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Abstract

In this paper, the author studies the regularity of solutions to the Dirichlet problem for
equation Lu = f , where L is a second order degenerate elliptic operator in divergence form in
Ω, a bounded open subset of Rn (n ≥ 3).
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§1. Introduction

The aim of this paper is to study the Dirichlet problem{
Lu = −(aijuxi)xj = f, in Ω,
u = 0, on ∂Ω,

(1.1)

where Ω is a bounded open subset of Rn (n ≥ 3), aij(x) are symmetric, measurable and
there exists ν > 0, such that for all ξ ∈ Rn and a.a. x ∈ Rn,

ν−1ω(x)|ξ|2 ≤ aij(x)ξiξj ≤ νω(x)|ξ|2, (1.2)

where ω(x) is a suitable weighted function.
Compared with that of uniformly elliptic operator, ω(x) in this situation may either

vanish, or be infinite, or both, and such operator will be called degenerate operator. There
have been a lot of classical results about uniformly elliptic equations. So it is natural to ask
whether there exist corresponding results for degenerate ones.

In 1960–70’s, De Giorgi-Nash’s theorem and Harnack’s inequality were extended to the
degenerate case by some people[9, 11, 14, 15]. They imposed some restrictions on the weighted
function ω(x). In three important papers [6, 4, 5], E. B. Fabes, C. E. Kenig, D. Jerrison
and R. P. Serapioni studied the degenerate operator L with two kinds of weighted functions
and got many results. In their papers, ω(x) belongs to A2 or QC. Here A2 is Muckenhoupt

class, and ω(x) ∈ QC means ω(x) = |f ′(x)|1− 2
n , where f : Rn → Rn is a quasiconformal

mapping and |f ′(x)| denotes the absolute of the Jacobian determinant of f . Since then, many
people have made further researches in degenerate elliptic equations[8, 1, 16]. Among them,
two classes of weighted Morrey spaces were introduced in [16], and they make it possible
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extending the regularity in Morrey spaces in uniformly elliptic case to that in degenerate
case.

In this paper, we consider the following two problems:
(I) What regularity property does the solution to (1.1) have for a given f?
(II) What are the minimal conditions to be imposed on f to ensure given regularity of

the solution to (1.1)?
The solution we consider is a very weak one introduced in [10] because in general the

Dirichlet problem (1.1) does not have a weak solution under our assumption on f . Of
course, we will point out that the very weak solution to (1.1) is actually a weak one in
some conditions. We wish to say that the weighted function ω(x) belongs to A2 throughout
the paper. Finally, we say that our results extend the corresponding ones in [2, 3] to the
degenerate case.

§2. Preliminaries

In this section, we will give some definitions, spaces and known results. Because of the
local character of our results it is sufficient to assume Ω ≡ BR(0).

We give the definition of Ap weight (or Muckenhoupt class) first.
Definition 2.1. Let ω(x) > 0, ω(x) ∈ L1

loc(R
n), 1 < p < +∞. We say that ω(x) is an

Ap weight, which denoted by ω(x) ∈ Ap, if

sup
Q

( 1

|Q|

∫
Q

ω(y)dy
)( 1

|Q|

∫
Q

ω(y)−
1

p−1 dy
)p−1

≤ C < +∞,

where Q is a cube in Rn.
Let ω be an A2 weight, 1 ≤ p < +∞. We give the definitions of weighted Lebesgue spaces

and weighted Sobolev spaces.
Lp(Ω, ω) is the space of measurable f in Ω, such that

∥f∥Lp(Ω,ω) =
(∫

Ω

|f(x)|pω(x)dx
) 1

p

< +∞.

Lp
w(Ω, ω) is the space of measurable f in Ω, such that

∥f∥Lp
w(Ω,ω) =

[
sup
t>0

tpω({x ∈ Ω : |f(x)| > t})
] 1

p

< +∞.

Obviously, Lp(Ω, ω) ⊂ Lp
w(Ω, ω) ⊂ Lq(Ω, ω) (1 ≤ q < p < +∞).

L∞(Ω, ω) is the space of measurable f in Ω, such that

∥f∥L∞(Ω,ω) = inf {a ≥ 0 : ω ({x ∈ Ω : |f(x)| > a}) = 0} < +∞.

Lip(Ω) denotes the class of Lipschitz functions in Ω. Lip0(Ω) denotes the class of functions
f ∈ Lip(Ω) with compact support contained in Ω. If f ∈ Lip(Ω), we can define the norm

∥f∥H1,p(Ω,ω) = ∥f∥Lp(Ω,ω) + ∥∇f∥Lp(Ω,ω). (2.1)

H1,p(Ω, ω) denotes the closure of Lip(Ω) under the norm (2.1). We say that f ∈
H1,p

loc (Ω, ω) if f ∈ H1,p(Ω′, ω) for every Ω′ ⊂⊂ Ω. H1,p
0 (Ω, ω) denotes the closure of Lip0(Ω)

under the norm (2.1). And H−1,p′
(Ω, ω) is the dual space of H1,p

0 (Ω, ω), where 1
p + 1

p′ = 1.

Next, we define some weighted spaces.
Definition 2.2.[16] Let σ > 0, C > 0 and 0 < r < 2R, we define

Mσ(Ω, ω) =
{
f ∈ L1(Ω, ω) : sup

x∈Ω

∫
Ωr(x)

|f(y)|
(∫ 4R

|x−y|

sds

ω(Bs(x))

)
ω(y)dy ≤ Crσ

}
,
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where Ωr(x) = Ω ∩Br(x).
Definition 2.3.[16] Let σ ∈ R, we define

L1,σ(Ω, ω) =
{
f ∈ L1(Ω, ω) : ∥f∥1,σ = sup

x∈Ω
0<r<2R

r2−σ

ω(Br(x))

∫
Ωr(x)

|f(y)|ω(y)dy < +∞
}
.

Above two spaces, called weighted Morrey spaces, were introduced by C. Vitanza and
P. Zamboni when they studied Hölder continuity of solutions to degenerate Schrödinger
equations.

Definition 2.4.[8,16] Let η(r) be a nondecreasing function defined in (0,+∞) such that
lim
r→0

η(r) = 0, we set

S(Ω, ω) =
{
f ∈ L1(Ω, ω) : sup

x∈Ω

∫
Ωr(x)

|f(y)|
(∫ 4R

|x−y|

sds

ω(Bs(x))

)
ω(y)dy ≤ η(r)

}
.

This space was introduced by C. E. Gutierrez and it is the classical Stummel-kato class
when ω ≡ 1.

Definition 2.5. We set

S̃(Ω, ω) =
{
f ∈ L1(Ω, ω) : sup

x∈Ω
r>0

∫
Ωr(x)

|f(y)|
(∫ 4R

|x−y|

sds

ω(Bs(x))

)
ω(y)dy < +∞

}
.

Definition 2.6. Let 1 ≤ p < +∞. We set

Sp(Ω, ω) =
{
f ∈ L1(Ω, ω) :

∫
Ω

[ ∫
Ωr(x)

|f(y)|
(∫ 4R

|x−y|

sds

ω(Bs(x))

)
ω(y)dy

]p
· ω(x)dx < +∞ for some r > 0

}
.

When p = ∞, we define S∞(Ω, ω) = S̃(Ω, ω).
The classical Schechter classes were introduced by Schechter in [12] and [13] for different

reasons. Sp(Ω, ω) are the corresponding ones in the weighted case.
We now give the definitions of weak solution and very weak solution.
Definition 2.7. Let µ be a bounded variation measure on Ω. We say that u ∈ H1,2

0 (Ω, ω)
is a weak solution to the Dirichlet problem{

Lu = µ, in Ω,
u = 0, on ∂Ω,

(2.2)

if we have ∫
Ω

aijuxiϕxj =

∫
Ω

ϕdµ, ∀ϕ ∈ H1,2
0 (Ω, ω).

Definition 2.8. We say that u ∈ L1(Ω, ω) is a very weak solution to (2.2), if we have∫
Ω

uLϕ =

∫
Ω

ϕdµ, ∀ϕ ∈ H1,2
0 (Ω, ω) ∩ C0(Ω) s.t. Lϕ ∈ C0(Ω).

Theorem 2.1.[4] Let µ be a bounded variation measure on Ω. Then there exists a unique
very weak solution to (2.2).

Similarly to the uniformly elliptic case, we introduce Green’s function in the degenerate
case and give some basic propositions.

Definition 2.9. Let δy be the Dirac delta at y ∈ Ω. Then the very weak solution to the

Dirichlet problem

{
Lu = δy, in Ω,
u = 0, on ∂Ω

will be called the Green’s function for L and Ω with

pole at y. We denote it by g(x, y).
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Theorem 2.2. Let µ be a bounded variation measure on Ω. Then u(x) =
∫
Ω
g(x, y)dµ(y)

exists almost everywhere, moreover u is a very weak solution to (2.2).
Theorem 2.3. There exist constants C1 and C2 such that for any x, y ∈ Ω, we have

C1

∫ 4R

|x−y|

sds

ω(Bs(x))
≤ g(x, y) ≤ C2

∫ 4R

|x−y|

sds

ω(Bs(x))
.

Proofs of the above theorems and other properties of g(x, y) can be seen in [4].
Finally, we give three important propositions of A2 weight.
Proposition 2.1. There exists C > 1 such that

ω(B2r(x)) ≤ Cω(Br(x)). (2.3)

Proposition 2.2. There exists M < 1 such that

ω(Br(x)) ≤ Mω(B2r(x)). (2.4)

Proposition 2.3. Let 0 < 2ρ1 ≤ ρ2. Then there is a constant C1 > 0 such that∫ ρ2

ρ1

sds

ω(Bs(x))
≥ C1

ρ21
ω(Bρ1(x))

. (2.5)

Let 0 < ρ1 < ρ2, M < 1/4 (M is the constant in (2.4)). Then there is a constant C2 > 0
such that ∫ ρ2

ρ1

sds

ω(Bs(x))
≤ C2

ρ21
ω(Bρ1(x))

. (2.6)

Proofs of Propositions 2.1 and 2.2 can be seen in [7] and we can find the proof of Propo-
sition 2.3 in [16].

§3. Regularities I

In this section, we solve the problem (I) mentioned in Introduction. Now we give our
results.

Theorem 3.1. Let f/ω ∈ L1,σ(Ω, ω), σ < 0, M < 1/4 (M is the constant in (2.4)). Then

the very weak solution u to (1.1) belongs to L
σ−2
σ

ω (Ω, ω). In particular, u ∈ Lp(Ω, ω) (p <
σ−2
σ ).
Proof. By Theorems 2.1 and 2.2, we have

u(x) =

∫
Ω

g(x, y)f(y)dy.

Then

|u(x)| ≤
∫
Ω

g(x, y)|f(y)|dy

=

∫
{y∈Ω:|x−y|<ϵ}

g(x, y)|f(y)|dy +
∫
{y∈Ω:|x−y|≥ϵ}

g(x, y)|f(y)|dy

= I1 + I2.

Set

Rk = {y ∈ Ω : 2−k−1ϵ ≤ |x− y| < 2−kϵ, k ∈ Z−},

R′
k = {y ∈ Ω : 2kϵ ≤ |x− y| < 2k+1ϵ, k ∈ Z−}.

Then by Theorem 2.3,

|I1| ≤
∞∑
k=0

∫
Rk

g(x, y)|f(y)|dy ≤ C
∞∑
k=0

∫
Rk

(∫ 4R

2−k−1ϵ

sds

ω(Bs(x))

)
|f(y)|dy.
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And by (2.6), we get

|I1| ≤ C

∞∑
k=0

(2−k−1ϵ)2

ω(B2−k−1ϵ(x))

∫
Rk

|f(y)|dy ≤ Cϵ2Mω(f/ω),

where Mω(f) = sup
r>0

1

ω(Br)

∫
Br

|f |ω. The last inequality uses the double condition (2.3) of

ω.

Similarly, we have

|I2| ≤
∞∑
k=0

∫
R′

k

g(x, y)|f(y)|dy

≤ C

∞∑
k=0

∫
R′

k

(∫ 4R

2kϵ

sds

ω(Bs(x))

)
|f(y)|dy

≤ C

∞∑
k=0

(2kϵ)2

ω(B2kϵ(x))

∫
R′

k

|f(y)|dy

≤ C

∞∑
k=0

(2kϵ)σ∥f/ω∥1,σ ≤ Cϵσ∥f/ω∥1,σ.

Choosing ϵ =
[
∥f/ω∥1,σ

Mω(f/ω)

] 1
2−σ

, we obtain

|u(x)| ≤ C [Mω(f/ω)]
σ

σ−2 ∥f/ω∥
2

2−σ

1,σ .

Thus

t
σ−2
σ ω ({x ∈ Ω : |u(x)| > t})

≤ t
σ−2
σ ω

({
x ∈ Ω : Mω(f/ω) > t

σ−2
σ C

2−σ
σ ∥f/ω∥

2
σ
1,σ

})
≤ Cσ∥f/ω∥

σ−2
σ

L1(Ω,ω)∥f/ω∥
−2
σ
1,σ.

The last inequality holds true because Mω is weak type (1,1).

And this completes the proof.

Remark 3.1. The assumption M < 1/4 in Theorem 3.1 contains the case ω ≡ 1. That
is to say, Theorem 3.1 is the corresponding extension of Theorem 2.1 in [2] which is in the
uniformly elliptic case. So are the following theorems.

Theorem 3.2. Let f/ω ∈ L1,0(Ω, ω), M < 1/4. Then the very weak solution u to (1.1)
is in BMOloc(Ω, ω), i.e., ∀Ω′ ⊂⊂ Ω, d = dist(Ω′, ∂Ω), ∃C = C(d) > 0 s.t. ∀Br(x0), x0 ∈ Ω′,
0 < r < d/2, we have

1

ω(Br(x0))

∫
Br(x0)

|u(x)− uBr(x0)|ω(x)dx ≤ C∥f/ω∥1,0,

where uBr(x0) =
1

ω(Br(x0))

∫
Br(x0)

u(x)ω(x)dx.

Proof. Set B ≡ Br(x0), B∗ ≡ B2r(x0), f1 = fχB∗ , f2 = f(1− χB∗). Then u = u1 + u2,
where u1(x) =

∫
Ω
g(x, y)f1(y)dy and u2(x) =

∫
Ω
g(x, y)f2(y)dy are the very weak solutions

to

{
Lu1 = f1, in Ω,
u1 = 0, on ∂Ω

and

{
Lu2 = f2, in Ω,
u2 = 0, on ∂Ω

respectively.

We now estimate the BMO norm of u1 and u2.
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As for u1, we have

1

ω(B)

∫
B

|u1(x)− u1B |ω(x)dx ≤ 2|u1|B

≤ 2

ω(B)

∫
B

(∫
B∗

g(x, y)|f(y)|dy
)
ω(x)dx

=
2

ω(B)

∫
B∗

|f(y)|
(∫

B

g(x, y)ω(x)dx
)
dy.

Set

Rk = {y ∈ B∗ : 2−k−13r ≤ |x− y| < 2−k3r, k ∈ Z−}.

We get ∫
B

g(x, y)ω(x)dx ≤
∞∑
k=0

∫
Rk

g(x, y)ω(x)dx

≤ C
∞∑
k=0

∫
Rk

(∫ 4R

2−k−13r

sds

ω(Bs(x))

)
ω(x)dx

≤ C
∞∑
k=0

4−kr2 ≤ Cr2.

Thus

1

ω(B)

∫
B

|u1(x)− u1B |ω(x)dx ≤ Cr2
1

ω(B∗)

∫
B∗

|f(y)|dy ≤ C∥f/ω∥1,0.

Next, we estimate for u2.

1

ω(B)

∫
B

|u2(x)− u2B |ω(x)dx

=
1

ω(B)

∫
B

∣∣∣ ∫
Ω\B∗

g(x, y)f(y)dy − 1

ω(B)

∫
B

(∫
Ω\B∗

g(z, y)f(y)dy
)
ω(z)dz

∣∣∣ω(x)dx
=

1

ω(B)

∫
B

∣∣∣ ∫
Ω\B∗

[
g(x, y)− 1

ω(B)

∫
B

g(z, y)ω(z)dz
]
f(y)dy

∣∣∣ω(x)dx
≤ 1

ω(B)

∫
B

∫
Ω\B∗

∣∣∣g(x, y)− 1

ω(B)

∫
B

g(z, y)ω(z)dz
∣∣∣|f(y)|dyω(x)dx

=

∫
Ω\B∗

|f(y)|
[ 1

ω(B)

∫
B

∣∣∣g(x, y)− 1

ω(B)

∫
B

g(z, y)ω(z)dz
∣∣∣ω(x)dx]dy

= I + II,

where I and II represent the integrals on Ωd and Ωd respectively. Here, we set Ωd = {y :
|y − x0| ≤ d} ∩ (Ω \B∗) and Ωd = {y : |y − x0| > d} ∩ (Ω \B∗).

We estimate the integral on Ωd first.

When restricted to B, g(·, y) is a weak solution of Lu = 0. So using Theorems 2.3.12 and
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2.3.8 in [6], we have

1

ω(B)

∫
B

∣∣∣g(x, y)− 1

ω(B)

∫
B

g(z, y)ω(z)dz
∣∣∣ω(x)dx

≤ 1

ω(B)

∫
B

( 1

ω(B)

∫
B

|g(x, y)− g(z, y)|ω(z)dz
)
ω(x)dx

≤ C
1

ω(B)

∫
B

[ 1

ω(B)

∫
B

( 1

ω(B|y−x0|)(x0)

∫
B|y−x0|(x0)

g(x, y)
2
ω(x)dx

)1/2

·
∣∣∣ x− z

y − x0

∣∣∣αω(z)dz]ω(x)dx
≤ C

1

ω(B)

∫
B

[ 1

ω(B)

∫
B

g(x0, y)
( r

|y − x0|

)α

ω(z)dz
]
ω(x)dx

= Crαg(x0, y)|y − x0|−α.

Set

Ωd,k =
{
y ∈ Ωd : 2kr ≤ |y − x0| < 2k+1r, k ∈ N

}
.

Then we get

I ≤ Crα
∫
Ωd

|f(y)||g(x0, y)||y − x0|−αdy

≤ Crα
∞∑
k=0

∫
Ωd,k

|f(y)||g(x0, y)||y − x0|−αdy

≤ Crα
∞∑
k=0

∫
Ωd,k

|f(y)|
(∫ 4R

2kr

sds

ω(Bs(x0))

)
(2kr)−αdy

≤ C
∞∑
k=0

∫
Ωd,k

|f(y)| (2kr)2

ω(B2kr(x0))
2−kαdy

≤ C
∞∑
k=0

2−kα (2kr)2

ω(B2k+1r(x0))

∫
B

2k+1r
(x0)

|f(y)|dy

≤ C∥f/ω∥1,0.

Next, we estimate the integral on Ωd.
For any x ∈ B, we have

|x− y| ≥ |x0 − y| − |x− x0| > |x0 − y| − r > d/2,

then

g(x, y) ≤
∫ 4R

d/2

sds

ω(Bs(x))
≤ Cd2

ω(Bd/2(x))
.

So we have
1

ω(B)

∫
B

∣∣∣g(x, y)− 1

ω(B)

∫
B

g(z, y)ω(z)dz
∣∣∣ω(x)dx

≤ Cd2

ω(B)

∫
B

ω(x)dx

ω(Bd/2(x))

≤ Cd2

ω(Bd/2(x0))
.
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The truth of the last inequality is due to

ω(Bd/2(x0)) ≤ ω(Bd/2+|x−x0|(x)) ≤ ω(Bd(x)) ≤ Cω(Bd/2(x)).

Thus

II ≤ Cd2

ω(Bd/2(x0))

∫
Ωd

|f(y)|dy ≤ C∥f/ω∥1,0.

This completes the proof.

Theorem 3.3. Let f/ω ∈ S̃(Ω, ω). Then the very weak solution u to (1.1) is in L∞(Ω).
Proof. We have

|u(x)| ≤
∫
Ω

g(x, y)|f(y)|dy

≤ C

∫
Ω

|f(y)|
(∫ 4R

|x−y|

sds

ω(Bs(x))

)
dy

≤ C sup
x∈Ω
r>0

∫
Ω

|f(y)|
(∫ 4R

|x−y|

sds

ω(Bs(x))

)
dy.

Remark 3.2. L∞(Ω, ω) = L∞(Ω) because ωdx and dx are absolutely continous mutually.
So L∞(Ω) in Theorem 3.3 can be replaced by L∞(Ω, ω).

Theorem 3.4. Let f/ω ∈ S(Ω, ω). Then the very weak solution u to (1.1) is continous
in Ω.

Theorem 3.5. Let f/ω ∈ Mσ(Ω, ω). Then the very weak solution u to (1.1) is locally
Hölder-continous in Ω.

Proofs of the above two theorems are very close to those of Theorems 3.1 and 3.2 in [16]
if we substitute f for V u. So we omit the proofs.

Remark 3.3. By Lemma 3.3 in [8], we know that f/ω ∈ S(Ω, ω) ⇒ f ∈ H−1,2(Ω, ω).
And from definition, Mσ(Ω, ω) ⊂ S(Ω, ω). Then by Theorem 2.2 in [6], when f/ω ∈ S(Ω, ω)
or Mσ(Ω, ω), (1.1) has a unique weak solution and the very weak solution to (1.1) is the
weak one.

Remark 3.4. In order to see how the regularity of the solution to (1.1) changes under
the variation of f , we give the containing relations of the spaces appearing in the above
theorems. We have

Mσ(Ω, ω) ⊂ S(Ω, ω) ⊂ S̃(Ω, ω) ⊂ L1,0(Ω, ω) ⊂ L1,λ(Ω, ω) (λ < 0),

where S̃(Ω, ω) ⊂ L1,0(Ω, ω) demands M < 1/4.

§4. Regularities II

In this section, we solve the problem (II) mentioned in Introduction.
We give two propositions of weighted Schechter class Sp(Ω, ω) first.
Proposition 4.1. Let M < 1/4, 1 ≤ p < n

n−1 . Then Sp(Ω, ω) = L1(Ω, ω).

Proof. By Remark 2.13 in [16], if σ ≤ 2− 2n, we have L1,σ(Ω, ω) = L1(Ω, ω). Set

I(f)(x) =

∫
Ω

|f(y)|
(∫ 4R

|x−y|

sds

ω(Bs(x))

)
ω(y)dy.

Then if f ∈ L1(Ω, ω), we can get

I(f) ∈ Lp(Ω, ω)
(
1 ≤ p <

σ − 2

σ

)
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by using Theorem 3.1. σ ≤ 2− 2n implies σ−2
σ ≤ n

n−1 , so we get

f ∈ Sp(Ω, ω)
(
1 ≤ p <

n

n− 1

)
.

Proposition 4.2. Let M < 1/4. Then S∞(Ω, ω) ⊂ L1,0(Ω, ω) ⊂
∩

1≤p<∞

Sp(Ω, ω).

Proof. Definition implies S∞(Ω, ω) = S̃(Ω, ω). And we have S∞(Ω, ω) ⊂ L1,0(Ω, ω) by
Remark 3.4.

Now we prove the second containing relation.

f ∈ L1,0(Ω, ω) implies f ∈ L1,σ(Ω, ω) (∀σ < 0). By Theorem 3.1, I(f) ∈ L
σ−2
σ

ω (Ω, ω). By
Proposition 4.1, when 1 ≤ p < n

n−1 , S
p(Ω, ω) = L1(Ω, ω). So we will only consider the case

of n
n−1 ≤ p < ∞. Because of 1 < σ−2

σ < ∞, I(f) ∈ Lp(Ω, ω) ( n
n−1 ≤ p < ∞) and so we have

f ∈ Sp(Ω, ω) (1 ≤ p < ∞).

We now give our results of regularity.

Theorem 4.1. Let f/ω ∈ L1(Ω, ω), M < 1/4 and u ∈ L1(Ω, ω) be a very weak solution
to (1.1). Then

u ∈ Lp
loc(Ω, ω) ⇐⇒ f/ω ∈ Sp

loc(Ω, ω) (1 ≤ p < ∞).

Proof. We first prove the theorem in the case f ≥ 0. Let K be a compact subset of Ω.
If u ∈ Lp(K,ω), then∫

K

|u(x)|pω(x)dx =

∫
K

(∫
Ω

g(x, y)f(y)dy
)p

ω(x)dx

≥
∫
K

(∫
Ωr(x)

g(x, y)f(y)dy
)p

ω(x)dx.

We have the following conclusion: let M < 1/4, x ∈ Ω and |x − y| < 1
2dist(x, ∂Ω) =

1
2dx,

then

g(x, y) ≥ C

∫ 4R

|x−y|

sds

ω(Bs(x))
.

In fact, Theorem 4 in [5] implies

g(x, y) ≥ C

∫ dx

|x−y|

sds

ω(Bs(x))
.

And by (2.5) and (2.6),∫ dx

|x−y|

sds

ω(Bs(x))
≥ |x− y|2

ω(B|x−y|(x))
≥ C

∫ 4R

|x−y|

sds

ω(Bs(x))
.

So we get the conclusion.

If we choose r > 0 such that r < dist(K,∂Ω)
2 , we have∫

K

|u(x)|pω(x)dx ≥ C

∫
K

[ ∫
Ωr(x)

f(y)
(∫ 4R

|x−y|

sds

ω(Bs(x))

)
dy

]p
ω(x)dx.

So, u ∈ Lp
loc(Ω, ω) =⇒ f/ω ∈ Sp

loc(Ω, ω).
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Now the converse. For r > 0,

u(x) =

∫
Ω

g(x, y)f(y)dy

≤ C

∫
Ωr(x)

f(y)
(∫ 4R

|x−y|

sds

ω(Bs(x))

)
dy

+ C

∫
{y∈Ω:|y−x|≥r}

f(y)
(∫ 4R

|x−y|

sds

ω(Bs(x))

)
dy

= I + II.

f/ω ∈ Sp(K,ω) implies I∈ Lp(K,ω).
For II, we have

II ≤ C

∫
Ω

f(y)
(∫ 4R

r

sds

ω(Bs(x))

)
dy

≤ Cr2

ω(Br(x))

∫
Ω

f(y)dy

≤ C(ω,Ω)r2−2n∥f/ω∥L1(Ω,ω),

where the last inequality holds true because of Lemma 2.1(c) in [16] and we get II ∈ Lp(K,ω).
So

f/ω ∈ Sp
loc(Ω, ω) =⇒ u ∈ Lp

loc(Ω, ω).

For general case, we write u = u+ − u−, where u+ = max(u, 0) and u− = −min(u, 0).
Then we have u± ∈ L1(Ω, ω). Set Lu± = f±. We obtain f± ≥ 0 and f = f+ − f− from
weak maximum principle[6] as well as Theorem 2.1. Thus, using the result in the case f ≥ 0,
we complete the proof.

Remark 4.1. Let 1 ≤ p < ∞, we define weighted L-Schechter class as

Sp
L(Ω, ω) =

{
f ∈ L1(Ω, ω) :

∫
Ω

[ ∫
Ωr(x)

|f(y)|g(x, y)ω(y)dy
]p
ω(x)dx < ∞ for some r > 0

}
,

where g(x, y) is the Green’s function for L and Ω.
Using Sp

L(Ω, ω) to take the place of Sp(Ω, ω) in Theorem 4.1, we could get a similar result
of global nature.

The following theorem shows that Theorem 4.1 still holds true for p = +∞.
Theorem 4.2. Let f/ω ∈ L1(Ω, ω), M < 1/4 and u ∈ L1(Ω, ω) be a very weak solution

to (1.1). Then

u ∈ L∞
loc(Ω) ⇐⇒ f/ω ∈ S̃loc(Ω, ω).

Proof. Just as in the proof of Theorem 4.1, we only need to prove the case f ≥ 0. Let K
be a compact subset of Ω, x ∈ K and |x− y| < r < 1

2dist(K, ∂Ω). Applying the conclusion
in the proof of Theorem 4.1, we have∫

Ωr(x)

f(y)
(∫ 4R

|x−y|

sds

ω(Bs(x))

)
dy ≤ C

∫
Ωr(x)

f(y)g(x, y)dy

≤ Cu(x) ≤ C∥u∥L∞(K).

So

u ∈ L∞
loc(Ω) =⇒ f/ω ∈ S̃loc(Ω, ω).

The sufficient part can be found in Theorem 3.3.
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Theorem 4.3. Let f/ω ∈ L1(Ω, ω), M < 1/4 and u ∈ L1(Ω, ω) be a very weak solution
to (1.1). Then

u ∈ C0(Ω) ⇐⇒ f/ω ∈ Sloc(Ω, ω).

Proof. Just as in the proof of Theorem 4.1, we only need to prove the case f ≥ 0. Let

ur(x) =

∫
{y∈Ω:|x−y|≥r}

f(y)g(x, y)dy, r > 0.

We have

f(y)
∣∣g(x, y)χ{|x−y|≥r}(y)− g(x0, y)χ{|x0−y|≥r}(y)

∣∣
≤ Cf(y)

(∫ 4R

r

sds

ω(Bs(x))
+

∫ 4R

r

sds

ω(Bs(x0))

)
≤ C(ω,Ω)r2−2nf(y) ∈ L1(Ω).

By dominated convergence theorem, we get lim
x→x0

ur(x) = ur(x0), which means ur(x) ∈

C0(Ω). Moreover 0 ≤ ur(x) ≤ u(x) and ur(x) → u(x) monotonically for every x ∈ Ω. If K
is a compact subset of Ω, then by Dini’s theorem we get

sup
x∈K

(u(x)− ur(x)) = sup
x∈K

∫
Ωr(x)

f(x)g(x, y)dy −→ 0.

Choosing r < 1
2dist(K, ∂Ω), we have

sup
x∈K

∫
Ωr(x)

f(y)
(∫ 4R

|x−y|

sds

ω(Bs(x))

)
dy −→ 0.

So

u ∈ C0(Ω) =⇒ f/ω ∈ Sloc(Ω, ω).

The sufficient part can be found in Theorem 3.4.
Lemma 4.1. Let f/ω ∈ L1(Ω, ω), f ≥ 0 and u be a bounded very weak solution to (1.1).

Then u is the weak solution to the same Dirichlet problem.
The proof is very similar to Remark 4.6 in [3], so we omit it.
Lemma 4.2. Let f/ω ∈ L1(Ω, ω), f ≥ 0, 0 < α < 1 and u ∈ C0,α(Ω) be a very weak

solution to (1.1). Then we have∫
Br(x0)

|∇u|2ω ≤ C
[
rα

∫
B2r(x0)

f + r2α−2ω(Br(x0))
]

for all B2r ⊂ Ω.
Proof. We can prove this lemma by Lemma 4.1 in [16] and Lemma 4.1.
Theorem 4.4. Let f/ω ∈ L1(Ω, ω), M < 1/4 and u ∈ L1(Ω, ω) be a very weak solution

to (1.1). Then we have

u ∈ C0,α(Ω) ⇐⇒ f/ω ∈ L1,α(Ω, ω) (0 < α < 1).

Proof. Just as in the proof of Theorem 4.1, we only need to prove the case f ≥ 0. We
can get the necessary part by Theorem 4.2 in [16] and Lemma 4.2. And we can get the
sufficient one by Theorem 3.5 and the fact that L1,α(Ω, ω) ⊂ Mα(Ω, ω) when M < 1/4.

Remark 4.2. We would not need the assumption M < 1/4 when we get the part
u ∈ C0,α(Ω) =⇒ f/ω ∈ L1,α(Ω, ω) in Theorem 4.4.
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