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Abstract

The authors prove the uniqueness in the inverse acoustic scattering problem within
convex polygonal domains by a single incident direction in the sound-soft case and the
sound-hard case, and by two incident directions in the case of the impedance boundary
condition. The proof is based on analytic continuation on a straight line.
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§ 1 . Introduction

Let k ∈ R, λ > 0 and i =
√−1. We consider an acoustic scattering problem by an

impenetrable obstacle D ⊂ R2:

∆u + k2u = 0, in R2 \D, (1.1)
u(x) = eikx·d + uS(x), (1.2)

lim
|x|→∞

|x| 12
(

∂

∂|x|u
S(x)− ikuS(x)

)
= 0 (1.3)

associated with

u = 0, on ∂D: the sound-soft obstacle (1.4)
∂u

∂ν
+ iλu = 0, on ∂D:

the sound-hard obstacle if λ = 0
and the impedance boundary condition if λ > 0. (1.5)
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Here and henceforth, x = (x1, x2) ∈ R2, |x| =
√

x2
1 + x2

2, S1 = {x ∈ R2; |x| = 1}, D denotes
the closure of a set D ⊂ R2, d ∈ S1 and ∂

∂ν denotes the normal derivative: ∂u
∂ν = ∇u · ν,

where ν = ν(x) is the outward unit normal vector to ∂D at x. Moreover, k ∈ R is the wave
number and we can interpret eikx·d as an incident wave with the direction d. Equation (1.3)
at ∞ is called the Sommerfeld radiation condition and uS is called the scattering field. As
for the details, we refer to [4, 5, 9, 12, 13, 16].

It is known (e.g., [2, 15]) that there exists a unique solution uS(D; d) ∈ H1
loc(R2 \D)

to (1.1)–(1.4) or (1.1)–(1.3) and (1.5) for d ∈ S1 if ∂D is Lipschitz continuous. In the case
(1.5) with λ > 0, we denote the solution by uS(D,λ; d) for specifying the dependence on
λ. Moreover, similarly to Theorem 2.5 in [5], we can prove that there exists u∞(D; d)(x) or
u∞(D,λ; d)(x) in the case (1.5) with λ > 0, x ∈ S1, such that

uS(D; d)(x) =
eik|x|

|x| 12

(
u∞(D; d)

(
x

|x|
)

+ O

(
1
|x|

))
as |x| −→ ∞. (1.6)

We call u∞(D; d)(x) or u∞(D, λ; d)(x) the far field pattern. Throughout this paper, we fix
k ∈ R. In the direct problem, we are required to find u∞(D; d)(·) for a given domain D.
Now our main interest is in the inverse problem of determining D from the far field pattern
u∞(D; d)(·) which can be observed. The most important theoretical issue is

Uniqueness. Let S ⊂ S1 be a prescribed subset. Then is the correspondence

{u∞(D; d)}d∈S ←→ D

one to one?
In the sound-soft case, there are several uniqueness results within bounded C2-domains

D’s:
(1) Schiffer proved that if u∞(D1; d) = u∞(D2; d) on S1 for d ∈ S: an infinite set, then

D1 = D2 (e.g., [5, 13]).
(2) Colton and Sleeman in [6] proved that: Let D1, D2 be included in {x; |x| < R} with

R > 0. Then there exists N(R) ∈ N such that if S has N(R) elements and u∞(D1; d) =
u∞(D2; d) on S1 for all d ∈ S, then D1 = D2.

One can estimate N(R), and if kR < π, then we can take N(R) = 1. That is, a single
incident wave yields the uniqueness; let D1, D2 ⊂ {x ∈ R2; |x| < R} and let kR < π. Then
u∞(D1; d) = u∞(D2; d) on S1 for a single d implies D1 = D2.

As for stability results, see [11, Chapter 6], and [16, Chapter 1] contains a survey of
theoretical results.

In the case (1.5), the uniqueness with a finite number of incident waves is not known,
and see Theorem 5.6 in [5] for the uniqueness with all the incident directions. Even in the
sound-soft case (1.4), the general uniqueness with a single d seems still an open problem.
On the other hand, especially in the sound-soft case, it seems known as folklore that we can
determine a convex polygon with an arbitrarily given single incident wave.

The main purpose of this paper is to prove the uniqueness in all the cases of sound-
soft, sound-hard obstacles and the impedance boundary condition within convex polygonal
obstacles, by means of at most two incident waves (a single incident wave in the sound-
soft case and the sound-hard case). More precisely, in the case of impedance boundary
condition, we can prove the uniqueness of λ in (1.5) as well as of an obstacle. Our proof is
based essentially on the analyticity of the solution uS(D; d) to the direct problem, and so our
argument is applicable to D’s of more general geometry in higher dimensions and to other
scattering problems such as electromagnetic scattering. See e.g., [3] for the determination
of non-convex polygonal obstacles in the sound-soft and sound-hard cases. However, for
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showing the essence, in this paper, we will exclusively discuss the two dimensional inverse
acoustic scattering problem within convex polygonal D’s.

The rest of this paper is organized as follows: Section 2. Main result in the sound-soft
case and the sound-hard case. Section 3. Main result in the case of impedance boundary
condition. Section 4. Concluding remarks.

§ 2 . Main Result in the Sound-Soft Case and the Sound-Hard Case

Let u(D; d)(x) be a weak solution in H1
loc(R2 \D) to (1.1)–(1.4) or (1.1)–(1.3) and (1.5)

with λ = 0 for a given d ∈ S1 and let u∞(D; d) be the corresponding far field pattern. We
note that u(D; d) is smooth in any compact subset in R2 \D (e.g., [10]). By a polygon, we
mean an interior bounded by a piecewise linear closed curve.

We are ready to state our first main result.

Theorem 2.1. Let k ∈ R and d ∈ S1 be arbitrarily chosen. We assume that k 6= 0 in
the case (1.5) with λ = 0. Let D1, D2 ⊂ R2 be bounded convex polygons. If u∞(D1; d)(x) =
u∞(D2; d)(x) for any x ∈ S1, then D1 = D2.

Remark 2.1. Let k = 0 in the case (1.5) with λ = 0. Then within H1(R2 \D), there
exists a unique solution uS(D; d)(x) = 0 for any D and any d ∈ S1. Therefore we cannot
expect the uniqueness in our inverse problem.

By the theorem, in the sound-soft case and the sound-hard case, an arbitrarily chosen
single incident wave guarantees the uniqueness within convex polygonal obstacles. As an
admissible set of unknown obstacles D’s, all the polygonal domains are restrictive, but in
some practical cases, piecewise linear shapes in the scattering may be reasonable. See e.g.,
[17] in the case of the scattering by periodic structures, and [1] for the numerics in the case of
the inverse acoustic scattering with polygons. Moreover, as is seen from the proof below, we
can apply our argument to D’s whose boundaries are piecewise analytic and every analytic
piece can be extended analytically to ∞, and we can prove the uniqueness in determining
such obstacles.

Our proof is based on a classical argument for the inverse scattering theory by Rellich’s
lemma (e.g., Lemma 2.11 in [5]) and the analytic extension of solutions to Helmholtz equation
(1.1).

Proof of Theorem 2.1. We set uj = u(Dj ; d), j = 1, 2. For sufficiently large R > 0,

u1(x)− u2(x) = |x|− 1
2 eik|x|O

(
1
|x|

)
if |x| > R

by (1.6) and u∞(D1; d) ≡ u∞(D1; d). Therefore
∫
|x|=r

|u1(x)− u2(x)|2ds = O
(

1
r

)
if r > R,

which implies that u1(x) = u2(x) if |x| > R by Rellich’s lemma (e.g., Lemma 2.11 in
[5, p.32]). Since u1 − u2 satisfies the Helmholtz equation in R2 \ (D1 ∪ D2), the unique
continuation implies

u1(x) = u2(x), x ∈ R2 \ (D1 ∪ D2). (2.1)

Assume that D1 6= D2. Then there exists a vertex O of ∂D1 such that O ∈ R2 \D2 or
a vertex O′ of ∂D2 such that O′ ∈ R2 \D1. Without loss of generality, we may assume the
former case. Moreover we can choose points P and Q on edges of a convex polygon D1 such
that the segments OP and OQ are on the two edges and that OP, OQ ⊂ R2 \D2. Moreover,
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since D2 is convex, we can extend the segments OP and OQ (at least over respective one
end point) to ∞ in R2 \D2.

We will discuss only the sound-hard case, because the sound-soft case is treated in the
same way. Therefore, by (1.5) with λ = 0, we have

∂u1

∂ν
(x) = 0, x ∈ OP ∪OQ. (2.2)

Hence in the trace sense, from (2.1) and (2.2) it follows that ∂u2
∂ν (x) = 0, x ∈ OP ∪OQ.

By ν1 and ν2 we denote the unit outward normal vectors respectively to OP ⊂ ∂D1 and
OQ ⊂ ∂D1, and by τ1 and τ2 we denote unit tangential vectors on OP and OQ respectively.
Since OP and OQ are two edges of D1, we see that ν1 and ν2 are linearly independent.
Without loss of generality, we may take O = (0, 0) and

{sτ1; s < 0}, {sτ2; s < 0} ⊂ R2 \D2. (2.3)

Consequently we have
∇u2(sτ1) · ν1 = ∇u2(sτ2) · ν2 = 0 (2.4)

for 0 < s ≤ 1. Since u2 is real-analytic in x ∈ R2 \D2 (e.g., [5]), in terms of (2.3), we have
(2.4) for all s ∈ (−∞, 1). By Green’s formula (e.g., Theorem 2.4 in [5]), we can prove

lim
|x|→∞

|∇uS(D; d)(x)| = 0 (2.5)

in a way similar to the proof of (1.6) (e.g., Theorem 2.5 in [5]). Therefore (2.4) and (2.5)
yield

lim
s→−∞

|ik(d · ν1)eiks(τ1·d)| = lim
s→−∞

|ik(d · ν2)eiks(τ2·d)| = 0.

Since |eiks(τ1·d)| = |eiks(τ2·d)| = 1 and k 6= 0, we have (d · ν1) = (d · ν2) = 0. Because ν1 and
ν2 are linearly independent, we have d = 0, which contradicts |d| = 1. Thus the proof of
Theorem 2.1 is complete.

§ 3 . Main Result for the Impedance Boundary Condition

In this section, we consider the case (1.1)–(1.3) and (1.5) with λ > 0. We can state
our uniqueness result.

Theorem 3.1. (the impedance boundary condition) Let k ∈ R and λ1, λ2 > 0 in (1.5),
and let d1, d2 ∈ S1 be distinct. Assume that D1, D2 ⊂ R2 are bounded convex polygons. If
u∞(D1, λ1; dj)(x) = u∞(D2, λ2; dj)(x), j = 1, 2, for any |x| = 1, then D1 = D2 and λ1 = λ2.

Proof. We set u`
j(x) = u(Dj , λj ; d`)(x) for j = 1, 2 and ` = 1, 2. Assume that

D1 6= D2. Similarly to the proof of Theorem 2.1, we may choose a vertex O of ∂D1 and
points P , Q such that OP, OQ ⊂ R2 \D2 and

∇u`
1(x) · ν1 + iλ1u

`
1(x) = 0, ` = 1, 2, x ∈ OP,

∇u`
1(x) · ν2 + iλ1u

`
1(x) = 0, ` = 1, 2, x ∈ OQ. (3.1)

Here ν1 and ν2 are the unit outward normal vectors to OP ⊂ ∂D1 and OQ ⊂ ∂D1 respec-
tively, and τ1 and τ2 are unit tangential vectors on OP and OQ respectively. Similarly in
obtaining (2.4) from (2.1), by (3.1) we can prove

∇u`
2(sτ1) · ν1 + iλ1u

`
2(sτ1) = 0,

∇u`
2(sτ2) · ν2 + iλ1u

`
2(sτ2) = 0, ` = 1, 2, s ≤ 1. (3.2)



UNIQUENESS IN INVERSE SCATTERING 5

Here we have chosen O = (0, 0), and assume that (2.3) holds true.
Noting (1.6), (2.5) and

∇u`
2(sτj) = ∇uS(D2, λ2; d`)(sτj) + ikd`eiks(τj ·d`), j = 1, 2, ` = 1, 2,

we see that Equation (3.2) implies

lim
s→−∞

(k(d` · ν1) + λ1)eiks(τ1·d`) = 0,

lim
s→−∞

(k(d` · ν2) + λ1)eiks(τ2·d`) = 0, ` = 1, 2.

Therefore we have
k(d` · νj) + λ1 = 0, j = 1, 2, ` = 1, 2. (3.3)

By λ1 > 0, we see from (3.3) that k 6= 0, so that (d1 ·νj) = (d2 ·νj), j = 1, 2. Since ν1 and ν2

are linearly independent, we have d1 = d2, which contradicts the assumption that d1 6= d2.
Therefore we see that D1 = D2.

Finally we have to prove that λ1 = λ2. By (2.1), we have u1 = u2 and ∂u1
∂ν = ∂u2

∂ν
on ∂D1 = ∂D2 in the sense of traces. Hence, by (1.5), we obtain (λ1 − λ2)u1 = 0 almost
everywhere on ∂D1. Assume contrarily that λ1 6= λ2. Then we have u1 = ∂u1

∂ν = 0 on
∂D1. Let P ∈ ∂D1 be a point such that ∂D1 is flat in a neighbourhood U of P . Hence
u1 ∈ H1((R2 \D1) ∩ U) satisfies

∆u1 + k2u1 = 0, in (R2 \D1) ∩ U

u1 =
∂u1

∂ν
= 0, on ∂D1 ∩ U .

Therefore the unique continuation yields u1 = 0 in (R2 \D1)∩U . For example, see the proof
of Theorem 3.3.1 in [11, pp.53–54]. Note that for the unique continuation, it is sufficient
to consider H1-solutions. By taking into consideration that u1 is smooth in any compact
subset in R2 \ D1, the classical unique continuation implies that u1 = 0 in R2 \ D1. This
contradicts the behaviour of the total field u1 at ∞. Consequently λ1 = λ2. Thus the proof
of Theorem 3.1 is complete.

§ 4 . Concluding Remarks

(1) In this paper, we exclusively consider convex polygons. In the cases (1.4) and (1.5),
provided that non-convex polygons under consideration satisfy some geometric constraints,
the uniqueness is proved (see [3]). In a forthcoming paper, for the case (1.5), we will prove the
uniqueness in identifying non-convex polygonal obstacles under some geometric constraints
by means of at most three incident waves.

(2) The numerical reconstruction for the inverse scattering problem is extremely impor-
tant and we can refer to [4, 5, 9, 12, 16] for example. The uniqueness in our inverse problem
is useful for that purpose. For example, if we reconstruct a convex polygonal domain by
an optimization method, then our uniqueness results guarantee that we need not take a
subsequence of the minimizing sequence for the cost functional and that any minimizing
sequence itself converges to a uniquely determined obstacle (see e.g., [7, p.1316]).

(3) Our argument is essentially based on the analyticity of solutions, so that it is
applicable to other inverse scattering problems such as electromagnetic scattering provided
that the coefficients of the governing equations are real-analytic. The three dimensional case
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is treated similarly. A similar argument is used for an inverse problem in periodic diffractive
optics (see [8]).

(4) Some related uniqueness results within the class of balls can be found in [14], [18]
etc.
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