χ2(Xt2)|Xt = y]

= Ey[ϕ2(T + t)ψ2(XT )χ2(Xt2−t); t2 − t < T ]

=

∫
D

χ2(y2)P
0
t2−t(y, dy2)

∫ ∞

0

ϕ2(u+ t2)du

∫
V

ψ2(b)Hu(y2, b)µ(db).

On the other hand, by the duality, under the probability P x( · |Xt = y), the law of the

reversed process Y ≡ {Ys := Xt−s; 0 ≤ s ≤ t} is equal to the law of the dual process X̂

starting at y and conditioned by X̂t = x. Precisely if we define the reversed operator at t

as rtω(s) := ω(t− s) for ω ∈ Ω, s ∈ [0, t], then for any A ∈ Ft, it holds that

P x(A ◦ rt|Xt = y) = P̂ y(A|Xt = x).

Set P x,Xt=y(·) := P x(·|Xt = y). It is easy to see that its transition function

P x,Xt=y(Xs ∈ dz) =
p(s, x, z)p(t− s, z, y)m(dz)

p(t, x, y)
, s < t.

Obviously L(t) ◦ rt = t − T and XL(t) ◦ rt = XT . Now using the Markov property of the

conditioned law, we have by Lemmas 2.2 and 2.3,

Ex,Xt=y[ϕ1(L(t))ψ1(XL(t))χ1(Xt1), 0 ≤ L(t) < t1]

= Êy,Xt=x[ϕ1(t− T )ψ1(XT )χ1(Xt−t1); t− t1 < T ≤ t]

= Êy,Xt=x[χ1(Xt−t1)Ê
Xt−t1 ,Xt1=x[ϕ1(t1 − T )ψ1(YT );T < t1]; t− t1 < T ]

=

∫
D

χ1(y1)p̂
0(t− t1, y, y1)

p̂(t1, y1, x)

p̂(t, y, x)
m(dy1)

·
∫ t1

0

ϕ1(t1 − s)ds

∫
V

ψ1(a)Ĥs(y1, a)
p̂(t1 − s, a, x)

p̂(t1, y1, x)
µ(da)

=

∫
D

χ1(y1)p
0(t− t1, y1, y)m(dy1)

·
∫ t1

0

ϕ1(t1 − s)ds

∫
V

ψ1(a)Ĥs(y1, a)
p(t1 − s, x, a)

p(t, x, y)
µ(da).
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Therefore

Ex[ϕ1(L(t))ψ1(XL(t)−)χ1(Xt1)χ2(Xt2)ϕ2(R(t))ψ2(XR(t))]

=

∫ t1

0

ϕ1(s)ds

∫
V

ψ1(a)p(s, x, a)µ(da)

∫
D

χ1(y1)Ĥt1−s(y1, a)m(dy1)

·
∫
D

χ2(y2)m(dy2)

∫
D

p0(t1 − t, y1, y)P
0
t2−t(y, dy2)m(dy)

·
∫
V

ψ2(b)µ(db)

∫ +∞

t2

ϕ2(u)Hu−t2(y2, b)du

=

∫ t1

0

ϕ1(s)ds

∫
V

ψ1(a)p(s, x, a)µ(da)

∫
D

χ1(y1)Ĥt1−s(y1, a)m(dy1)

·
∫
D

χ2(y2)P
0
t2−t1(y1, dy2)

∫
V

ψ2(b)µ(db)

∫ +∞

t2

ϕ2(u)Hu−t2(y2, b)du.

It gives the required result.

What we use frequently in the sequel is the following corollary.

Corollary 2.1. For x ∈ E, t > 0, we have

P x(L(t) ∈ ds,XL(t) ∈ da,XR(t) ∈ db,R(t) ∈ du)

= ds p(s, x, a)µ(da)Au−s(a, b)µ(db) du,

which holds on (s, a, b, u) ∈ (0, t)× V × V × (t,+∞).

Proof. Take k = 1 and t = t1 in the theorem above. The result is immediate by the

definition of Au.

More precisely we may write the distribution above as

P x(L(t) ∈ ds,XL(t) ∈ da,XR(t) ∈ db,R(t) ∈ du)

= 1(0,t)×V×V×(t,+∞)ds p(s, x, a)µ(da)Au−s(a, b)µ(db) du

+

∫
y∈V

ϵt(ds)ϵt(du)ϵy(da)ϵy(db)p(t, x, y)m(dy).

§3. Lévy System of Boundary Processes

In this section, we shall use the results in §2 to compute some quantities related to

excursion. At first define

J(ω) := {t : Xt(ω) ∈ D},
which is all of excursions away from V of a path. Since X is continuous, J is open and let

I be the set of all left end points of excursion intervals in J . We first consider

At :=
∑

s∈I: 0<s≤t

f(XL(s), XR(s)),

where f is a non-negative continuous function on V×V vanishing on the diagonal: f(a, a) = 0

for any a ∈ V . Clearly R(s) is a right continuous additive functional of X, and s ∈ I if and

only if R(s−) < R(s) and R(s−) = L(s). Thus

At =
∑

0<s≤t:R(s−)<R(s)

f(XR(s−), XR(s)).

Thus A is an additive functional.
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Theorem 3.1. For x ∈ E, t > 0, we have

ExAt =

∫ t

0

p(s, x, a)Nf(a)µ(da)ds,

where Nf(a) :=
∫
V
N(a, b)f(a, b)µ(db).

Proof. For n ≥ 1, let Dn := {tn,k = k
2n : k ≥ 0} and In,k = [tn,k−1, tn,k). If L(t) < t <

R(t) for some t ∈ Dn, then we have L(t) = L(tn,k) ∈ In,k for one and only one k. On the

other hand, for any t > 0, the excursion interval (L(t), R(t)) will have a binary point in Dn

for n large enough. Thus any excursion interval will be counted finally and at most once in

this way. It means that

At = lim
n→∞

∑
k≥1: tn,k≤t

f(XL(tn,k), XR(tn,k))1{L(tn,k)∈In,k},

which is an increasing limit. By Corollary 2.1, we may compute

Ex
∑

k≥1: tn,k≤t

f(XL(tn,k), XR(tn,k))1{L(tn,k)∈In,k}

=
∑

k≥1: tn,k≤t

∫
In,k

dsp(s, x, a)

∫
V

∫
V

f(a, b)µ(da)µ(db)

∫ ∞

tn,k−s

Au(a, b)du.

By the monotone convergence theorem, we have

ExAt =

∫
V

∫
V

∫ t

0

ds p(s, x, a)

∫ ∞

0

Au(a, b)du f(a, b)µ(da)µ(db)

=

∫
V

∫ t

0

p(s, x, a)Nf(a)µ(da)ds.

That completes the proof.

One of the most successful applications of this result is that it provides a simple way to

compute Lévy system of boundary process. Assume further that E is compact, m(V ) = 0

and write ∂D := V in this case which is called boundary of E. It follows that

P x(L(t) < t < R(t)) = 1 for any t > 0.

We also assume that (Pt) and (P̂t) are Feller and for any f ∈ C(∂D),

Kqf(x) :=

∫
∂D

uq(x, a)f(a)µ(da) ∈ C(E).

It is easy to check that Kq1 is q-uniformly excessive (refer to [1, Chapter IV]), there exists

a continuous increasing additive functional (CAF) ϕ = (ϕ(t)), called a local time on ∂D,

which satisfies that for any q > 0, x ∈ E,

Kq1(x) = Ex

∫ ∞

0

e−qtdϕ(t), (3.1)

and if we define Rϕ := inf{t > 0 : ϕ(t) > 0}, then Rϕ = T = T∂D (refer to [11]). Let

τ = {τt} be the right continuous inverse of ϕ, i.e.,

τt := inf{s : ϕ(s) > t},
and set Yt := Xτt , the time change of X by τ . The process Y only lives on ∂D and is called

a boundary process of X.

Theorem 3.2. The boundary process Y defined above is purely discontinuous and its

Lévy system is given by (N(a, b)µ(db), dt), i.e., for f ∈ C(∂D × ∂D) vanishing on the
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diagonal, x ∈ ∂D, q > 0, we have

Ex
∑

0<t<+∞
e−qtf(Yt−, Yt) = Ex

∫ ∞

0

e−qtNf(Yt)dt.

Proof. Firstly it is known that

τ0 = Rϕ = T, ϕ(τt) = t.

Then it follows that

τϕ(t) = inf{s : ϕ(s) > ϕ(t)} = inf{s : ϕ(s− t) ◦ θt > 0} = Rϕ ◦ θt + t = R(t).

Thus for any t > 0, τϕ(t) = R(t) > t a.s. It follows that t 7→ τt takes only countable values,

thus is purely discontinuous and Y is also purely discontinuous. Secondly since it follows

from (3.1) that ∫
V

∫ t

0

p(s, x, a)Nf(a)µ(da)ds = Ex

∫ t

0

Nf(Xs)dϕ(s),

Theorem 3.1 shows that the dual predictable projection of A is∫ t

0

Nf(Xs)dϕ(s).

Thus, we have

Ex
∑

0<t<+∞
e−qtf(Yt−, Yt)

= Ex
∑

0<t<+∞
e−qϕ(t)f(X(τϕ(t)−), X(τϕ(t)))

= Ex
∑

0<t<+∞
e−qϕ(t)f(XR(t−), XR(t))

= Ex

∫ ∞

0

e−qϕ(t)Nf(Xt)dϕ(t)

= Ex

∫ ∞

0

e−qtNf(Yt)dt.

That completes the proof.

Now we assume that X is m-symmetric. Then it is characterized by a Dirichlet form

(E ,D) (refer to [5]):

D =
{
f ∈ L2(m) : lim

t↓0

1

2t
Em[f(Xt)− f(X0)]

2 <∞
}
,

E(f, f) = lim
t↓0

1

2t
Em[f(Xt)− f(X0)]

2.

We can write it this way since X is conservative. Denote by De the extended Dirichlet space

of D. The following theorem generalizes the Douglas integral (refer to [5, (1.2.18)]).

Theorem 3.3. Let D′ := L2(∂D;µ) ∩ De, i.e., the set of u ∈ L2(∂D;µ) such that

u = v|∂D µ-a.e. for some v ∈ De. Then for u ∈ D′,

E(hu, hu) = 1

2

∫
∂D

∫
∂D

[u(a)− u(b)]2N(a, b)µ(da)µ(db),

where hu(x) =
∫
∂D

h(x, a)u(a)µ(da), x ∈ E, as defined in §2.
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Proof. By a result of [4] (also see [5]), if we define for u ∈ D′,

E ′(u, u) := E(hu, hu),
then (E ′,D′) is the Dirichlet space on L2(∂D, µ), of the time changed process Y . To prove

the theorem, it suffices to find the Dirichlet form of the boundary process Y . Since Y is

purely discontinuous, it is not hard to check that for any u ∈ D′,

A
[u]
t := u(Yt)− u(Y0) = lim

n→∞

∑
0<s≤t

∆u(Ys)1{|∆u(Ys)|> 1
n},

where ∆u(Ys) := u(Ys)− u(Ys−) and the right side converges uniformly in probability (see,

e.g., [2]). Recall the Fukushima’s decomposition,

A
[u]
t =M

[u]
t +N

[u]
t ,

as sum of a martingale AF and a CAF of zero energy. Thus the square bracket and angle

bracket of M [u] are

[M [u]]t =
∑

0<s≤t

(∆u(Ys))
2,

⟨M [u]⟩t =
∫ t

0

ds

∫
E

N(Ys, b)(u(Ys)− u(b))2µ(db)

by Theorem 3.2. Thus

E ′(u, u) = e(M [u]) = sup
t>0

1

2t
Eµ(⟨M [u]⟩t)

=
1

2

∫
∂D

∫
∂D

[u(a)− u(b)]2N(a, b)µ(da)µ(db).

That completes the proof.
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