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Abstract

The Moore–Penrose metric generalized inverse T+ of linear operator T in Banach space
is systematically investigated in this paper. Unlike the case in Hilbert space, even T is a
linear operator in Banach Space, the Moore-Penrose metric generalized inverse T+ is usually
homogeneous and nonlinear in general. By means of the methods of geometry of Banach Space,

the necessary and sufficient conditions for existence, continuity, linearity and minimum property
of the Moore-Penrose metric generalized inverse T+ will be given, and some properties of T+

will be investigated in this paper.
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§1. Introduction

Let X,Y be normed spaces, T : X→Y a linear operator. In order to get the best

approximate solution (i.e. least extremal solution) for the ill–posed linear operator equation

Tx = y, Nashed and Votruba[1−3] introduced the metric generalized inverse T ∂ of operator

T, and the orthogonal partial inverse T+
ρ of operator by means of the concept of orthogonally

complemented subspace in normal linear space, while T+
ρ is a single value linear selection

of T ∂ . By the orthogonal partial inverse T+
ρ , the best approximate solution to the equation

Tx = y can be obtained easily. However, in general, in normal linear spaces, the orthogonally

complemented subspaces are rare[1, p.39], so that the existence problem of the orthogonal

partial inverse T+
ρ of linear operator T is difficult to answer. Therefore, the problem of

obtaining selections with nice property for the metric generalized inverse merits study, as

Nashed and Votruba indicated in [1, 2].
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The purpose of this paper is to answer partly the above problem. Since the metric

projectors on closed subspaces in Hilbert spaces are not only linear projectors, but also

orthogonal projectors, and the orthogonal generalized inverse of linear operator T in Hilbert

spaces[4] is just the linear metric generalized inverse. Such problems have been discussed by

many authors[4−12]. While the metric projectors on closed subspaces in Banach space are

no longer linear, and then the linear generalized inverse and the metric generalized inverse

of linear operator in Banach spaces are quite different. The problem on linear generalized

inverse in Banach space have been discussed by several authors[1−3, 13, 14]. Several special

single valued metric generalized inverses of bounded linear operators or densely defined

closed linear operators with closed range in Banach spaces and their applications have been

investigated by Yu-Wen Wang et al[15−19] and Holmes[20].

In this paper, the single valued Moore-Penrose metric generalized inverses of linear op-

erator in Banach space are investigated by means of the methods of geometry of Banach

spaces.

§2. Existence of Moore-Penrose Metric Generalized Inverse

Throughout this paper, let X and Y be Banach spaces, and T be a linear operator from

X to Y. On the definition of geometric properties of Banach spaces X and Y, we can find

them in [20–22]. Let ⟨x∗, x⟩ denote the value of functional x∗ ∈ X∗ at element x ∈ X,

where X∗ is the dual space of X.

Let D(T ), R(T ), N(T ) denote the domain, range and null space of T, respectively.

x0 ∈ D(T ) is called the best approximation solution (b.a.s.) to the operator equation

Tx = y, if

∥Tx0 − y∥ = inf{∥Tx− y ||x ∈ D(T )},

∥x0∥ = inf
{
∥v∥|v ∈ D(T ), ∥Tv − y∥ = inf

x∈D(T )
∥Tx− y∥

}
,

where y ∈ Y.

Definition 2.1. Let T be a linear operator from X to Y, N(T ) and R(T ) be the Chebyshev

sets in X and Y, respectively. If there exists a homogeneous operator T+ : Y → X such that

(i) TT+T = T ;

(ii) T+TT+ = T+;

(iii) T+T = ID(T ) − P
N(T )

;

(iv) TT+ = P
R(T )

,

then T+ is called the Moore-Penrose metric generalized inverse of T, where ID(T ) is the

identity operator on D(T ), and P
N(T )

, P
R(T )

are the metric projectors onto N(T ), R(T )

respectively.

If N(T ) and R(T ) are closed, T+ is the same as Definition 2.9 in [17].

Theorem 2.1. Let X and Y be strictly convex Banach spaces, T be a linear operator

from X to Y. Then there exists a Moore-Penrose metric generalized inverse T+ if and only

if

D(T ) = N(T )
·
+ C(T ), (2.1)

where C(T ) = {x ∈ D(T ) | FX(x) ∩N(T )
⊥ ̸= ϕ}.
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Proof. Necessity. Suppose T has a Moore-Penrose metric generalized inverse T+ given

by Definition 2.1. Then N(T ) and R(T ) are Chebyshev subspaces in X and Y, respectively.

For any x ∈ D(T ), by (i) in Definition 2.1, we have TT+Tx = Tx, and hence T+Tx ∈ D(T ).

From (iii) in Definition 2.1, we obtain P
N(T )

x = x− T+Tx ∈ D(T ). Thus, we get that

T (P
N(T )

x) = T (x− T+Tx) = Tx− TT+Tx = 0,

i.e.

P
N(T )

x ∈ N(T ) for any x ∈ D(T ). (2.2)

Because N(T ) is a Chebyshev subspace in X, and F−1
X (N(T )

⊥
) = F−1

X (N(T )
⊥
), from

Lemma 3.2 in [28], for any x ∈ D(T ) ⊂ X, there exists a unique decomposition

x = P
N(T )

x+ x2, x2 ∈ F−1
X (N(T )

⊥
). (2.3)

Hence x2 = x−P
N(T )

x ∈ D(T ), and therefore x2 ∈ D(T )∩F−1
X (N(T )

⊥
) = C(T ). Thus, we

obtain

D(T ) = N(T ) + C(T ). (2.4)

For any x ∈ N(T )∩C(T ), since FX(x)∩N(T )
⊥ ̸= ϕ, we may choose an x∗ ∈ FX(x)∩N(T )

⊥
.

Hence 0 = ⟨x∗, x⟩ = ∥x∥2 = ∥x∗∥2. This implies that x = 0, i.e. (2.1) is true.

Sufficiency. We first show that T is one to one mapping from C(T ) to R(T ). In fact,

for any y ∈ R(T ), there exists an x ∈ D(T ) such that y = Tx, (2.1) implies that x =

x1 + x2, x1 ∈ N(T ), x2 ∈ C(T ). Hence y = Tx = Tx2, i.e. T is surjective mapping from

C(T ) to R(T ). For any x1, x2 ∈ C(T ), if Tx1 = Tx2, then x1−x2 ∈ N(T ). By the definition

of C(T ), we have

FX(xi) ∩N(T )
⊥ ̸= ϕ, i = 1, 2.

Choose x∗
i ∈ FX(xi) ∩N(T )

⊥
(i = 1, 2), then x∗

1 − x∗
2 ∈ N(T )

⊥
, and

⟨x∗
1 − x∗

2, x1 − x2⟩ = 0. (2.5)

Since X is strictly convex, by Proposition 2.14 in [22], FX is strictly monotone. Hence (2.5)

implies that x1 = x2, i.e. T is injective.

Let T |C(T ) denote the restriction of the operator T to the set C(T ). Since the dual map-

ping FX is homogeneous, so the set C(T ) is also homogeneous and ((T |C(T )))
−1 is a homo-

geneous operator from R(T ) to C(T ). Let D+ = R(T )
·
+F−1

Y (R(T )
⊥
), where F−1

Y (R(T )
⊥
) =

{y ∈ Y | FY (y) ∩ R(T )
⊥ ̸= ϕ}. It follows from the homogeneity of FY that the set D+ is

also homogenous set. Define an operator T+ from D+ to C(T ) as follows: for any y ∈ D+,

y has an unique decomposition y = y1 + y2, y1 ∈ R(T ), y2 ∈ F−1
Y (R(T )

⊥
). Define

T+y = (T |C(T ))
−1y1. (2.6)

On the other hand, since y− y1 = y2 ∈ F−1
Y (R(T )

⊥
), we have FY (y− y1)∩R(T )

⊥ ̸= ϕ. For

any y ∈ D+ and y /∈ R(T ), we may choose y∗1 ∈ FY (y− y1)∩R(T )
⊥
. Let y∗ = y∗1/∥y− y1∥.

We have ∥y∗∥ = 1, and

⟨y∗, y − y1⟩ = ⟨y∗1 , y − y1⟩/∥y − y1∥ = ∥y − y1∥2/∥y − y1∥ = ∥y − y1∥.

Since y∗1 ∈ R(T )
⊥
= R(T )

⊥
, we have y∗ ∈ R(T )

⊥
. By Lemma 3.1 in [28] and strict convexity

of the space Y, we have

y1 = P
R(T )

y ∈ R(T ). (2.7)
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It follows from (2.6) and (2.7) that

T+y = (T |C(T ))
−1P

R(T )
y, y ∈ D+. (2.8)

By the homogeneity of (T |C(T ))
−1 and P

R(T )
(see [20]), we know that T+ is a homogeneous

operator from D+ to D(T ). For any y ∈ D+, by (2.7), we have P
R(T )

y ∈ R(T ), and hence

TT+y = T (T |C(T ))
−1P

R(T )
y = P

R(T )
y,

i.e. TT+ = P
R(T )

on D+. Therefore, (iv) in Definition 2.1 follows.

For any x ∈ D(T ), by (2.1), x has an unique decomposition x = x1+x2, x1 ∈ N(T ), x2 ∈
C(T ), where C(T ) = D(T ) ∩ F−1

X (N(T )
⊥
) ⊂ F−1

X (N(T )
⊥
). Since the space X is strictly

convex, by the same argument as (2.7), we have x1 = P
N(T )

x ∈ N(T ). Hence

x = P
N(T )

x+ x2, x2 ∈ C(T ). (2.9)

It follows that

T+Tx = T+T (P
N(T )

x+ x2) = T+Tx2

= (T |C(T ))
−1P

R(T )
Tx2 = x2 = (ID(T ) − P

N(T )
)x, (2.10)

i.e. T+T = ID(T )−P
N(T )

on D(T ), thus (iii) in Definition 2.1 follows. TT+T = T on D(T )

is obvious.

For any y ∈ D+, by (2.8), T+y ∈ C(T ) ⊂ D(T ). It follows from (2.10) that

T+TT+y = (ID(T ) − P
N(T )

)T+y = T+y − P
N(T )

T+y. (2.11)

Since T+y ∈ C(T ) ⊂ F−1
X (N(T )

⊥
), we obtain

FX(T+y) ∩N(T )
⊥
̸= ϕ.

Take x∗
1 ∈ FX(T+y) ∩N(T )

⊥
, and write x∗ = x∗

1/∥T+y∥, then

∥x∗∥ = 1, ⟨x∗, T+y − 0⟩ = ⟨x∗
1, T+y⟩/∥T+y∥ = ∥T+y − 0∥.

Since x∗
1 ∈ N(T )

⊥
, we have x∗ ∈ N(T )

⊥
. Since X is strictly convex, by Lemma 3.1 in [28],

we have 0 = P
N(T )

T+y. Hence, (2.11) shows that T+TT+ = T+ on D+, i.e. T+ is the

Moore-Penrose metric generalized inverse.

The main result in [17] can follow easily from above Theorem 2.1. We have

Corollary 2.1.[17] Let X and Y be reflexive strictly convex Banach Spaces, T be a bounded

linear operator or densely defined closed linear operator from X to Y. Then there exists the

Moore-Penrose metric generalized inverse T+ of operator T. Furthermore, if the range R(T )

is closed, then D+ = Y.

Proof. If T is a bounded linear operator or densely defined closed linear operator, the

null space N(T ) is a closed subspace of X. Since X is reflexive, strictly convex, closed

subspace N(T ) is Chebyshev. By Lemma 3.2 in [28], we have D(T ) = N(T )
·
+C(T ), where

C(T ) = D(T ) ∩ F−1
X (N(T )

⊥
). It follows from Theorem 2.1 that there exists the Moore-

Penrose metric generalized inverse T+.

Furthermore, by the proof of Theorem 2.1, we get

D+ = R(T )
·
+ F−1

Y (R(T )
⊥
).
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If R(T ) is a closed subspace of Y, while Y is reflexive and strictly convex, then R(T ) is a

Chebyshev subspace of Y. By Lemma 3.2 in [28], we obtain

Y = R(T )
·
+ F−1

Y (R(T )
⊥
) = D+.

Remark 2.1. If X,Y are Hilbert space, then the Moore-Penrose metric generalized

inverse T+ is the Moore-Penrose generalized inverse under usual sense since the metric

projector is linear orthogonal projector.

Denote D+ = D(T+).

§3. Properties of Moore-Penrose Metric Generalized Inverse

Theorem 3.1. Let X and Y be strictly convex Banach spaces, T be a linear operator

from X to Y. If T has the Moore-Penrose metric generalized inverse T+, then

(1) T+ is unique on D+, and T+y = (T |C(T ))
−1P

R(T )
y, y ∈ D+, where D+ = R(T )

·
+

F−1
Y (R(T )

⊥
);

(2) there exists a linear inner inverse T (1) from R(T ) to D(T ) (i.e. TT (1)T = T ) such

that

T+y = (ID(T ) − P
N(T )

)T (1)P
R(T )

y, y ∈ D+.

Proof. (1) Since T+ exists, by Definition 2.1, we have thatN(T ) and R(T ) are Chebyshev

sets. It follows from Theorem 2.1 that D(T ) = N(T )
·
+ C(T ), where C(T ) = D(T ) ∩

F−1
X (N(T )

⊥
). Take D+ = R(T )

·
+F−1

Y (R(T )
⊥
). By the proof of sufficiency in Theorem 2.1,

we have P
R(T )

y ∈ R(T ) for any y ∈ D+ and homogeneous operator T# △
= (T |C(T ))

−1P
R(T )

from D+ to C(T ) is a Moore-Penrose metric generalized inverse of T. Let T+ be any Moore-

Penrose metric generalized inverse of T. For any y ∈ D+, we shall prove that (2.8) is true.

First of all, by (iv) in Definition 2.1, for any y ∈ D+, we have

TT+y = P
R(T )

y. (3.1)

Since T+y ∈ D(T ), by (iii) in Definition 2.1, we also have T+TT+y = T+y−P
N(T )

T+y. By

(ii) in Definition 2.1, we know that

P
N(T )

T+y = 0. (3.2)

On the other hand, since N(T ) is a Chebyshev subspace of X, by Lemma 3.2 in [28],

T+y ∈ D(T ) has a unique decomposition T+y = P
N(T )

T+y + x2, x2 ∈ F−1
X (N(T )

⊥
). By

(3.2), we get

T+y = x2 ∈ F−1
X (N(T )

⊥
) ∩D(T ) = C(T ).

From the proof of sufficiency in Theorem 2.1, T is a one to one operator from C(T ) to R(T )

and P
R(T )

y ∈ R(T ) for any y ∈ D+. Hence, by (3.1), we obtain

T+y = (T |C(T ))
−1P

R(T )
y for any y ∈ D+.

(2) Since T is linear operator from X to Y, it follows from Proposition 1.3 in [1] that

there exists a linear inner inverse T (1) from R(T ) to D(T ) such that

TT (1)T = T. (3.3)
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We shall show, for any y ∈ R(T ),

(T |C(T ))
−1y = (ID(T ) − P

N(T )
)T (1)y. (3.4)

Indeed, for any y ∈ R(T ), T (1)y ∈ D(T ). Since N(T ) is a Chebyshev subspace of X, by

Lemma 3.2 in [28], we have

T (1)y = P
N(T )

T (1)y + x2, x2 ∈ F−1
X (N(T )

⊥
). (3.5)

It follows from D(T ) = N(T )
·
+ C(T ) and (3.5) that

P
N(T )

T (1)y ∈ N(T ). (3.6)

Hence x2 ∈ F−1
X (N(T )

⊥
)∩D(T ) = C(T ). From the proof of the sufficiency in Theorem 2.1,

condition (2.1) implies that operator T is one to one from C(T ) to R(T ). Hence, there exists

a unique x0 ∈ C(T ) such that y = Tx0 = T |C(T )x0. Combining (3.3), (3.5) and (3.6), we

obtain

y = Tx0 = TT (1)Tx0 = T (1)y = T (P
N(T )

T (1)y + x2) = Tx2.

Since T is one to one from C(T ) to R(T ), we have

x2 = x0 = (T |C(T ))
−1y. (3.7)

It follows from (3.5) and (3.7) that (T |C(T ))
−1y = x2 = (ID(T ) − P

N(T )
)T (1)y for any

y ∈ R(T ). For any y ∈ D+, since D+ = R(T )
·
+ F−1

Y (R(T )
⊥
), we have P

R(T )
y ∈ R(T ).

Hence, from (3.4) and (1) we get

T+y = (T |C(T ))
−1P

R(T )
y = (ID(T ) − P

N(T )
)T (1)P

R(T )
y.

Theorem 3.2. Let X, Y and T be the same as in Theorem 3.1. Suppose that

D(T ) = N(T )
·
+ C(T ) and D+ = R(T )

·
+ F−1

Y (R(T )
⊥
),

where C(T ) = D(T ) ∩ F−1
X (N(T )

⊥
). If T+ is a homogeneous operator from D+ to D(T ),

then the following statements are equivalent:

(1) T+ is the Moore-Penrose metric generalized inverse of T ;

(2) For any y ∈ D+, x0 = T+y is the best approximate solution to the operator equation

Tx = y;

(3) For any y ∈ D+, x0 = T+y is the minimal norm solution to the metric projector

equation Tx = P
R(T )

y, i.e. T+y = PT−1P
R(T )

y0, where PT−1P
R(T )

y0 is the metric projection

of 0 onto T−1P
R(T )

y.

Proof. (1)⇒(2) Let T+ be the Moore-Penrose metric generalized inverse from D+ to

D(T ). For any y ∈ D+, take x0 = T+y, then x0 ∈ D(T ). Definition 2.1 shows that

Tx0 = TT+y = P
R(T )

y, (3.8)

and P
R(T )

y ∈ R(T ). For any x ∈ D(T ), since Tx ∈ R(T ), we get that ∥y − Tx0∥ =

∥y−P
R(T )

y∥ ≤ ∥y− Tx∥, i.e. x0 is an extremal solution to Tx = y. For any x ∈ D(T ) with

Tx = P
R(T )

y, from (3.8) we have

x0 − x ∈ N(T ). (3.9)

Hence, by (ii), (iii) in Definition 2.1, we obtain that x0 = T+y = T+TT+y = T+Tx0 = x0−
P
N(T )

x0. Thus PN(T )
x0 = 0. SinceN(T ) is a Chebyshev subspace ofX, by Lemma 3.2 in [28],
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x0 has a unique decomposition x0 = P
N(T )

x0 + x2, x2 ∈ F−1
X (N(T )

⊥
). Since P

N(T )
x0 = 0,

x0 = x2 ∈ F−1
X (N(T )

⊥
), i.e. FX(x0)∩N(T )

⊥ ̸= ϕ. Taking x∗
0 ∈ FX(x0)∩N(T )

⊥
, it follows

from (3.9) that ⟨x∗
0, x0 − x⟩ = 0. Therefore, by the definition of FX , we get

∥x0∥2 = ⟨x∗
0, x0⟩ = ⟨x∗

0, x⟩ ≤ ∥x∗
0∥ · ∥x∥ = ∥x0∥ · ∥x∥,

i.e. ∥x0∥ ≤ ∥x∥ for any x ∈ D(T ) and Tx = P
R(T )

y. Thus x0 = T+y is the best approxima-

tion solution to Tx = y.

(2)⇒(3) It is obvious.

(3)⇒(1) Let x0 = T+y be the minimal norm solution to the metric projector equation

Tx = P
R(T )

y for any y ∈ D+. By the definition of metric projector and strictly convexity

of X, we have

T+y = π(T−1P
R(T )

y|0) △
= PT−1P

R(T )
y0, (3.10)

where T−1P
R(T )

y = {x ∈ D(T )|Tx = P
R(T )

y}. It remains to verify (i)–(iv) in Definition

2.1.

For any y ∈ D+, from (3.10), we have T+y ∈ T−1P
R(T )

y, and hence

TT+y = P
R(T )

y for all y ∈ D+, (3.11)

i.e. (iv) in Definition 2.1 is true. It follows from (3.11) that (i), (ii) in Definition 2.1 are

obvious. Since D(T ) = N(T )
·
+ C(T ), where C(T ) = D(T ) ∩ F−1

X (N(T )
⊥
), it follows from

Theorem 2.1 and Theorem 3.1 that there exists a unique Moore-Penrose metric generalized

inverse of T. By Definition 2.1, N(T ) and R(T ) are Chebyshev subspace. Hence, by the

same argument as (2.9), we have that for any x ∈ D(T ), x has a unique decomposition

x = P
N(T )

x + x2, where P
N(T )

x ∈ N(T ), x2 ∈ C(T ). Hence Tx = Tx2, i.e. x2 ∈ T−1Tx,

where T−1Tx = {∼x ∈ D(T )|T∼
x = Tx}. For any x1 ∈ T−1Tx, we have x1 − x2 ∈ N(T ).

Take x0 = x1 − x2, then x1 = x0 + x2 and x0 ∈ N(T ). Since x2 ∈ C(T ) ⊂ F−1
X (N(T )

⊥
), i.e.

FX(x2) ∩N(T )
⊥ ̸= ϕ, we may choose an x∗

2 ∈ FX(x2) ∩N(T )
⊥
. Thus, by the definition of

FX , we get

⟨x∗
2, x1⟩ = ⟨x∗

2, x0⟩+ ⟨x∗
2, x2⟩ = ⟨x∗

2, x2⟩ = ∥x∗
2∥2 = ∥x2∥2,

moreover

∥x2∥2 = ⟨x∗
2, x1⟩ ≤ ∥x∗

2∥ · ∥x1∥ = ∥x2∥ · ∥x1∥.

Thus ∥x2∥ ≤ ∥x1∥ for any x1 ∈ T−1Tx. In other words, x2 ∈ π(T−1Tx|0). It follows from

the strict convexity of X and (3.10) that

T+Tx = π(T−1P
R(T )

Tx|0) = π(T−1Tx|0) = x2 = (ID(T ) − P
N(T )

)x

for any x ∈ D(T ), i.e. (iii) in Definition 2.1 is also true. Thus, T+ is just the Moore-Penrose

metric generalized inverse of T.

§4. Necessary and Sufficient Conditions for Continuity and
Linearity of the Moore-Penrose Metric Generalized Inverse

The Moore-Penrose metric generalized inverses of linear operators in Banach spaces are

generally homogeneous and nonlinear, so that it is important to discuss the necessary and

sufficient condition for continuity and linearity.
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Banach space Y is said to have property H, if for any sequence {yn} ⊂ Y and element

y0 ∈ Y, yn → y0 weakly and ∥yn∥ → ∥y0∥ (n → ∞) implies that yn → y0 (n → ∞) in Y

(see [21]).

Theorem 4.1. Suppose that X and Y are reflexive, strictly convex Banach spaces, and

have property H, T is a densely defined operator from X and Y. Let

D+ = R(T )
·
+ F−1

Y (R(T )
⊥
) and C(T ) = D(T ) ∩ F−1

X (N(T )
⊥
),

where FX , FY are the dual mappings of X and Y. Then there exists a continuous Moore-

Penrose metric generalized inverse T+ from D+ to C(T ), such that R(T ) ⊂ D+ and N(T ) ⊂
D(T ) if and only if T is a closed operator with closed range.

Proof. Necessity. Suppose that there exists a continuous Moore-Penrose metric gener-

alized inverse T+ such that R(T ) ⊂ D+ and N(T ) ⊂ D(T ). For any y ∈ R(T ) ⊂ D+, by

Definition 2.1, we get

y = P
R(T )

y = TT+y ∈ R(T ),

i.e. R(T ) is closed. Let {xn} ⊂ D(T ), x0 ∈ X, y0 ∈ Y such that xn → x0, Txn → y0 (n →
∞). Take yn = Txn. Then yn ∈ R(T ) (n = 1, 2, · · · ) and yn → y0 (n → ∞), and hence

y0 ∈ R(T ) ⊂ D+. It follows from the continuity of T+ that

xn = T+yn → x = T+y0 (n → ∞).

Since T+ exists, it follows from Theorem 2.1 that D(T ) = N(T )
·
+ C(T ), where C(T ) =

D(T )∩F−1
X (N(T )

⊥
), and N(T ) is a Chebyshev subspace of X. From above decomposition,

by the same argument as (2.9), we have that for any x ∈ D(T ), x has a unique decomposition

x = P
N(T )

x+ x′, (4.1)

where P
N(T )

x ∈ N(T ), x′ ∈ C(T ). Hence for xn ∈ D(T ), we have

xn = P
N(T )

xn + x′
n, (4.2)

where P
N(T )

xn ∈ N(T ), x′
n ∈ C(T ) (n = 1, 2, · · · ). Let T |C(T ) be the restriction of T

onto C(T ). From the proof of sufficiency in Theorem 2.1, T |C(T ) is one to one operator from

C(T ) to R(T ). By (4.2), we obtain

yn = Txn = Tx′
n = T |C(T )x

′
n, n = 1, 2, · · · .

On the other hand, we obtain also that

yn = P
R(T )

yn = TT+yn = Txn = T |C(T )xn, n = 1, 2, · · · .

Hence x′
n = xn (n = 1, 2, · · · ). Thus

x′
n = T+yn → T+y0 = x (n → ∞), (4.3)

and x ∈ C(T ). It follows from (4.2) and (4.3) that

P
N(T )

xn = xn − x′
n → x0 − T+y0 (n → ∞).

Since P
N(T )

xn ∈ N(T ) (n = 1, 2, · · · ), thus x0 − T+y0 ∈ N(T ). Taking
∼
x = x0 − T+y0, we

have

x0 =
∼
x + T+y0, (4.4)
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where
∼
x ∈ N(T ) and T+y0 ∈ C(T ). By the condition N(T ) ⊂ D(T ), it follows that x0 ∈

D(T ). From the uniqueness of decomposition in (4.1) (replace x by x0) and (4.4), we get

x0 = P
N(T )

x0 + T+y0,

where P
N(T )

x0 ∈ N(T ). Hence

Tx0 = T (P
N(T )

x0 + T+y0) = TT+y0 = P
R(T )

y0 = y0,

i.e. T is closed operator.

Sufficiency. Let T be a closed linear operator with closed range R(T ). It follows that

N(T ) = N(T ) ⊂ D(T ) and R(T ) = R(T ) ⊂ D+.

By Corollary 2.1 there exists a Moore-Penrose metric generalized inverse T+. It remains to

show that T+ is continuous. It follows from Theorem 3.2 that

T+y = PT−1P
R(T )

y0. (4.5)

In order to prove that T+ is continuous on D+, it is sufficient to show that

(i) For any yn ∈ D+ (n = 0, 1, 2, · · · ) with yn → y0 (n → ∞), we have

P
R(T )

yn → P
R(T )

y0 (n → ∞).

(ii) For any yn ∈ R(T ) (n = 0, 1, 2, · · · ) with yn → y0 (n → ∞), we have

PT−1yn
0 → PT−1y0

0 (n → ∞).

For (i), since Y is reflexive, strictly convex and Y have property H, it is just the result

from Corollary 4 in [23].

Next, we want to prove (ii). Define a norm on D(T ) by ∥x∥D(T ) = ∥x∥+∥Tx∥, x ∈ D(T ).

Since T is closed linear operator, the (D(T ), ∥·∥D(T )) is a Banach space, denoted by D(T )∗∗.

R(T ) is a closed subspace of Banach space Y, so that R(T ) is also a Banach space. It is

easy to see that T is surjective and continuous linear from D(T )∗∗ to R(T ). By the open

mapping theorem[24], there exists l ≥ 1, such that for any y, z ∈ R(T ), x ∈ T−1y, there

exists w ∈ T−1z such that

∥x− w∥D(T ) ≤ l∥y − z∥. (4.6)

By Theorem 2.2.1 in [24], the proper convex functional ρ(y) = inf{∥x∥D(T )|x ∈ T−1y}, y ∈
R(T ) is lower semicontinuous. For any y ∈ R(T ), T+y ∈ T−1y and for any x ∈ T−1y, from

(4.5), we have ∥T+y∥ ≤ ∥x∥ and Tx = y, hence

∥T+y∥D(T ) = ∥T+y∥+ ∥TT+y∥ = ∥T+y∥+ ∥y∥ ≤ ∥x∥+ ∥Tx∥ = ∥x∥D(T ).

Thus

∥T+y∥D(T ) = inf{∥x∥D(T ) : x ∈ T−1y} = ρ(y) (4.7)

for any y ∈ R(T ). In (4.6), take x = T+y, z = 0, then there exists a w ∈ T−10 such that

ρ(y) = ∥T+y∥D(T ) ≤ ∥w∥D(T ) + l∥y∥ < ∞ for any y ∈ R(T ).

Hence R(T ) is the effective domain of ρ(y). It follows from the lower semicontinuity of ρ(y)

on R(T ) and Propositioon 1.6 in [22] that ρ(y) is continuous on R(T ). Let yn ∈ R(T ) (n =

0, 1, 2, · · · ) with yn → y0 (n → ∞). We get

∥T+yn∥D(T ) = ρ(yn) → ρ(y0) = ∥T+y0∥D(T ).
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It follows from the definition of ∥ · ∥D(T ) that ∥T+yn∥ → ∥T+y0∥ (n → ∞). Noticing that

T+yn = PT−1yn
0 (n = 0, 1, 2, · · · ), we obtain

∥PT−1yn
0∥ → ∥PT−1y0

0∥ (n → ∞).

Take xn = PT−1yn
0 (n = 0, 1, 2, · · · ), then

∥xn∥ → ∥x0∥ (n → ∞). (4.8)

Since X has property H, from (4.8), in order to prove that xn → x0 (n → ∞), it remains

to show that

xn
w→ x0 (n → ∞). (4.9)

Suppose that (4.9) were not true. Since X is reflexive, and {xn} is bounded, without lose

of any generality, we may suppose that

xn
w→ x ̸= x0 (n → ∞). (4.10)

Since D(T ) = X, and X, Y are reflexive, T ∗ is well defined and D(T ∗) = Y ∗. Hence T ∗∗ is

also well defined and T = T ∗∗. For any w∗ ∈ D(T ∗), we get

⟨w∗, yn⟩ = ⟨w∗, Txn⟩ = ⟨T ∗w∗, xn⟩, n = 1, 2, · · · .

Letting n → ∞, by (4.10), we obtain ⟨w∗, y0⟩ = ⟨T ∗w∗, x⟩, but ⟨w∗, y0⟩ = ⟨w∗, Tx0⟩ =
⟨T ∗w∗, x0⟩. Hence

⟨T ∗w∗, x0 − x⟩ = 0 for any w∗ ∈ D(T ∗).

It follows from Banach closed range theorem that x0 −x ∈ R(T ∗)
⊥
= N(T ), i.e. Tx0 = Tx.

In other words, x ∈ T−1Tx0 = T−1y0. Since the norm is lower semicontinuous weakly, it

follows from (4.8) and (4.10) that

∥x∥ ≤ lim inf
n→∞

∥xn∥ = lim
n→∞

∥xn∥ = ∥x0∥.

Because X is strictly convex, T−1y0 is a convex closed set, the minimal norm element is

unique, and hence x = x0, which contradicts (4.10). Thus (4.9) is true.

Theorem 4.2. Under the conditions in Theorem 4.1, T+ is a linear operator if and only

if both C(T ) = D(T ) ∩ F−1
X (N(T )

⊥
) and F−1

Y (R(T )
⊥
) are linear subspaces.

Proof. Necessity. If T+ is a linear operator, then its range R(T+) = C(T ) must be

linear. In the following, we shall show that N(T+) = F−1
Y (R(T )

⊥
). From the linearity of

T+, F−1
Y (R(T )

⊥
) is linear. By Theorem 3.1, we get

T+ = (T |C(T ))
−1P

R(T )
,

where T |C(T ) is one to one operator from C(T ) to R(T ). Hence

N(T+) = {y ∈ D+|P
R(T )

y = 0} △
= P−1

R(T )
0. (4.11)

For any y ∈ F−1
Y (R(T )

⊥
) = F−1

Y (R(T )
⊥
), we have

FY (y) ∩R(T )
⊥
̸= ϕ.

Take y∗0 ∈ FY (y) ∩R(T )
⊥

and write y∗ = y∗0/∥y0∥. Then

∥y∗∥ = 1, y∗ ∈ R(T )
⊥

and ⟨y∗, y − 0⟩ = ∥y∥2/∥y∥ = ∥y − 0∥.
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By Lemma 3.1 in [28] and the strict convexity of Y, it follows that 0 = P
R(T )

y, and hence,

by (4.11), y ∈ N(T+), i.e.

F−1
Y (R(T )

⊥
) ⊂ N(T+). (4.12)

Suppose on the contrary, for any y ∈ N(T+), from (4.11), P
R(T )

y = 0. Since R(T ) is a

Chebyshev subspace, by Lemma 3.2 in [28], we have

y = P
R(T )

y + y2, y2 ∈ F−1
Y (R(T )

⊥
),

Hence y = y2 ∈ F−1
Y (R(T )

⊥
), i.e.

N(T+) ⊂ F−1
Y (R(T )

⊥
). (4.13)

Thus, it follows from (4.12) and (4.13) that

N(T+) = F−1
Y (R(T )

⊥
). (4.14)

Sufficiency. Let C(T ) and F−1
Y (R(T )

⊥
) be linear. Then T |C(T ) is one to one linear

operator from C(T ) to R(T ), so is (T |C(T ))
−1 from R(T ) to C(T ), and D+ = R(T )

·
+

F−1
Y (R(T )

⊥
) is a linear subspace of Y. For any y ∈ D+, by the same argument as (2.7), we

obtain P
R(T )

y ∈ R(T ). It follows from (4.11) and (4.14) that

P−1

R(T )
0 = N(T+) = F−1

Y (R(T )
⊥
).

Hence, P−1

R(T )
0 is a linear subspace of Y. Proposition 4.7 in [25] implies that P

R(T )
is a

linear operator from D+ to R(T ). Hence, by Theorem 3.1, T+ = (T |C(T ))
−1P

R(T )
is a linear

operator from D+ to C(T ).

Corollary 4.1. Let X and Y be Hilbert spaces, T be a bounded linear or densely defined

closed linear operator. If R(T ) is closed, then there exists an unique bounded linear operator

T+ from Y into X such that

(i) TT+T = T ;

(ii) T+TT+ = T+;

(iii) T+T = ID(T ) − PN(T );

(iv) TT+ = I − PN(T∗),

where PN(T ), PN(T∗) are the orthogonal projectors.

Proof. If R(T ) is a closed subspace of Y, by Riesz orthogonal decomposition theorem, we

get I = PR(T ) + PR(T )⊥ . By Banach closed range theorem, we know that R(T )⊥ = N(T ∗).

Hence

PR(T ) = I − PR(T )⊥ = I − PN(T∗).

The others follow from Corollary 2.1, Theorem 4.1 and Theorem 4.2.
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