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Abstract

The author presents an extension of the Atiyah-Patodi-Singer invariant for unitary
representations [2, 3] to the non-unitary case, as well as to the case where the base
manifold admits certain finer structures. In particular, when the base manifold has
a fibration structure, a Riemann-Roch theorem for these invariants is established by
computing the adiabatic limits of the associated η-invariants.
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§ 0 . Introduction

Let M be an odd dimensional closed oriented manifold. Let ρ be a unitary represen-
tation of the fundamental group of M . By using their η-invariant, Atiyah-Patodi-Singer [2,
3] introduced an R/Z-valued smooth invariant associated to ρ. One of the purposes of this
paper is to propose an extension of this invariant to the case of non-unitary representations,
as well as to the case where the base manifold may admit certain finer structures.

To simplify the presentation, we work in the real category. Thus, let M be an odd
dimensional closed oriented Riemannian manifold with Riemannian metric gTM . Let F be
a real flat vector bundle over M with flat connection ∇F . Let gF be an Euclidean metric
on F . Then F admits canonically an Euclidean connection ∇F,e (cf. [10, (4.3)]).

Let E be an even dimensional oriented sub-bundle of the tangent vector bundle TM .
Then TM/E carries an induced orientation.

With these data in hand and by proceeding similarly as in [18, 19], we can construct a
first order elliptic differential operator DF

M/E,sig acting on C∞(M ;∧even(T ∗M)⊗ F ), which
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we call a (twisted) sub-signature operator associated to TM/E. In particular, when E = 0,
it is just the usual (real) signature operator twisted by the Euclidean vector bundle (F,∇F,e).
Furthermore, one verifies easily that DF

M/E,sig is formally self-adjoint (resp. skew-adjoint) if
dim(TM/E) = 4k + 3 (resp. 4k + 1) for some k ∈ N.

In the case where dim(TM/E) ≡ 3 mod 4Z, we denote by

η
(
DF

M/E,sig

)
=

dim
(
kerDF

M/E,sig

)
+ η

(
DF

M/E,sig

)

2
(0.1)

the reduced η-invariant of DF
M/E,sig in the sense of Atiyah-Patodi-Singer [1].

Let RM denote the trivial line bundle over M with the trivial metric and the trivial
flat connection. We will denote the corresponding operator DRM

M/E,sig by DM/E,sig.
We can now state the following easy result.

Theorem 0.1. (a) If dim(TM/E) ≡ 1 mod 4Z, then

φ(M/E,F ) = dim
(
kerDF

M/E,sig

)
∈ Z/2Z

does not depend on gTM and gF ;
(b) If dim(TM/E) ≡ 3 mod 4Z, then

φ(M/E,F ) = η
(
DF

M/E,sig

)
− (dim F )η(DM/E,sig) ∈ R/Z

does not depend on gTM and gF .

The smooth invariant in Theorem 0.1(a) may be viewed as an example of the Atiyah-
Singer mod 2 index (cf. [4]) for skew-adjoint elliptic operators. On the other hand, when E =
0 and ∇F preserves gF , the smooth invariance of φ(M/E, F ) in Theorem 0.1(b) was proved
by Atiyah-Patodi-Singer in [2, 3]. Furthermore, one obtains in this case a refined R-invariant
(cf. [2]). However, for the general case where ∇F may not preserve gF , dim

(
ker DF

M/E,sig

)

may well jump so that one only gets R/Z invariants. From the other point of view, when
∇F preserves gF , the invariant φ(M/E, F ) in Theorem 0.1(b) may be viewed as an example
of the Atiyah-Patodi-Singer invariant defined in [3, Proposition 2.14].

Recall that Atiyah-Patodi-Singer [3] also have an extension of their invariants to C/Z-
invariants for non-unitary flat vector bundles. Clearly, our generalization is not identical
with theirs.

Now let Z → M
π→ B be a smooth fibration of even dimensional closed manifolds

Zb, b ∈ B, over an odd dimensional closed oriented manifold B. We make the assumption
that the vertical tangent vector bundle TZ is oriented. Then TM carries a canonically
induced orientation.

Let F be a flat vector bundle over M . Then F induces canonically a Z-graded flat
vector bundle H∗(Z, F |Z) over B (cf. [9, Section 3f)]).

One can then construct various smooth invariants as in Theorem 0.1. Our second main
result establishes a relationship between these invariants.
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Theorem 0.2. The following identity holds,

φ(M/TZ, F ) =
dim Z∑

i=0

(−1)iφ(B,Hi(Z, F |Z))− rk(F )
dim Z∑

i=0

(−1)iφ(B, Hi(Z,RZ)). (0.2)

Theorem 0.2 may be thought of as a Riemann-Roch type theorem for these generalized
Atiyah-Patodi-Singer invariants.

We prove Theorem 0.2 by using the methods and techniques of Bismut-Cheeger [6, 7]
and Dai [13] to evaluate the adiabatic limits of the associated reduced η-invariants, under
the procedure of enlarging the metric on B.

Theorems 0.1 and 0.2 can be extended easily to the case of complex flat vector bundles,
with the obvious replacement of the mod 2 indices by the corresponding reduced η-invariants.
Furthermore, when TM/E is spin we can construct smooth mod Z invariants by using
the sub-Dirac operators studied in [16], and prove the corresponding Riemann-Roch type
theorem for the fibration case. See Section 3 for more details.

This paper is organized as follows. In Section 1, we construct the sub-signature opera-
tors associated to sub-bundles of the tangent bundle of a manifold, as well as to flat vector
bundles. We also construct the corresponding generalized Atiyah-Patodi-Singer invariants
and prove Theorem 0.1 in this section. In Section 2, we apply the methods and techniques
of Bismut-Cheeger [6, 7] and Dai [13] to prove Theorem 0.2. In Section 3, we discuss the
extensions and analogues mentioned above for the case where TM/E is spin.

This paper was first written in 1998. We here submit in its original form. Some minor
corrections suggested by the referee have been adopted.

§ 1 . Sub-signature Operators and the Generalized
Atiyah-Patodi-Singer Invariants for Flat Vector Bundles

The purpose of this section is to construct the objects involved in Theorem 0.1 and to
prove Theorem 0.1. By this one gets a series of smooth invariants for flat vector bundles
generalizing those of Atiyah-Patodi-Singer [2, 3].

This section is organized as follows. In (a), we recall some algebraic preliminaries.
In (b), we construct the corresponding sub-signature operators. In (c), we prove certain
Lichnerowicz type formulas needed for the proof of Theorem 0.1. In (d), we prove Theorem
0.1. There is also an appendix to this section in which we prove a regularity result for the
η-function of sub-signature operators.

(a) Algebraic Preliminaries

Let V be an oriented Euclidean vector space of dimension n. If e ∈ V , let e∗ ∈
V ∗ correspond to e by the scalar product on V . If e ∈ V , set c(e) = e∗ ∧ −ie (resp.
ĉ(e) = e∗ ∧ +ie), where e∗∧ and ie are the standard notation for the exterior and interior
multiplications acting on the (real) exterior algebra ∧∗(V ∗). If e, e′ ∈ V , the following
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identities hold,
c(e)c(e′) + c(e′)c(e) = −2〈e, e′〉,
ĉ(e)ĉ(e′) + ĉ(e′)ĉ(e) = 2〈e, e′〉,
c(e)ĉ(e′) + ĉ(e′)c(e) = 0.

(1.1)

If we view
∧∗(V ∗) = ∧even(V ∗)⊕ ∧odd(V ∗)

as a Z2-graded space, then c(e), ĉ(e) are odd elements of End(∧∗(V ∗)).
Let e1, . . . , en be an oriented orthonormal basis of V .

Proposition 1.1. Among the monomials in terms of c(ei)’s and ĉ(ei)’s, only the term
c(e1)ĉ(e1) · · · c(en)ĉ(en) has a nonzero supertrace. Moreover,

Trs [c(e1)ĉ(e1) · · · c(en)ĉ(en)] = (−2)n. (1.2)

For a proof of (1.2), see [10, §4d)].
We now assume n = 2m + 1.
Let ĉodd(V ) be the algebra generated by monomials of the form

cI,J = c (ei1) · · · c (eik
) ĉ (ej1) · · · ĉ (ejl

) , (1.3)

where both k and l are odd integers. Then ĉodd(V ) preserves ∧even(V ∗) and ∧odd(V ∗). We
will view ĉodd(V ) as a subalgebra of End(∧even(V ∗)) (resp. End(∧odd(V ∗))).

Proposition 1.2. Among the elements of the form (1.3) in ĉodd(V ), only the term
c(e1)ĉ(e1) · · · c(en)ĉ(en) has a nonzero trace on ∧even(V ∗) (resp. ∧odd(V ∗)). Moreover,

Tr∧
even(V ∗) [c(e1)ĉ(e1) · · · c(en)ĉ(en)] = −22m (1.4)

(resp. Tr∧
odd(V ∗) [c(e1)ĉ(e1) · · · c(en)ĉ(en)] = 22m). (1.5)

For a proof of (1.4), see [19, Section 1]. (1.5) follows from (1.2) and (1.4).

(b) Flat Vector Bundles and the Sub-signature Operators

Let M be an oriented closed manifold of dimension n. Let E be an oriented sub-bundle
of the tangent vector bundle TM .

Let gTM be a metric on TM . Let gE be the induced metric on E. Let E⊥ be the
sub-bundle of TM orthogonal to E with respect to gTM . Let gE⊥ be the metric on E⊥

induced from gTM . Then (TM, gTM ) has the following orthogonal splittings,

TM = E ⊕ E⊥, gTM = gE ⊕ gE⊥ . (1.6)

Clearly, E⊥ carries a canonically induced orientation. We identify the quotient bundle
TM/E with E⊥.

Let F be a (real) flat vector bundle over M . Let gF be an Euclidean metric on F .
Let

∧∗(T ∗M) =
n⊕

i=0

∧i(T ∗M)
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be the (real) exterior algebra bundle of T ∗M . Let

Ω∗(M,F ) =
n⊕

i=0

Ωi(M, F ) =
n⊕

i=0

C∞(M ;∧i(T ∗M)⊗ F )

be the set of smooth sections of ∧∗(T ∗M)⊗F. Let ∗ be the Hodge star operator of gTM . It
extends on ∧∗(T ∗M)⊗F by acting on F as identity.1 Then Ω∗(M,F ) inherits the following
standardly induced inner product

〈α, β〉 =
∫

M

〈α ∧ ∗β〉F , α, β ∈ Ω∗(M, F ). (1.7)

Denote k = dim E⊥. Let f1, · · · , fk be an oriented (local) orthonormal basis of E⊥.
Set

ĉ
(
E⊥, gE⊥

)
= ĉ(f1) · · · ĉ(fk). (1.8)

Clearly, ĉ
(
E⊥, gE⊥

)
does not depend on the choice of the orthonormal basis.

Let

ε = Id∧even(T∗M)⊗F − Id∧odd(T∗M)⊗F

be the Z2-grading operator of

∧∗(T ∗M)⊗ F = ∧even(T ∗M)⊗ F ⊕ ∧odd(T ∗M)⊗ F.

Set

τ
(
M, gE⊥

)
= εĉ

(
E⊥, gE⊥

)
. (1.9)

One verifies easily that

τ
(
M, gE⊥

)2

= (−1)
k(k+1)

2 . (1.10)

Thus, when k ≡ 0 mod 4Z, τ
(
M, gE⊥

)
defines a Z2-grading of ∧∗(T ∗M)⊗ F . In this case,

we will denote by

∧±
(
T ∗M, gE⊥ , F

)
=

{
ω ∈ ∧∗(T ∗M)⊗ F, τ

(
M, gE⊥

)
ω = ±ω

}
(1.11)

the (even/odd) eigen-bundles of τ
(
M, gE⊥

)
and by Ω±

(
M, gE⊥ , F

)
the corresponding set of

smooth sections.
Let ∇F be the flat connection on F . Let dF be the obvious extension of ∇F on

Ω∗(M,F ). Let δF = dF∗ be the formal adjoint operator of dF with respect to the inner
product (1.7).

Let D̃F
M/E be the differential operator acting on Ω∗(M, F ) defined by

D̃F
M/E =

1
2

(
ĉ
(
E⊥, gE⊥

)
(dF + δF ) + (−1)k(dF + δF )ĉ

(
E⊥, gE⊥

))
. (1.12)

1In what follows, whenever we extend an endomorphism of ∧∗(T ∗M) to ∧∗(T ∗M)⊗ F , we mean that it
is extended by acting on F as identity.
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Then one verifies easily that

D̃F
M/Eτ

(
M, gE⊥

)
= −τ

(
M, gE⊥

)
D̃F

M/E ,
(
D̃F

M/E

)∗
= (−1)

k(k+1)
2 D̃F

M/E , (1.13)

where
(
D̃F

M/E

)∗ is the formal adjoint of D̃F
M/E with respect to the inner product (1.7).

Definition 1.1. The sub-signature operator DF
M/E,sig with respect to (E, gTM , F ) is

defined as follows:
(a) if dim TM/E is odd, then

DF
M/E,sig = D̃F

M/E : Ωeven(M, F ) → Ωeven(M,F ); (1.14)

(b) if dim TM/E ≡ 0 mod 4Z, then

DF
M/E,sig = D̃F

M/E : Ω+

(
M, gE⊥ , F

)
→ Ω−

(
M, gE⊥ , F

)
. (1.15)

From (1.10)–(1.13), one sees that DF
M/E,sig is well defined. In particular, if dim TM/E

≡ 1 mod 4Z, DF
M/E,sig is formally skew-adjoint, while when dim TM/E ≡ 3 mod 4Z,

DF
M/E,sig is formally self-adjoint.

Remark 1.1. When both dim M and dim E are even integers and F = RM , the
trivial line bundle over M with the trivial flat connection and the trivial flat metric, the
sub-signature operators, in a complexified form, were constructed in [18]. While when
dim TM/E = 1 and F = RM , the sub-signature operator has been constructed in [19].

Example 1.1. If one takes E = TM , then one has DF
M/E,sig = dF + δF , which is the

de Rham-Hodge operator studied for example in [10]. While if E = 0 and F = RM , one
gets the usual (real) signature operator. Thus, in some sense, the sub-signature operator
unifies the de Rham-Hodge operator and the signature operator.

(c) A Lichnerowicz Type Formula for Sub-signature Operators

We first recall some basic facts from [10, Section 4] concerning the flat vector bundle
F .

Thus as in [10, (4.1)], set

ω(F, gF ) = (gF )−1∇F gF , (1.16)

∇F,e = ∇F +
1
2
ω(F, gF ). (1.17)

Then ∇F,e is an Euclidean connection on (F, gF ).
Let ∇∧∗(T∗M) be the Euclidean connection on ∧∗(T ∗M) induced canonically by the

Levi-Civita connection ∇TM of gTM . Let ∇e be the Euclidean connection on ∧∗(T ∗M)⊗F

obtained from the tensor product of ∇∧∗(T∗M) and ∇F,e.
Let e1, · · · , edim M be an oriented (local) orthonormal basis of TM . The following result

was proved in [10, Proposition 4.12].
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Proposition 1.3. The following identity holds,

dF + δF =
dim M∑

i=1

c(ei)∇e
ei
− 1

2

dim M∑

i=1

ĉ(ei)ω(F, gF )(ei). (1.18)

Now recall that E is a sub-bundle of TM and that we have the orthogonal decompo-
sition (1.6) of TM and the metric gTM . Let PE

(
resp. PE⊥

)
be the orthogonal projection

from TM to E (resp. E⊥).
Set

∇E = PE∇TMPE , ∇E⊥ = PE⊥∇TMPE⊥ . (1.19)

Then ∇E
(
resp. ∇E⊥

)
is an Euclidean connection on E

(
resp. E⊥)

. Let ∇∧∗(E∗) (resp.
∇∧∗(E⊥,∗)) be the Euclidean connection on ∧∗(E∗) (resp. ∧∗(E⊥,∗)) induced canonically
from ∇E

(
resp. ∇E⊥

)
.

Let S be the tensor defined by

∇TM = ∇E +∇E⊥ + S. (1.20)

Then S takes values in skew-adjoint endomorphisms of TM , and interchanges E and E⊥.
Let f1, · · · , fk be an oriented (local) orthonormal basis of E⊥. We will use the greek

subscripts for the basis of E⊥.

Definition 1.2. Let ∇e,E⊥ be the connection on ∧∗(T ∗M)⊗ F defined by

∇e,E⊥

X = ∇e
X − 1

2

k∑
α=1

ĉ(S(X)fα)ĉ(fα), X ∈ C∞(M ;TM). (1.21)

One verifies that ∇e,E⊥ is still an Euclidean connection on ∧∗(T ∗M)⊗ F .
Set l = dim M − k. Let h1, · · · , hl be an oriented (local) orthonormal basis of E.

Proposition 1.4. The following identity holds,

D̃F
M/E = ĉ

(
E⊥, gE⊥

)( dim M∑

i=1

c(ei)∇e,E⊥
ei

− 1
2

l∑

j=1

ĉ(hj)ω(F, gF )(hj)
)
. (1.22)

Proof. From (1.1), (1.12) and Proposition 1.3, one verifies directly that

D̃F
M/E = ĉ

(
E⊥, gE⊥

)( dim M∑

i=1

c(ei)∇e
ei
− 1

2

l∑

j=1

ĉ(hj)ω(F, gF )(hj)
)

+
(−1)k

2

dim M∑

i=1

c(ei)
(
∇∧∗(T∗M)

ei
ĉ
(
E⊥, gE⊥

))
. (1.23)

Lemma 1.1. For any X ∈ C∞(M ; TM), the following identity holds,

∇∧∗(T∗M)
X ĉ

(
E⊥, gE⊥

)

= −ĉ
(
E⊥, gE⊥

) k∑
α=1

ĉ(S(X)fα)ĉ(fα). (1.24)
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Proof. By (1.20), one deduces that

∇∧∗(T∗M)
X ĉ

(
E⊥, gE⊥

)

= ∇∧∗(E⊥,∗)
X ĉ

(
E⊥, gE⊥

)
+

k∑
α=1

ĉ(f1) · · · ĉ(S(X)fα) · · · ĉ(fk). (1.25)

Now since

ĉ
(
E⊥, gE⊥

)2

= (−1)
k(k−1)

2 , (1.26)

one has

(
∇∧∗(E⊥,∗)

X ĉ
(
E⊥, gE⊥

))
ĉ
(
E⊥, gE⊥

)

+ĉ
(
E⊥, gE⊥

)(
∇∧∗(E⊥,∗)

X ĉ
(
E⊥, gE⊥

))
= 0. (1.27)

From (1.27) and (1.1), one deduces easily that

∇∧∗(E⊥,∗)
X ĉ

(
E⊥, gE⊥

)
= 0. (1.28)

(1.24) follows from (1.25) and (1.28).

(1.22) follows from (1.23), (1.24) and Definition 1.2.

Definition 1.3. Let DF
M/E be the operator acting on ∧∗(T ∗M)⊗ F defined by

DF
M/E =

dim M∑

i=1

c(ei)∇e,E⊥
ei

− 1
2

l∑

j=1

ĉ(hj)ω(F, gF )(hj). (1.29)

Then one verifies that DF
M/E is a formally self-adjoint elliptic first order differential

operator. Furthermore, by (1.22) the following identities hold,

D̃F
M/E = ĉ

(
E⊥, gE⊥

)
DF

M/E = (−1)kDF
M/E ĉ

(
E⊥, gE⊥

)
. (1.30)

Let ∆e,E⊥ be the Bochner Laplacian

∆e,E⊥ =
dim M∑

i=1

((
∇e,E⊥

ei

)2

−∇e,E⊥

∇T M
ei

ei

)
. (1.31)

Let K be the scalar curvature of (M, gTM ). Let RTM , RE , RE⊥ be the curvatures of
∇TM , ∇E , ∇E⊥ respectively. Now we can state the following Lichnerowicz type formula for
DF,2

M/E .
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Theorem 1.1. The following identity holds,

DF,2
M/E = −∆e,E⊥ +

K

4
− 1

8

dim M∑

i,j=1

c(ei)c(ej)(ω(F, gF ))2(ei, ej)

+
1
8

dim M∑

i,j=1

k∑

α,β=1

〈
RE⊥(ei, ej)fβ , fα

〉
c(ei)c(ej)ĉ(fα)ĉ(fβ)

+
1
8

dim M∑

i,j=1

l∑
s,t=1

〈RE(ei, ej)ht, hs〉c(ei)c(ej)ĉ(hs)ĉ(ht)

+
1
4

l∑

j=1

(ω(F, gF )(hj))2 +
1
8

l∑

i,j=1

ĉ(hi)ĉ(hj)(ω(F, gF ))2(hi, hj)

− 1
4

dim M∑

i=1

l∑

j=1

c(ei)ĉ(hj)(∇F
ei

ω(F, gF )(hj) +∇F
hj

ω(F, gF )(ei)). (1.32)

Proof. Set

D0 =
dim M∑

i=1

c(ei)∇e,E⊥
ei

. (1.33)

From (1.20), one deduces that, for any X ∈ C∞(M ; TM),

∇∧∗(T∗M)
X = ∇∧∗(E∗)X

+∇∧∗(E⊥,∗)
X +

1
4

dim M∑

i,j=1

〈S(X)ei, ej〉 (c(ei)c(ej)− ĉ(ei)ĉ(ej)) , (1.34)

from which one has

∇∧∗(T∗M)
X − 1

2

k∑
α=1

ĉ(S(X)fα)ĉ(fα)

= ∇∧∗(E∗)X +∇∧∗(E⊥,∗)
X +

1
4

dim M∑

i,j=1

〈S(X)ei, ej〉c(ei)c(ej). (1.35)

Also, by [10, (4.6)] one has

(∇F,e)2 = −1
4
(ω(F, gF ))2. (1.36)

From (1.20), (1.21), (1.31), (1.35), (1.36) and the definition of ∇e, one deduces easily
the following extension of Lichnerowicz’s formula (see [15]),

(D0)2 = −∆e,E⊥ +
K

4
− 1

8

dim M∑

i,j=1

c(ei)c(ej)(ω(F, gF ))2(ei, ej)

+
1
8

dim M∑

i,j=1

k∑

α,β=1

〈
RE⊥(ei, ej)fβ , fα

〉
c(ei)c(ej)ĉ(fα)ĉ(fβ)

+
1
8

dim M∑

i,j=1

l∑
s,t=1

〈RE(ei, ej)ht, hs〉c(ei)c(ej)ĉ(hs)ĉ(ht). (1.37)
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From (1.1), (1.29), (1.33), (1.35), (1.37) and proceeding similarly as in [10, (4.33),
(4.34)], one gets (1.32).

Remark 1.2. When E = TM , Theorem 1.1 was proved in [10, Theorem 4.13].

(d) The Generalized Atiyah-Patodi-Singer Invariants for Flat Vector
Bundles

We assume from now on that M is of odd dimension.
We first restate Theorem 0.1 for convenience.

Theorem 1.2. (a) If dim(TM/E) ≡ 1 mod 4Z, then dim
(
kerDF

M/E,sig

)
mod 2Z does

not depend on gTM and gF ;
(b) If dim(TM/E) ≡ 3 mod 4Z, then η

(
DF

M/E,sig

)− (dim F )η(DM/E,sig) ∈ R/Z does
not depend on gTM and gF .

Proof. (a). From (1.13), (1.14), one knows that when dim(TM/E) ≡ 1 mod 4Z,
DF

M/E,sig is formally (real) skew-adjoint. Thus dim
(
kerDF

M/E,sig

)
mod 2Z is the mod 2

analytic index of DF
M/E,sig in the sense of Atiyah-Singer [4], which clearly does not depend

on the metrics gTM and gF used in its definition.
(b). We assume k = 4m+3. Then l = dim M−k = dim E is even. Set M̃ = M× [0, 1].

Denote by π : M × [0, 1] → M the canonical projection. Then (π∗F, π∗∇F ) is canonically
a flat vector bundle over M̃ . At the same time, π∗E is naturally a sub-bundle of TM̃ , the
tangent vector bundle of M̃ .

For clarity, we use M(i), i = 0 or 1, to denote the boundary copy of M̃ at i. Thus one
has the decomposition

∂M̃ = M(0) ∪ (−M(1)), (1.38)

where −M(1) means the inverse orientation with respect to that of M(1).
Let gTM (i) (resp. gF (i)), i = 0 or 1, be a Remannian metric on TM(i) (resp. F |M(i)).

We denote by DF
M/E,sig(i) the corresponding sub-signature operator on M(i).

Let γ : [0, 1] → [0, 1] be a nonnegative function such that it equals 0 near 0 and equals
1 near 1. Then

gTfM = dt2 ⊕ ((1− γ(t))π∗gTM (0) + γ(t)π∗gTM (1)) (1.39)

(resp. gπ∗F = (1− γ(t))π∗gF (0) + γ(t)π∗gF (1) ) (1.40)

defines a metric on TM̃ (resp. π∗F ), which is of product nature near the boundary of M̃ .
Now as dim(TM̃/π∗E) = k + 1 ≡ 0 mod 4Z, with the metrics gTfM and gπ∗F one can

construct the sub-signature operator on M̃ as in Definition 1.1(b):

Dπ∗FfM/π∗E,sig
: Ω+

(
M̃, g(π∗E)⊥ , π∗F

)
→ Ω−

(
M̃, g(π∗E)⊥ , π∗F

)
. (1.41)

Furthermore, one can introduce the associated Atiyah-Patodi-Singer boundary condition to
obtain an elliptic boundary value problem

(
Dπ∗FfM/π∗E,sig

, P
)

(cf. [1]).

We are now going to apply the Atiyah-Patodi-Singer index theorem [1, Theorem 3.10]
to compute the index of

(
Dπ∗FfM/π∗E,sig

, P
)
.
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Let M̃ ′ denote the double gluing of M̃ which is now a closed Riemannian manifold with
the Riemannian metric induced from gTfM obviously. We use the same notation Dπ∗FfM/π∗E,sig

to denote its obvious extension on M̃ ′. Denote by Pt(x, y) (resp. Qt(x, y)) the C∞ kernel of

exp
(
−t

(
Dπ∗FfM/π∗E,sig

)∗
Dπ∗FfM/π∗E,sig

)

(
resp. exp

(
−tDπ∗FfM/π∗E,sig

(
Dπ∗FfM/π∗E,sig

)∗))

with respect to dvfM ′ .

If ω ∈ Ω∗(M̃) is a differential form over M̃ , denote by {ω}max ∈ ΩdimfM (M̃) its top
degree component. Also, we use the sign convention from [10] to define the Pfaffian of a
skew-adjoint endomorphism.

Proposition 1.5. The following convergence result holds uniformly for x ∈ M̃ ,

lim
t→0

(tr [Pt(x, x)]− tr [Qt(x, x)]) dvfM (x)

= 2
k+1
2 (dimF )

{
det1/2

( RTfM/4π

sinh(RTfM/4π)

)

· det1/2
(

cosh
(R(π∗E)⊥

4π

))

· det1/2
( sinh(Rπ∗E/4π)

Rπ∗E/4π

)
Pf

(Rπ∗E

2π

)}max

(x) (1.42)

with the obvious notation for curvatures of connections on TM̃ and its sub-bundles.

Proof. Let Dπ∗FfM/π∗E
be the operator acting on Ω∗(M̃, π∗F ) defined as in Definition

1.3 with respect to the metrics gTfM and gπ∗F . We again use the same notation Dπ∗FfM/π∗E
to

denote its extension on the double M̃ ′. Then from (1.29), (1.30) and Definition 1.1(b), one
verifies easily that

(
Dπ∗FfM/π∗E,sig

)∗
Dπ∗FfM/π∗E,sig

+ Dπ∗FfM/π∗E,sig

(
Dπ∗FfM/π∗E,sig

)∗
= Dπ∗F,2fM/π∗E

. (1.43)

Let Tt(x, y) denote the C∞ kernel of exp
(
−tDπ∗F,2fM/π∗E

)
with respect to dvfM ′ .

From (1.43), (1.30), (1.13) and (1.11), one deduces that for any x ∈ M̃ ,

tr [Pt(x, x)]− tr [Qt(x, x)] = trs

[
ĉ
(
(π∗E)⊥, g(π∗E)⊥

)
Tt(x, x)

]
, (1.44)

where the supertrace trs is with respect to the natural even/odd Z2-grading of ∧∗(T ∗M̃ ⊗
π∗F ).

Now consider the Lichnerowicz type formula (1.32) for Dπ∗F,2fM/π∗E
, where we will use the

obvious modified notation for curvatures in our situation.
Let e0 = ∂

∂t , e1, · · · , edim M be an oriented orthonormal basis of TM̃ near x constructed
from ej(0) = ej(x), 0 ≤ j ≤ dim M , through radial parallel transports. Let (y0, · · · , ydim M )
be the associated normal coordinate system.
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Let {ej} be the dual basis of {ej}. Let ∂j be the derivative in direction ej .
Let h1, · · · , hl (resp. f0 = ∂

∂t , f1, · · · , fk) be an orthonormal basis of π∗E (resp.
(π∗E)⊥).

In view of Proposition 1.1 and Theorem 1.1, to compute the local index, it is convenient
to use the rescaling

∂j → 1√
t
∂j , c(ej) → 1√

t
ej ∧ −

√
tiej

, ĉ(ej) → ĉ(ej), yj →
√

tyj .

By (1.21), (1.31) and (1.32), one verifies easily that as t → 0, after the above rescaling,
tDπ∗F,2fM/π∗E

has the limit

−
dim M∑
r=0

(
∂r +

1
8

dim M∑

i,j,q=0

〈
RTfM (ei, ej)eq, er

〉
yqe

i ∧ ej
)2

+
1
8

dim M∑

i,j=0

k∑

α,β=0

〈
R(π∗E)⊥(ei, ej)fβ , fα

〉
ei ∧ ej ĉ(fα)ĉ(fβ)

+
1
8

dim M∑

i,j=0

l∑
s,t=1

〈Rπ∗E(ei, ej)ht, hs〉ei ∧ ej ĉ(hs)ĉ(ht)

− 1
8

dim M∑

i,j=0

(ω(π∗F, gπ∗F ))2(ei, ej)ei ∧ ej (1.45)

with the obvious notation for curvatures on TM̃ and its sub-bundles.
Let ĉ(TM̃) be the Clifford algebra generated by the ĉ(ej)’s with the generating relation

(1.1).
Let

∫ ∧ : Ω∗(M̃)⊗̂ĉ(TM̃) → Ω∗(M̃) be the Berezin integral defined by

∫ ∧
(αβ) = α[β]max, α ∈ Ω∗(M̃), β ∈ ĉ(TM̃), (1.46)

where [β]max is the coefficient of the term ĉ(e0) · · · ĉ(edim M ) in β.
Also we write the curvatures as the matrices of 2-forms as

RTfM =
1
2

dim M∑

i,j=0

RTfM (ei, ej)ei ∧ ej ,

Rπ∗E =
1
2

dim M∑

i,j=0

Rπ∗E(ei, ej)ei ∧ ej ,

R(π∗E)⊥ =
1
2

dim M∑

i,j=0

R(π∗E)⊥(ei, ej)ei ∧ ej , (1.47)

(ω(π∗F, gπ∗F ))2 =
1
2

dim M∑

i,j=0

(ω(π∗F, gπ∗F ))2(ei, ej)ei ∧ ej . (1.48)
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By (1.45)–(1.48), Proposition 1.1 and by proceeding the by now standard local index
techniques (cf. [11]), one gets

lim
t→0

trs

[
ĉ
(
(π∗E)⊥, g(π∗E)⊥

)
Tt(x, x)

]
dvfM (x)

= (−1)
dim M+1

2 2dim M+1

·
( 1

4π

) dim M+1
2

{
det1/2

( RTfM/2

sinh(RTfM/2)

)
TrF

[
exp

(1
4
(ω(π∗F, gπ∗F ))2

)]

·
∫ ∧ {

ĉ
(
(π∗E)⊥, g(π∗E)⊥

)
exp

( k∑

α,β=0

1
4

〈
R(π∗E)⊥(fα), fβ

〉
ĉ(fα)ĉ(fβ)

+
1
4

l∑
s,q=1

〈Rπ∗E(hs), hq〉ĉ(hs)ĉ(hq)
)}}max

(x), x ∈ M̃. (1.49)

Now one verifies easily the important fact that

TrF
[
exp

(1
4
(ω(π∗F, gπ∗F ))2

)]
= dim F (1.50)

(cf. [10, (3.77)]). On the other hand, by a simple algebraic result (cf. [11, Proposition 3.13]),
the Berezin integral in the right hand side of (1.49) is easily seen to be

(−1)l/2det1/2
(

cosh
(R(π∗E)⊥

2

))
det1/2

( sinh(Rπ∗E/2)
Rπ∗E/2

)
Pf

(Rπ∗E

2

)
. (1.51)

(1.42) follows from (1.44), (1.49)–(1.51) and the fact that k + 1 ≡ 0 mod 4Z.
The proof of Proposition 1.5 is completed.
From Proposition 1.5, the index theorem of Atiyah-Patodi-Singer [1, Theorem 3.10],

as well as an easy parity consideration on the boundary similar to that in [1, p.63], one gets

2η
(
DF

M/E,sig(0)
)
− 2η

(
DF

M/E,sig(1)
)

+ ind
(
Dπ∗FfM/π∗E,sig

, P
)

+ 2 dim
(
kerDF

M/E,sig(1)
)

= 2
k+1
2 (dim F )

∫
fM

{
det1/2

( RTfM/4π

sinh(RTfM/4π)

)
det1/2

(
cosh

(R(π∗E)⊥

4π

))

· det1/2
( sinh(Rπ∗E/4π)

Rπ∗E/4π

)
Pf

(Rπ∗E

2π

)}
. (1.52)

Now an easy application of [14, Theorem 1.1] and the parity consideration mentioned
above shows that

ind
(
Dπ∗FfM/π∗E,sig

, P
)

+ 2dim
(
kerDF

M/E,sig(1)
)

= 2sf
{

DF
M/E,sig(0), DF

M/E,sig(1)
}

, (1.53)

where ‘sf’ is the notation for the spectral flow of Atiyah-Patodi-Singer [3].



20 ZHANG, W. P.

From (1.52) and (1.53), one gets

η
(
DF

M/E,sig(0)
)
− η

(
DF

M/E,sig(1)
)

≡ 2
k−1
2 (dimF )

∫
fM

{
det1/2

( RTfM/4π

sinh(RTfM/4π)

)
det1/2

(
cosh

(R(π∗E)⊥

4π

))

· det1/2
( sinh(Rπ∗E/4π)

Rπ∗E/4π

)
Pf

(Rπ∗E

2π

)}
mod Z. (1.54)

From (1.54) and its application to the trivial line bundle case, one gets

η
(
DF

M/E,sig(0)
)
− (dimF )η

(
DM/E,sig(0)

)

≡ η
(
DF

M/E,sig(1)
)
− (dimF )η

(
DM/E,sig(1)

)
mod Z, (1.55)

which completes the proof of Theorem 1.2(b).

Remark 1.3. The local index result Proposition 1.5, in a complexified form, was first
announced in [18] when F is the trivial line bundle.

With Theorem 1.2, we define a series of smooth invariants as follows.

Definition 1.4. The smooth invariant φ(M/E,F ) is defined by
(a) if dim(TM/E) ≡ 1 mod 4Z, then

φ(M/E, F ) = dim
(
kerDF

M/E,sig

)
mod 2Z; (1.56)

(b) if dim(TM/E) ≡ 3 mod 4Z, then

φ(M/E, F ) = η
(
DF

M/E,sig

)
− (dimF )η

(
DM/E,sig

)
mod Z. (1.57)

Remark 1.4. As was mentioned in Introduction, when ∇F preserves gF , the invariant
in (1.57) provides an example of the Atiyah-Patodi-Singer invariants defined in [3, Propo-
sition 2.14]. While, when dim(TM/E) = 1 and F is the trivial line bundle, the mod 2
invariant in (1.56) was constructed in [19].

Appendix. Remarks on the η-Invariant (and/or the mod 2 Index) of Sub-
signature Operators

We first assume dim(TM/E) ≡ 3 mod 4Z. Then DF
M/E,sig is formally self-adjoint. The

following is an analogue of [8, Theorem 2.4].

Proposition A.1. As t ↓ 0,

Tr
[
DF

M/E,sig exp
(
−tDF,2

M/E,sig

)]
= O(

√
t ). (A.1)

Proof. Let DF
M/E be defined as in (1.29). By (1.30), for any t > 0,

Tr
[
DF

M/E,sig exp
(
−tDF,2

M/E,sig

)]
= Treven

[
ĉ
(
E⊥, gE⊥

)
DF

M/E exp
(
−tDF,2

M/E

)]
, (A.2)
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where by Treven we mean the trace taken on Ωeven(M,F ).
For any t > 0, let Pt(x, y) be the C∞ kernel associated with DF

M/E exp
( − tDF,2

M/E

)

where we regard that the later acts on Ω∗(M, F ). Then in order to prove (A.1), we need
only to show that as t ↓ 0,

Treven
[
ĉ
(
E⊥, gE⊥

)
Pt(x, x)

]
= O(

√
t ), uniformly on M, (A.3)

where the trace is taken on (∧even(T ∗M)⊗ F )x.
Let D0 be defined as in (1.33). Then from (1.21) and (1.35), one sees easily that locally,

one can view D0 as a standard twisted Dirac operator.
From (1.29), (1.33), one has

DF
M/E = D0 − 1

2

l∑

j=1

ĉ(hj)ω(F, gF )(hj). (A.4)

Furthermore, by (1.1), each ĉ(hj) anticommutes with each c(ei). Thus formally we are in
the same situation as what considered in [6, Sections 2, 3]. In fact, by proceeding as in [6,
Sections 2, 3] and [8, Theorem 2.4], one gets easily that as t ↓ 0,

Pt(x, x) =
(dim M−1)/2∑

i=0

ai(x)ti−dim M/2 + O(t1/2), uniformly on M, (A.5)

where each ai(x) can be written as a linear combination of terms of the form

c(ei1(x)) · · · c(eis(x))ĉ(ebi1(x)) · · · ĉ(ebiq
(x))f with f ∈ End(Fx), s ≤ 2i. (A.6)

On the other hand, from the Lichnerowicz type formula (1.32) and the above argument, one
sees easily that the terms of the form ĉ(fα) appear even times in (A.6). Together with the
fact that dim(TM/E) is odd, one sees easily that each ĉ(E⊥, gE⊥)ai(x), 0 ≤ i ≤ dim M−1

2 ,
can be expressed as a linear combination of terms of form (A.6) with a further condition
that î1, · · · , îq are not equal to each other and that q ≥ 1. One then verifies by Proposition
1.2 that

Treven
[
ĉ
(
E⊥, gE⊥

)
ai(x)

]
= 0, 0 ≤ i ≤ dim M − 1

2
. (A.7)

(A.1) follows from (A.2), (A.3), (A.5) and (A.7).
From Proposition A.1, one gets immediately the following formula for the η-invariant

of DF
M/E,sig,

η
(
DF

M/E,sig

)
=

1√
π

∫ ∞

0

Tr
[
DF

M/E,sig exp
(
−tDF,2

M/E,sig

)] dt√
t
. (A.8)

Now observe that by the arguments in the proof of Proposition A.1, one sees easily
that the following analogue of [6, Lemma 2.11] holds.

Proposition A.2. For any u ∈ R, as t ↓ 0,

Treven
[
ĉ
(
E⊥, gE⊥

)( l∑

j=1

ĉ(hj)ω(F, gF )(hj)
)

· exp
(
− t

(
D0 − u

2

l∑

j=1

ĉ(hj)ω(F, gF )(hj)
)2)]

= O(
√

t ). (A.9)
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From (A.9) and the standard variation formula for η-invariants ([3, 8]), one gets

η
(
DF

M/E,sig

)
= η

(
ĉ
(
E⊥, gE⊥

)
D0

)
mod Z, (A.10)

where ĉ(E⊥, gE⊥)D0 is now acting on Ωeven(M, F ).
Similarly, when dim(M/E) ≡ 1 mod 4Z, one verifies that ĉ(E⊥, gE⊥)D0, when acts on

Ωeven(M,F ), is also skew-adjoint. Thus by the homotopy invariance of the mod 2 index (cf.
[4]), one has

dimker
(
DF

M/E,sig

)
≡ dim ker

(
ĉ
(
E⊥, gE⊥

)
D0

)
mod 2Z. (A.11)

From (A.10), (A.11), one arrives at the interesting fact that the generalized Atiyah-
Patodi-Singer invariants in Definition 1.4 can also be defined by using ĉ(E⊥, gE⊥)D0 which
actually may also be viewed as a sub-signature operator (twisted by the Euclidean vector
bundle (F, gF ,∇F,e)).

§ 2 . Adiabatic Limits of η-Invariants and a Riemann-Roch
Theorem for Flat Vector Bundles

In this section, we apply the construction in Section 1 to the case where M is a
fibered manifold with compact fibers. We use the method of adiabatic limits to compute
the associated generalized Atiyah-Patodi-Singer invariants and prove Theorem 0.2 for these
invariants.

This section is organized as follows. In (a), we restate Theorem 0.2 for convenience.
In (b), we write the sub-signature operator on M in a form which is convenient for the
evaluation of the adiabatic limits of the associated η-invariants. In (c), we recall the con-
struction of a superconnection due to Bismut-Lott [9]. In (d), we prove a local index result
which will identify the Bismut-Cheeger η̂-form [6, 7] in the computation of the adiabatic
limit of η-invariants. In (e), we calculate the adiabatic limit of η-invariants. In (f), we prove
Theorem 0.2.

(a) A Rieman-Roch Theorem for Flat Vector Bundles

In this section, we assume that M is a fibered manifold with compact base and fibers,

Z → M
π→ B. (2.1)

We assume that both TB and the vertical tangent bundle TZ are oriented, and that both
dim M and dim B are odd integers. Then TM is also oriented. For any flat vector bundle
F over M with the flat connection ∇F , one can apply the construction in Section 1 to F

and E = TZ to obtain the smooth invariant φ(M/TZ, F ). On the other hand, F induces
canonically a Z-graded flat vector bundle

H∗(Z;F |Z) =
dim Z⊕

i=0

Hi(Z; F |Z), (2.2)
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from which one can construct a series of smooth invariants φ(B, Hi(Z;F |Z)), 0 ≤ i ≤ dim Z,
as in Section 1 by setting E = 0.

The main result of this section is a Riemann-Roch type formula relating these invari-
ants.

Theorem 2.1. The following identity holds,

φ(M/TZ, F ) =
dim Z∑

i=0

(−1)iφ(B,Hi(Z, F |Z))− rk(F )
dim Z∑

i=0

(−1)iφ(B, Hi(Z,RZ)). (2.3)

We will prove Theorem 2.1 by computing the adiabatic limits of the η-invariants in-
volved in the definition of φ(M/TZ, F ). For this purpose, we will first write the correspond-
ing sub-signature operator in a suitable way in the next subsection.

(b) The Sub-signature Operator on a Fibered Manifold

Choose a splitting

TM = THM ⊕ TZ. (2.4)

We have

THM ' π∗(TB). (2.5)

Let gTZ (resp. gTB , resp. gF ) be a metric on TZ (resp. TB, resp. F ). Let

gTM = π∗gTB ⊕ gTZ (2.6)

be the Euclidean metric on TM such that THM ' π∗(TB) and TZ are orthogonal to each
other with respect to the splitting (2.4).

By applying the constructions in Section 1 to the case of E = TZ, E⊥ = THM , we
have the sub-signature operator DF

M/TZ,sig with respect to the metrics gTM and gF . Let
DF

M/TZ be the associated operator as defined in Definition 1.3. We now proceed as in [5],
[13] to write DF

M/TZ in a form adapted to the splitting (2.4).
Let ∇TB be the Levi-Civita connection of gTB . Let ∇∧∗(T∗B) be the canonical Eu-

clidean connection on ∧∗(T ∗B) induced by ∇TB . Then ∇TB (resp. ∇∧∗(T∗B)) induces an
Euclidean connection on THM ' π∗(TB) (resp. ∧∗(THM)) denoted by π∗∇T∗B (resp.
π∗∇∧∗(T∗B)).

Recall that the connections ∇TZ , ∇T HM , as well as their liftings on

∧∗(T ∗Z), ∧∗(TH∗M),

have been defined in (1.19). Also recall from (1.17) that ∇F,e is an Euclidean connection on
the flat vector bundle F over M , and from (1.21) that ∇e,E⊥ is an Euclidean connection on
∧∗(T ∗M)⊗ F .

Following [5, (1.23)], let SB be the tensor defined by

∇TM = π∗∇TB +∇TZ + SB . (2.7)
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Let T be the torsion of the connection π∗∇TB + ∇TZ . Recall that the tensor S has been
defined in (1.20). Let S̃ be the tensor defined by

S̃ = SB − S. (2.8)

From (2.7), (2.8) and (1.20), one has

S̃ = ∇T HM − π∗∇TB . (2.9)

Let ∇̃ be the Euclidean connection on ∧∗(T ∗M) ⊗ F obtained by the tensor product
of π∗∇TB , ∇TZ and ∇F,e. We use the same notation as in Section 1 that h1, · · · , hl is an
orthonormal basis of E = TZ, while f1, · · · , fk is an orthonormal basis of E⊥ = THM .
Without loss of generality, we assume that f1, · · · , fk is a lift of an orthonormal basis, which
we still denote by f1, · · · , fk when there is no confusion, of TB.

From (1.21), (1.29), (1.35) and (2.7)–(2.9), one deduces easily by proceeding as in [5],
[6] and [13] that

DF
M/TZ =

k∑
α=1

c(fα)
(
∇̃fα

− 1
2

l∑
s=1

〈S(hs)hs, fα〉
)

+
l∑

s=1

c(hs)∇̃hs −
1
2

l∑
s=1

ĉ(hs)ω(F, gF )(hs)

− 1
4

∑

α<β

c (T (fα, fβ)) c(fα)c(fβ)

− 1
4

l∑
s=1

∑

α6=β

〈∇TM
hs

fα, fβ

〉
c(hs)ĉ(fα)ĉ(fβ). (2.10)

By the standard formula for Levi-Civita connections, one finds

2
〈∇TM

hs
fα, fβ

〉
= −〈[fα, fβ ], hs〉 = 〈T (fα, fβ), hs〉 . (2.11)

Now for any t > 0, let gTM
t be the metric on TM given by

gTM =
1
t
π∗gTB ⊕ gTZ . (2.12)

Let DF
M/TZ,sig(t), DF

M/TZ(t) be constructed with respect to gTM
t and gF .

Let NB be the number operator of Ω∗(B). Then it extends naturally to an operator
on Ω∗(M, F ). Set

D̂F
M/TZ(t) = tNB/2DF

M/TZ(t)t−NB/2. (2.13)

From (2.10), (2.11), (2.13) and proceeding as in [5, (3.10), (3.11)], one deduces that

D̂F
M/TZ(t) =

√
t

k∑
α=1

c(fα)
(
∇̃fα −

1
2

l∑
s=1

〈S(hs)hs, fα〉
)

+
l∑

s=1

c(hs)∇̃hs

− 1
2

l∑
s=1

ĉ(hs)ω(F, gF )(hs)− t

4

∑

α<β

c(T (fα, fβ))c(fα)c(fβ)

− t

4

∑

α<β

c(T (fα, fβ))ĉ(fα)ĉ(fβ). (2.14)
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(c) The Bismut-Lott Superconnection

In this subsection, we recall from [9] the construction of a natural superconnection
associated with flat vector bundles over fibered manifolds.

From (2.4), (2.5), we have that as bundles of Z-graded algebras over M ,

∧∗(T ∗M) ' π∗ (∧∗(T ∗B)) ⊗̂ ∧∗ (T ∗Z). (2.15)

As in [9, Section 3a)], let W be the smooth infinite-dimensional Z-graded vector bundle
over B whose fiber over b ∈ B is C∞(Zb; (∧∗(T ∗Z)⊗ F )|Zb

). That is,

C∞(B;W ) ' C∞ (M ;∧∗(T ∗Z)⊗ F ) . (2.16)

Then W acquires a canonically induced Euclidean metric (cf. [5, (3.29)]).
Let Ω∗V (M ; F ) denote the subspace of Ω∗(M ;F ) which is annihilated by interior mul-

tiplication with horizontal vectors. Then there is an isomorphism

Ω∗V (M ;F ) ' C∞(B; W ), (2.17)

where the isomorphism is given by sending an element of Ω∗V (M ;F ) to its fiberwise restric-
tions. From (2.15),

Ω∗(M ; F ) ' Ω∗(B)⊗̂Ω∗V (M ; F ). (2.18)

Thus we have an isomorphism of Z-graged vector spaces

Ω∗(M ;F ) ' Ω∗(B; W ). (2.19)

If U is a smooth vector field on B, let UH ∈ C∞(M ; THM) be its horizontal lift, so
that π∗UH = U . As in [9, Definition 3.2], let ∇W be the connection on W defined by

∇W
U s = LUH s, s ∈ C∞(B;W ), U ∈ C∞(B; TB), (2.20)

where LUH is the Lie differential operator acting on C∞(M ;∧∗(T ∗Z)⊗ F ).
Let dZ denote the exterior differentiation along fibers of W . Let (dZ)∗ (resp. (∇W )∗)

be the adjoint of dZ (resp. ∇W ) with respect to the Euclidean metric on W .
Set as in [9, Definition 3.8] that

DZ = dZ + (dZ)∗,

∇W,u =
1
2
(∇W + (∇W )∗). (2.21)

Then ker(DZ) forms a Z-graded vector bundle over B.
For any t > 0, we can define the (rescaled) Bismut-Lott superconnection At on the

infinite dimensional vector bundle W as follows,

At = ∇W,u +
√

tDZ − 1
4
√

t

∑

α<β

c(T (fα, fβ))dyαdyβ , (2.22)

where dy1, · · · , dyk is an orthonormal basis of T ∗B dual to f1, · · · , fk. In fact, up to
an obvious rescaling, this At is exactly the superconnection Ct defined in [9, (3.50)] (cf.
[9, Remark 3.10 and (3.59)]). For brievity of notation, we will also denote the term∑
α<β

c(T (fα, fβ))dyαdyβ by c(T ).
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Remark 2.1. The critical observation is that this Bismut-Lott superconnection can
be obtained from D̂F

M/TZ through Getzler rescaling (cf. [11]) in the same way as what the
Bismut superconnection [5] be obtained from the Dirac operator (compare with [5], [11]). In
fact, it is clear that the expression of D̂F

M/TZ(t) in (2.14) is compatible with the identification

(2.19). In particular, one may view both D̂F
M/TZ(t) and At as operators acting on Ω∗(B;W ).

Now if one proceeds the Getzler rescaling

c(fα) → dyα

√
t
−
√

tifα
in D̂F

M/TZ(t)

and takes t → 0, then from (2.14) and [9, (3.36), (3.37)] one sees that the limiting operator
is precisely A1.

(d) A Local Index Computation

In this subsection, we prove a local index result which will be used in the next subsection
to evaluate the adiabatic limit of η-invariants. We make the assumption in this subsection
that k ≡ 3 mod 4Z.

We first prove the following analogue of [6, (4.40)].

Proposition 2.1. For any u > 0, one has

1√
π

lim
t→0

Treven
[
ĉ
(
THM, gT HM

)
D̂F

M/TZ(t) exp
(
− u

(
D̂F

M/TZ(t)
)2 )]

=
1
2

( 1
π

) k+1
2

∫

B

det1/2
( RTB/2

tanh(RTB/2)

)
Trs

[(
DZ +

c(T )
4u

)
exp(−A2

u)
]
, (2.23)

where by Treven we mean the trace taken on Ωeven(M,F ), while Trs is taken on W .

Proof. We proceed as in [6, pp.59–63] to prove (2.23).
Let e1, · · · , edim M be an oriented (local) orthonormal basis of TM . As in [6, (4.48),

(4.49)], if Q is a section of the bundle of linear maps from TM to ∧∗(T ∗M)⊗F , we use the
abbreviations

(∇̃hs + Q(hs))2 =
∑

s

(∇̃hs + Q(hs))2 − ∇̃P
s ∇T Z

hs
hs
−Q

( ∑
s

∇TZ
hs

hs

)
, (2.24)

(∇̃fα + Q(fα))2 =
∑
α

(∇̃fα + Q(fα))2 − ∇̃P
α π∗∇T B

fα
fα
−Q

( ∑
α

π∗∇TB
fα

fα

)
, (2.25)

(
∇e,E⊥

ei
+ Q(ei)

)2

=
∑

i

(
∇e,E⊥

ei
+ Q(ei)

)2

−∇e,E⊥P
i ∇T M

ei
ei
−Q

(∑

i

∇TM
ei

ei

)
. (2.26)

Also, in the formulas which follow, we sum over all repeated indices.
When there will be no confusion, in some notation we will use a subscript t to indicate

that the corresponding geometric object is with respect to gTM
t . For example, Kt will denote

the scalar curvature of gTM
t .

From (2.9), one verifies easily that

S̃t = tS̃, (2.27)

RT HM = π∗RTB + (π∗∇TBS̃) + S̃ ∧ S̃. (2.28)
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Following [8] and [6], let z be an odd Grassmannian variable which anticommutes with
c(ei)’s and ĉ(ei)’s. We first prove the following extension of [6, (4.53)].

Proposition 2.2. For u > 0, t > 0, the following identity holds,

uD̂F,2
M/TZ(t)− zu1/2D̂F

M/TZ(t)

= −u
(
∇̃hs

+
t1/2

2
〈S(hs)hq, fα〉c(hq)c(fα)

+
t

4
〈SB(hs)fα, fβ〉c(fα)c(fβ)− t

4
〈S̃(hs)fα, fβ〉ĉ(fα)ĉ(fβ) +

zc(hs)
2u1/2

)2

− u
(
t1/2∇̃fα

+
t

2
〈S(fα)hs, fβ〉c(hs)c(fβ) +

zc(fα)
2u1/2

)2

+
ut3/2

2
〈S(S(hs)hs)hq, fα〉c(hq)c(fα)− ut2

4
〈S̃(S(hs)hs)fα, fβ〉ĉ(fα)ĉ(fβ)

+ ut∇̃S(hs)hs
+

zu1/2t1/2

2
c(S(hs)hs) +

zu1/2

2
ĉ(hs)ω(F, gF )(hs) +

uKt

4

− ut

8
c(fα)c(fβ)(ω(F, gF ))2(fα, fβ)− ut1/2

4
c(hs)c(fα)(ω(F, gF ))2(hs, fα)

+
ut

8
〈RTB(fγ , fδ)fβ , fα〉c(fγ)c(fδ)ĉ(fα)ĉ(fβ)

+
ut3/2

8
〈(π∗∇TBS̃)(hs, fγ)fβ , fα〉c(hs)c(fγ)ĉ(fα)ĉ(fβ)

+
ut2

8
〈S̃ ∧ S̃(hs, hq)fβ , fα〉c(hs)c(hq)ĉ(fα)ĉ(fβ)

+
ut

8
〈RTZ(fα, fβ)hq, hs〉c(fα)c(fβ)ĉ(hs)ĉ(hq)

+
ut1/2

4
〈RTZ(hp, fα)hq, hs〉c(hp)c(fα)ĉ(hs)ĉ(hq)

+
u

8
〈RTZ(hp, hr)hq, hs〉c(hp)c(hr)ĉ(hs)ĉ(hq) +

u

4

∑
s

(ω(F, gF )(hs))2

− u

8
c(hs)c(hq)(ω(F, gF ))2(hs, hq) +

u

8
ĉ(hq)ĉ(hs)(ω(F, gF ))2(hq, hs)

− ut1/2

4
c(fα)ĉ(hs)(∇F

fα
ω(F, gF )(hs) +∇F

hs
ω(F, gF )(fα))

− u

4
c(hq)ĉ(hs)(∇F

hq
ω(F, gF )(hs) +∇F

hs
ω(F, gF )(hq)). (2.29)

Proof. As in [8, (2.5)], one verifies that

−u
(
∇e,E⊥

ei
+

zc(ei)
2u1/2

)2

= −u∆e,E⊥ − zu1/2c(ei)∇e,E⊥
ei

. (2.30)

From (1.29), (1.32), (2.28) and (2.30) one finds

uDF,2
M/TZ − zu1/2DF

M/TZ

= −u
(
∇e,E⊥

ei
+

zc(ei)
2u1/2

)2

+
zu1/2

2
ĉ(hs)ω(F, gF )(hs)

+
uK

4
− u

8
c(ei)c(ej)(ω(F, gF ))2(ei, ej)
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+
u

8
〈RTB(fγ , fδ)fβ , fα〉c(fγ)c(fδ)ĉ(fα)ĉ(fβ)

+
u

8
〈(π∗∇TBS̃)(hs, fγ)fβ , fα〉c(hs)c(fγ)ĉ(fα)ĉ(fβ)

+
u

8
〈S̃ ∧ S̃(hs, hq)fβ , fα〉c(hs)c(hq)ĉ(fα)ĉ(fβ)

+
u

8
〈RTZ(ei, ej)hq, hs〉c(ei)c(ej)ĉ(hs)ĉ(hq)

+
u

4

∑
s

(ω(F, gF )(hs))2 +
u

8
ĉ(hq)ĉ(hs)(ω(F, gF ))2(hq, hs)

− u

4
c(ei)ĉ(hs)(∇F

ei
ω(F, gF )(hs) +∇F

hs
ω(F, gF )(ei)). (2.31)

From (1.21), (1.31), (1.35), (2.7)–(2.9), (2.13), (2.24)–(2.27), (2.31) and proceeding as
in [5, (3.14)] and [6, (4.53)], one gets (2.29) easily.

We now turn to the proof of (2.23). As was pointed in [6, p.60], which uses [12, Section
3], we may replace the base space by Rk with a metric which is flat outside a compact set.
We also assume that the bundle is isometrically a product on that region.

Following [6, (4.54)], if A, A′ are of trace class in End(Ω∗(M,F )) with A′ preserves
Ωeven(M,F ), set

Treven,z[A + zA′] = zTreven[A′]. (2.32)

One finds as in [8] and [6, (4.55)] that

exp
(
−uD̂F,2

M/TZ(t) + zu1/2D̂F
M/TZ(t)

)

= exp
(
−uD̂F,2

M/TZ(t)
)

+ zu1/2D̂F
M/TZ(t) exp

(
−uD̂F,2

M/TZ(t)
)

, (2.33)

Treven,z
[
ĉ
(
THM, gT HM

)
exp

(
−uD̂F,2

M/TZ(t) + zu1/2D̂F
M/TZ(t)

)]

= −zu1/2Treven
[
ĉ
(
THM, gT HM

)
D̂F

M/TZ(t) exp
(
−uD̂F,2

M/TZ(t)
)]

. (2.34)

Take x0 ∈ M . Let P t,u(x0, ·) be the C∞ kernel, with respect to gTM , of

exp
(
−uD̂F,2

M/TZ(t) + zu1/2D̂F
M/TZ(t)

)
.

Let y0 = π(x0) and take a system of geodesic coordinates {yα} centered at y0. We can assume
that {yα} is globally defined on Rk. By using parallel transport along the horizontal lifts
of geodesics in the base, we can trivialize the fibration Z → M → Rk. Similarly, we use
parallel transport along such geodesics to trivialize ∧even(T ∗M) ⊗ F (using the connection
∇e,E⊥).

In what follows, as in [6, p.61], we put y =
∑
α

yαfα. As in [8] and [6], we will conjugate

the operator uD̂F,2
M/TZ(t)− zu1/2D̂F

M/TZ(t) by

ezc(y)/2(ut)1/2
= 1 +

∑
α

zyαc(fα)
2(ut)1/2

. (2.35)

For x ∈ M , π(x) = y, set

P̂ t,u(x0, x) = P t,u(x0, x)e−zc(y)/2(ut)1/2
. (2.36)
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Then, as in [6, (4.60)–(4.63)], one verifies that P̂ t,u(x0, x) is equal to the C∞ kernel, with
respect to gTM , of

ezc(y)/2(ut)1/2
exp

(
−uD̂F,2

M/TZ(t) + zu1/2D̂F
M/TZ(t)

)
e−zc(y)/2(ut)1/2

and that

Treven,z
[
ĉ
(
THM, gT HM

)
P̂ t,u(x0, x0)

]

= Treven,z
[
ĉ
(
THM, gT HM

)
P t,u(x0, x0)

]
. (2.37)

By using (2.29), one deduces easily that (compare with [6, p.62])

ezc(y)/2(ut)1/2
(
uD̂F,2

M/TZ(t)− zu1/2D̂F
M/TZ(t)

)
e−zc(y)/2(ut)1/2

= −u
(
∇̃hs +

t1/2

2
〈S(hs)hq, fα〉c(hq)c(fα) +

1
2u1/2

〈S(hs)hq, y〉zc(hq)

+
t

4
〈SB(hs)fα, fβ〉c(fα)c(fβ)− t1/2

2u1/2
〈SB(hs)y, fβ〉zc(fβ)

− t

4
〈S̃(hs)fα, fβ〉ĉ(fα)ĉ(fβ) +

zc(hs)
2u1/2

)2

− u
(
t1/2∇̃fα +

t

2
〈S(fα)hs, fβ〉c(hs)c(fβ)

+
t1/2

2u1/2
〈S(fα)hs, y〉zc(hs) +

1
u1/2

∑
α

(O(|y|2)zc(fα))
)2

+
ut3/2

2
〈S(S(hs)hs)hq, fα〉c(hq)c(fα) +

u1/2t

2
〈S(S(hs)hs)hq, y〉zc(hq)

+ ut∇̃S(hs)hs
+ (ut)1/2

∑
α

(O(|y|)zc(fα)) +
zu1/2

2
ĉ(hs)ω(F, gF )(hs) +

uKt

4

− ut

8
c(fα)c(fβ)(ω(F, gF ))2(fα, fβ)− (ut)1/2

4
zc(fα)(ω(F, gF ))2(fα, y)

− ut1/2

4
c(hs)c(fα)(ω(F, gF ))2(hs, fα)− u1/2

4
zc(hs)(ω(F, gF ))2(hs, y)

− ut2

4
〈S̃(S(hs)hs)fα, fβ〉ĉ(fα)ĉ(fβ)− u

8
c(hs)c(hq)(ω(F, gF ))2(hs, hq)

+
ut

8
〈RTB(fγ , fδ)fβ , fα〉c(fγ)c(fδ)ĉ(fα)ĉ(fβ)

+
(ut)1/2

4
〈RTB(fγ , y)fβ , fα〉zc(fγ)ĉ(fα)ĉ(fβ)

+
ut3/2

8
〈(π∗∇TBS̃)(hs, fγ)fβ , fα〉c(hs)c(fγ)ĉ(fα)ĉ(fβ)

+
u1/2t

8
〈(π∗∇TBS̃)(hs, y)fβ , fα〉zc(hs)ĉ(fα)ĉ(fβ)

+
ut2

8
〈S̃ ∧ S̃(hs, hq)fβ , fα〉c(hs)c(hq)ĉ(fα)ĉ(fβ)

+
ut

8
〈RTZ(fα, fβ)hq, hs〉c(fα)c(fβ)ĉ(hs)ĉ(hq)
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+
(ut)1/2

4
〈RTZ(fα, y)hq, hs〉zc(fα)ĉ(hs)ĉ(hq)

+
ut1/2

4
〈RTZ(hp, fα)hq, hs〉c(hp)c(fα)ĉ(hs)ĉ(hq)

+
u1/2

4
〈RTZ(hp, y)hq, hs〉zc(hp)ĉ(hs)ĉ(hq)

+
u

8
〈RTZ(hp, hr)hq, hs〉c(hp)c(hr)ĉ(hs)ĉ(hq)

+
u

4

∑
s

(ω(F, gF )(hs))2 +
u

8
ĉ(hq)ĉ(hs)(ω(F, gF ))2(hq, hs)

− ut1/2

4
c(fα)ĉ(hs)(∇F

fα
ω(F, gF )(hs) +∇F

hs
ω(F, gF )(fα))

+
u1/2

4
zĉ(hs)(∇F

y ω(F, gF )(hs) +∇F
hs

ω(F, gF )(y))

− u

4
c(hq)ĉ(hs)(∇F

hq
ω(F, gF )(hs) +∇F

hs
ω(F, gF )(hq)). (2.38)

Now as in [6], we apply the Getzler’s transformation G(ut)1/2 to the right hand side of
(2.38) and let t → 0.2 We find that

lim
t→0

G(ut)1/2

[
ezc(y)/2(ut)1/2

(
uD̂F,2

M/TZ(t)− zu1/2D̂F
M/TZ(t)

)
e−zc(y)/2(ut)1/2

]

= −u
(
∇̃hs +

1
2u1/2

〈SB(hs)hq, fα〉c(hq)dyα

+
1
4u
〈SB(hs)fα, fβ〉dyαdyβ +

zc(hs)
2u1/2

)2

−
(
∂α +

1
8
〈RTB(fα, fβ)fγ , fδ〉yβdyγdyδ

)2

+
zu1/2

2
ĉ(hs)ω(F, gF )(hs) +

uKZ

4
− 1

8
dyαdyβ(ω(F, gF ))2(fα, fβ)

− u1/2

4
c(hs)dyα(ω(F, gF ))2(hs, fα)− u

8
c(hs)c(hq)(ω(F, gF ))2(hs, hq)

+
1
8
〈RTB(fγ , fδ)fβ , fα〉dyγdyδ ĉ(fα)ĉ(fβ)

+
1
8
〈RTZ(fα, fβ)hq, hs〉dyαdyβ ĉ(hs)ĉ(hq)

+
u1/2

4
〈RTZ(hp, fα)hq, hs〉c(hp)dyαĉ(hs)ĉ(hq)

+
u

8
〈RTZ(hp, hr)hq, hs〉c(hp)c(hr)ĉ(hs)ĉ(hq)

+
u

4

∑
s

(ω(F, gF )(hs))2 +
u

8
ĉ(hq)ĉ(hs)(ω(F, gF ))2(hq, hs)

− u1/2

4
dyαĉ(hs)(∇F

fα
ω(F, gF )(hs) +∇F

hs
ω(F, gF )(fα))

− u

4
c(hq)ĉ(hs)(∇F

hq
ω(F, gF )(hs) +∇F

hs
ω(F, gF )(hq)), (2.39)

2Recall that by Geztler’s transformaton we mean the rescaling that yα → (ut)1/2yα, ∂α → 1
(ut)1/2 ∂α

and c(fα) → 1
(ut)1/2 fα ∧ −(ut)1/2ifα .
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where KZ is the scalar curvature of the fiber Z.
Set

H = −
(
∂α +

1
8
〈RTB(fα, fβ)fγ , fδ〉yβdyγdyδ

)2

+
1
8
〈RTB(fγ , fδ)fβ , fα〉dyγdyδ ĉ(fα)ĉ(fβ). (2.40)

We claim similarly as in [6, (4.69)] that the right hand side of (2.39) is equal to

H+ A2
u − z

(
u1/2DZ +

c(T )
4u1/2

)
. (2.41)

In fact, when z = 0, (2.41) follows from (2.39), (2.40) and [9, (3.58)]. Thus, one needs
only to check the term involving z which, in view of (2.11) and [9, (3.36)], is given by

− u1/2zc(hs)∇̃hs
− 1

4
〈SB(hs)fα, fβ〉dyαdyβ

zc(hs)
u1/2

+
zu1/2

2
ĉ(hs)ω(F, gF )(hs)

= −z
(
u1/2DZ +

c(T )
4u1/2

)
. (2.42)

Now by Proposition 1.2, (2.34), (2.37) and using the same arguments as in [11], [5] and
[6], one deduces that as t → 0,

Treven
[
ĉ
(
THM, gT HM

)
D̂F

M/TZ(t) exp(−u(D̂F
M/TZ(t))2)

]

→ 2k−1

(4π)k/2

∫

B

{
det1/2

( RTB/2
sinh(RTB/2)

)
Trs

[(
DZ +

c(T )
4u

)
exp(−A2

u)
]

·
∫ ∧

ĉ
(
THM, gT HM

)
exp

(1
8
〈RTB(fγ , fδ)fα, fβ〉dyγdyδ ĉ(fα)ĉ(fβ)

)}
, (2.43)

where
∫ ∧ is the obvious (odd dimensional) analogue of the Berezin integral (1.46) on B.

(2.23) then follows from (2.43) and the easy fact that the Berezin integral in (2.43) is
equal to

det1/2
(

cosh
(RTB

2

))
. (2.44)

The next result further simplifies the right hand side of (2.23).

Proposition 2.3. For any u > 0, the following identity over B holds,

Trs

[(
DZ +

c(T )
4u

)
exp(−A2

u)
]

= 0. (2.45)

Proof. From (2.22), one finds

∂Au

∂u
=

1
2u1/2

(
DZ +

c(T )
4u

)
. (2.46)

We now proceed as in [11, Section 10.5] to consider the extended fibration M̃ = M×R+

over B̃ = B ×R+, with the vertical metric at (b, u) ∈ B ×R+ given by u−1gTZb . The flat
vector bundle F lifts canonically to a flat vector bundle over M̃ , and so is the Euclidean
metric on it.
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One verifies easily by proceeding as in [11, Lemma 10.33] that the Bismut-Lott super-
connection on B̃ is given by

Ã = Au + dR+ −
dim Z

4u
du. (2.47)

From (2.47), one finds in using the Duhamel formula that

Trs[exp(−Ã2)] = Trs[exp(−A2
u)]− Trs

[∂Au

∂u
exp(−A2

u)
]
du. (2.48)

(2.45) follows from (2.46), (2.48) and a refined local index result of Bismut and Lott
[9, Theorem 3.15].

(e) The Adiabatic Limit of η-Invariants

In this subsection, we still make the assumption that k ≡ 3 mod 4Z and will calculate
the limit of η

(
DF

M/TZ,sig(t)
)

as t → 0.
From (1.14), (A.8), (2.13) and an obvious rescaling, one finds

η
(
DF

M/TZ,sig(t)
)

=
dim

(
kerDF

M/TZ,sig(t)
)

2

+
1√
π

∫ ∞

0

Treven
[
ĉ
(
THM, gT HM

)
D̂F

M/TZ(t)

· exp(−u(D̂F
M/TZ(t))2)

] du

2
√

u
. (2.49)

Now since the fiberwise operators DZ
b , b ∈ B, have constant rank kernels (cf. [9, Section

3f)]), in view of (2.14) and [9, (3.36)] one can proceed in exactly the same way as in Dai [13]
to calculate the limit of η

(
DF

M/TZ,sig(t)
)

as t → 0.
In fact, by [9, (3.66)], we have an isomorphism of smooth Z-graded vector bundles over

B:
H∗ (Z;F |Z) = ker(DZ). (2.50)

As a sub-bundle of W , ker(DZ) inherits a Hermitian metric from that of W . Also, recall that
H∗ (Z; F |Z) admits a canonically induced flat connection ∇H∗(Z;F |Z). Let ∇H∗(Z;F |Z),e be
the corresponding Euclidean connection on H∗ (Z; F |Z) in the sense of (1.16), (1.17). From
[9, Proposition 3.14], one gets

∇H∗(Z;F |Z),e = P ker(DZ)∇W,u, (2.51)

where P ker(DZ) is the orthogonal projection from W onto ker(DZ). Clearly, ∇H∗(Z;F |Z),e

still preserves the Z-grading of H∗ (Z;F |Z).
On the other hand, the local index results in the last subsection show that the corre-

sponding η̂-form vanishes in this context.
From the above discussion and by mimicing the arguments in [13], one gets the fol-

lowing analogue of [13, Theorem 0.1’]3 in our context, where the definition of sub-signature
operators in Section 1(b) has been incoorporated.

3Compare also with [17, p.298] for the precise counting of the mod Z term.
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Proposition 2.4. The following identity holds,

lim
t→0

η
(
DF

M/TZ,sig(t)
)
≡

dim Z∑

i=0

(−1)iη
(
D

Hi(Z,F |Z)
B,sig

)
mod Z. (2.52)

(f) A Proof of Theorem 2.1

We first assume again that k ≡ 3 mod 4Z. Then by Proposition 2.4 and its application
to the trivial line bundle case, one deduces that

lim
t→0

{
η

(
DF

M/TZ,sig(t)
)
− rk(F )η(DM/TZ,sig(t))

}

≡
dim Z∑

i=0

(−1)iη
(
D

Hi(Z,F |Z)
B,sig

)
− rk(F )

dim Z∑

i=0

(−1)iη
(
D

Hi(Z,R|Z)
B,sig

)
mod Z

=
dim Z∑

i=0

(−1)i
(
η

(
D

Hi(Z,F |Z)
B,sig

)
− rk(Hi(Z,F |Z))η (DB,sig)

)

− rk(F )
dim Z∑

i=0

(−1)i
(
η

(
D

Hi(Z,R|Z)
B,sig

)
− rk(Hi(Z,R|Z))η (DB,sig)

)

≡
dim Z∑

i=0

(−1)iφ(B,Hi(Z, F |Z))− rk(F )
dim Z∑

i=0

(−1)iφ(B,Hi(Z,RZ)) mod Z, (2.53)

where we have used the obvious fact that

dim Z∑

i=0

(−1)irk(Hi(Z, F |Z)) = rk(F )
dim Z∑

i=0

(−1)irk(Hi(Z,R|Z)) = rk(F )χ(Z). (2.54)

(2.3) then follows from (1.57) and (2.53).
Now we assume that k ≡ 1 mod 4Z. Then both DF

M/TZ,sig(t) and D
H∗(Z,F |Z)
B,sig are

skew-adjoint. By proceeding as in [13, Section 2], where a proof of [13, Theorem 1.5] is
given, one finds that there exist constants ε0 > 0 and λ0 > 0, such that for any 0 < t ≤ ε0,

]
{

λ : λ ∈ Spec
(
−DF,2

M/TZ,sig(t)
)

, 0 ≤ λ ≤ λ0t
}

= dim
(
kerD

H∗(Z,F |Z)
B,sig

)
. (2.55)

(2.3) then follows from (1.56), (2.55) and the trivial fact that the nonzero eigenvalues
of DF,2

M/TZ,sig(t) are of even multiplicities
(
as DF

M/TZ,sig(t) is skew-adjoint
)
.

The proof of Theorem 2.1 is completed.

§ 3 . An Extension to the Case Where TM/E Is Spin

In this section, we discuss briefly the refinements for the case where TM/E in Section
1 is spin, which were mentioned in Introduction.

For brevity, we only discuss the case where F is a complex flat vector bundle and work
in the complex coefficient category.
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This section is organized as follows. In (a), we extend the result in Section 1 to the
case where TM/E is spin. In (b), we extend the results in Section 2 to the case where B is
spin.

(a) Sub-Dirac Operators and the Generalized Atiyah-Patodi-Singer Invari-
ants for Flat Vector Bundles

Let M be an odd dimensional closed oriented manifold. Let E be an oriented sub-
bundle of TM . Then TM/E admits an induced orientation. We make the assumption that
dim TM/E is odd. We further assume in this section that TM/E is spin and carries a fixed
spin structure.

Let gTM be a metric on TM . Let E⊥ ⊂ TM be the orthogonal completement to E

with respect to gTM . Then one has the orthogonal splitting (1.6). We identify TM/E with
E⊥. Let S(E⊥) denote the corresponding bundle of spinors.

Let (F,∇F ) be a complex flat vector bundle over M . Let gF be a Hermitian metric on
F . Then as in (1.16) and (1.17), one gets a Hermitian connection ∇F,e on F .

Let ∇TM be the Levi-Civita connection of gTM . Let ∇E , ∇E⊥ be the projection
connection on E, E⊥ defined as in (1.19). Let ∇S(E⊥) (resp. ∇∧∗(E∗)) be the canonical
Hermitian connection on S(E⊥) (resp. ∧∗(E∗)) induced by ∇E⊥ (resp. ∇E). Let ∇u be the
unitary connection on S(E⊥) ⊗ ∧∗(E∗) ⊗ F obtained from the tensor product of ∇S(E⊥),
∇∧∗(E∗) and ∇F,e.

For any X ∈ E⊥, let c(X) be the Clifford action of X on S(E⊥). It extends to an
action on S(E⊥)⊗ ∧∗(E∗)⊗ F as c(X)⊗ (Id∧even(E∗) − Id∧odd(E∗))⊗ IdF . For any Y ∈ E,
let c(Y ) = Y ∗ ∧ −iY be the Clifford action of Y on ∧∗(E∗). It extends to an action on
S(E⊥)⊗ ∧∗(E∗)⊗ F by acting as identity on S(E⊥)⊗ F .

Let h1, · · · , hdim E (resp. f1, · · · , fdim E⊥) be an oriented orthonormal basis of E (resp.
E⊥). Let S be the tensor defined as in (1.20).

Definition 3.1. The sub-Dirac operator DF
M/E,spin is the first order elliptic differential

operator acting on S(E⊥)⊗ ∧∗(E∗)⊗ F given by

DF
M/E,spin =

dim E⊥∑
α=1

c(fα)∇u
fα

+
1
2

dim E∑
s,q=1

dim E⊥∑
α=1

〈S(hs)hq, fα〉c(hs)c(hq)c(fα)

+
dim E∑
s=1

c(hs)∇u
hs

+
1
2

dim E⊥∑

α,β=1

dim E∑
s=1

〈S(fα)fβ , hs〉c(fα)c(fβ)c(hs). (3.1)

One verifies easily that DF
M/E,spin is formally self-adjoint. Furthermore, it is formally

of the same nature as D0 in (1.33) (compare with (1.35)).

Remark 3.1. When both M and E are even dimensional and F is the trivial line
bundle, such an operator has been constructed in [16]. Locally, it can certainly be looked
as a twisted Dirac operator. The main point here is that it is globally well defined even if
M is nonspin. The same remark holds for the sub-signature operators studied in Section 1,
where neither E⊥ nor M are supposed to be spin.
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We can now state the following analogue of Theorem 0.1, which can be proved by
mimicing the procedure in Section 1.

Theorem 3.1. The quantity

φ̂(M/E, F ) = η
(
DF

M/E,spin

)
− rk(F )η

(
DRM

M/E,spin

)
∈ R/Z

does not depend on the metrics gTM and gF .

Clearly, these quantities define a series of invariants generalizing those of Atiyah-Patodi-
Singer [3, Proposition 2.14].

(b) A Riemann-Roch Theorem for Flat Vector Bundles

In this section, we assume that we have a fibration Z → M
π→ B such that E = TZ

verifies the assumptions in the above subsection. As in Section 2(a), one has a Z-graded flat
vector bundle

H∗(Z; F |Z) =
dim Z⊕

i=0

Hi(Z;F |Z)

over B. We can now state the following analogue of Theorem 0.2.

Theorem 3.2. The following identity holds,

φ̂(M/TZ,F )

=
dim Z∑

i=0

(−1)iφ̂(B, Hi(Z, F |Z))− rk(F )
dim Z∑

i=0

(−1)iφ̂(B,Hi(Z,R|Z)). (3.2)

Proof. Let ω(F, gF ) be defined as in (1.16). Then one sees clearly that the operator

DF
M/TZ,spin −

1
2

dim Z∑
s=1

ĉ(hs)ω(F, gF )(hs) (3.3)

is of exactly the same nature as DF
M/TZ studied in Section 2.

Now it is clear that we can apply the arguments of Bismut-Cheeger [6, 7] and Dai [13]
as in Section 2 to compute the adiabatic limit of the η invariants of the operators of form
(3.3). In particular, the η̂-form is still seen to be zero. Thus, one has

lim
t→0

η
(
DF

M/TZ,spin(t)− 1
2

dim Z∑
s=1

ĉ(hs)ω(F, gF )(hs)
)
≡

dim Z∑

i=0

(−1)iη
(
D

Hi(Z,F |Z)
B,spin

)
, (3.4)

where DF
M/TZ,spin(t) is the sub-Dirac operator with respect to the metric gTM

t in (2.12).
On the other hand, by proceeding as in (A.9) and (A.10), one gets easily that

η
(
DF

M/TZ,spin −
1
2

dim Z∑
s=1

ĉ(hs)ω(F, gF )(hs)
)
≡ η

(
DF

M/E,spin

)
mod Z. (3.5)

(3.2) then follows from Theorem 3.1, (3.2), (3.4) and (3.5) as well as their applications
to the trivial line bundle case.
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