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Abstract

Consider the following Cauchy problem for the first order quasilinear strictly hy-
perbolic system

ou ou
t=0: u=f(x).
We let

M = sup |f'(z)| < +oo.
TER

The main result of this paper is that under the assumption that the system is weakly
linearly degenerated, there exists a positive constant £ independent of M, such that
the above Cauchy problem admits a unique global C* solution u = u(t, z) for all t € R,
provided that

+oo
/ | (@)ldx < e,

- 6
/_OO @)l < <.
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8§ 1. Introduction and Main Results

Consider the following first order quasilinear strictly hyperbolic system

Ou Ou

— 4+ A(u)=— =0 1.1

Ao <o, (11)
where u = (uy, -+ ,u,)T is the unknown vector function of (¢,7) and A(u) is an n x n matrix
with suitably smooth elements a;;(u) (4,7 =1,--- ,n).
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By the definition of strict hyperbolicity, for any given v on the domain under consid-
eration, A(u) has n distinct real eigenvalues

)\1(u) < )\Q(U) < < )\n(u). (12)
Let I;(u) = (Ii(u), -, lLin(u)) (resp. ri(u) = (ri1(u), -+ ,7in(u))T) be a left (resp. right )
eigenvector corresponding to A;(u) (i =1,---,n):
L(w)Aw) = A(li(w)  (resp. Aw)ri(u) = Ni(wr:(w). (1.3)
We have
det |1;;(u)] # 0 (equivalently  det |r;;(u)| # 0). (1.4)

All X;(u),li(u) and 7i;(u) (i,j = 1,---,n) are supposed to have the same regularity as
aij(u) (’L,j = 1, s ,n).
Without loss of generality, we suppose that

Li(u)rj(u)

)Tri(u)

61’]’ (Z,j = ]-a e an)v (15)
1

ri(u

where 0;; stands for the Kronecker’s symbol.

It was proved by Li Tatsien, Zhou Yi and Kong Dexing [5-7] that the Cauchy problem
for system (1.1) with “small” and decaying initial data admits a unique global classical
solution provided that system (1.1) is weakly linearly degenerate. In this paper, we shall
reprove the global existence result with less restriction on the initial data. In particular, the
supreme norm of the derivatives of the initial data is not assumed to be small. We shall also
get global stability results in this case.

To state our result precisely, we shall first recall the concept of weak linear degeneracy
(see [5] and [6] ) as follows.

Definition 1.1. The i-th characteristic A\;(u) is weakly linearly degenerate, if , along
the i-th characteristic trajectory u = u(i)(s) passing through uw = 0, defined by

d

CTZ = r;(u), (1.7)
s=0: wu=0, (1.8)

we have
Vi(w)ri(u) =0, Y |u| small, (1.9)

namely
i (u'(s)) = Xi(0), Y |s| small. (1.10)
If all characteristics Ai(u) (i = 1,--- ,n) are weakly linearly degenerate, then system (1.1)

1s called weakly linearly degenerate.

We now consider the Cauchy problem for system (1.1) with the following initial data
t=0: u=f(x). (1.11)

Our main results can be summarized as follows:
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Theorem 1.1. Suppose that system (1.1) is strictly hyperbolic and weakly linearly
degenerated. Suppose furthermore that A(u) € C? in a neighbourhood of uw = 0 and f € C!
with bounded C' norm. Let

M = sup | f'(z)]. (1.12)
T€ER
Then there exists a positive constant € independent of M, such that Cauchy problem (1.1)
and (1.11) admits a unique global C' solution u = u(t,z) for all t € R, provided that

+oo

| @i < (1.13)
™ 5

/_ |f(@)ldz < 7. (1.14)

Remark 1.1. The condition that the system is weakly linearly degenerate is necessary
to ensure global existence with small and decaying initial data. If the i-th characteristics
is not weakly linearly degenerate for some ¢ € {1,---,n}, then we can find a simple wave
solution

u=uD(s(t, z)), (1.15)

where 1) (s) is defined by (1.7) and (1.8), moreover
s+ Ai(u(s))s, = 0. (1.16)

It is well known that if \;(u(¥)(s)) is not a constant in any neighbourhood of origin, then
the solution of (1.16) will in general develop singularity in finite time even for small and
decaying initial data.

Remark 1.2. Assumptions (1.13) and (1.14) are scaling invariant. If w(t,z) is a
solution to system (1.1), then for any A > 0, ux(¢,z) = u(At, A\x) is also a solution with
initial data fy(z) = f(Ax). We have

+oo +oo
/ Fo(@)lde = / (@), (1.17)

—00

M) = sup [ f}(z)] = AM, (1.18)
TER

+oo +oo
/ a(@)lde = A1 / 1 (@)de. (1.19)

— 00

Remark 1.3. The conclusion of Theorem 1.1 was obtained by Li Tatsien, Zhou Yi
and Kong Dexing [5-7] under the assumption that

0 = sup{(1+ [z)) " (|f ()] + |f'(2))} (1.20)
TER

is sufficiently small for some g > 0. Condition (1.20) implies that

sup |f'(z)] < 6 (1.21)
TER
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as well as
“+o0
[ s < co. (1.22)
-
| ls@las < co. (1.23)

where C' is a positive constant. Thus the result of [5, 6] can be deduced from Theorem 1.1.

Remark 1.4. Theorem 1.1 was also obtained by Yan Ping [7] under the additional
hypothesis that the initial data has compact support

suppf C [ao, Bo] (1.24)

and she required that (1.13) holds with ¢ depending on 3y — g and M.
We shall also have

Theorem 1.2. Under the assumptions of Theorem 1.1, if u™, u® are two solutions
given by Theorem 1.1 with nitial data f) and f@ respectively, then

+oo
/ luM (t, 2) — u® (t, z)|dx

— 00

<cf @) FO@da, W0, (1.25)

—00
where C' is a positive constant independent of M and t.

We remark that in the case that system (1.1) is linearly degenerated, the global exis-
tence has been established by Bressan [1], global L' stability also follows from the work of
T. P. Liu and T. Yong [8], A. Bressan, T. P. Liu and T. Yang [2] as a special case.

This paper is organized as follows: In Section 2, we recall and generalize John’s formula
on the decomposition of waves. In Section 3, we introduce two basic lemmas concerning L'
estimates. In Section 4 to Section 5, we prove Theorem 1.1 and Theorem 1.2 respectively.

8§ 2. Preliminaries

Suppose that A(u) € C?. By Lemma 2.5 in [5], there exists an invertible C* trans-
formation v = w(@) (u(0) = 0) such that in the d-space, for each i = 1,--- ,n, the i-th
characteristic trajectory passing through @ = 0 coincides with the @;-axis at least for ||
small, namely

7i(Ge;) = ey, Vlt;| small (i=1,---,n), (2.1)
where 4
e; = (0,---,0,1,0,---,0)7. (2.2)
Such a transformation is called a normalized transformation and the corresponding unknown
variables @ = (41, -, Uy,) are called normalized variables or normalized coordinates.
Let
v; = li(u)u (i=1,---,n), (2.3)

w; = L (u)ug (i=1,---,n).
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By (1.5), we have
u = kark(u), (2.5)
k=1
Uy = Zwkrk(u). (2.6)
k=1
Let J 5 5
— - = (1) — 2.
AT Ailw) ox 27)
be the directional derivative along the i-th characteristic. We have (cf. [5, 6])
dUz' “
d;t = Z ﬂijk(u)vjwk, (2.8)
k=1
where
Bij(u) = Ak (u) = X (w)li(w) Vrj (w)re (). (2.9)
Hence, we have
Biji(u) =0, Vj (2.10)
Noting (2.6), we have
ov; O\ (uw)v;) =
= B;; i 2.11
ot + ox Z l]”ﬂ(u)vjwk7 ( )
7,k=1
or equivalently,
d[v;(dx — X;(u)dt)] = Z Bk (w)vjwidzdt, (2.12)
k=1
where
By (2.9), we have, in normalized coordinates,
Bijj(uje;) =0, Vi#j. (2.14)

Furthermore, when the system is weakly linearly degenerate, in normalized coordinates, we

have
Bijj(uje;) =0,  Vje{l,---,n}.

On the other hand, we have

dwi -
dt Z Vijr (W) wjwg,

Jik=1

where
Yijie(w) = (Aj(w) = A ()l (w) Vg (w)r (w) = VA (u)r;(u)dik.
Thus, we have
Yijj(u) =0,  Vj#i

(2.15)

(2.16)

(2.17)

(2.18)
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When the system is weakly linearly degenerate, we have
Yiii(uiei) = 0, vie{l,---,n}. (2.19)
Similarly to (2.11), we can get

W + T = Z Fijk(u)ijk, (220)
jk=1

or equivalently,

d[w;(dx — X\;(uw)dt)] = Z Tsjr(u)wjwpdadt, (2.21)
jk=1
where )

Piji(u) = 5 (A (u) = Ae(u)li(u)[Vrw(u)r; (w) — Vi (w)re(w)]- (2.22)

Thus, we have
I‘Z—jj(u) EO, VJ S {1, ,TL}. (223)

We next derive a formula on the decomposition of waves for the difference of two
solutions u(M, u(® to system (1.1). We denote

wgl) = 1;(uM)ulV), wZ@) = 1;(u®)ul® (i=1,---,n). (2.24)

By (1.5), we have

W = 3w @), 0@ =3 w®r®). (2.25)
i=1 =1
Let

u® = () @) (2.26)
52_(1) = 1, (uM)u®, Ei(?) = 1;(u@)u©. (2.27)

Then by (1.5), we have
O Zf;l)rj (WD) = Zf§2)7'j(“(2))' (2.28)

=1 =1

Thus

= Dl ) + €0 ()

[
NE

<.
Il
—

€37 (u®) — €97 (W) A )u D)

[
NE

<.
Il
—

n

0™y = 37 A (@) Vrj (W) (uh) e w i (2.29)
k=1

<
Il
Ja

I
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Taking the inner product with I;(u(?)), we get

LM = € = 37 Du(M) (D) Vr () (u) el (2.30)
7,k=1
On the other hand, by (2.26), we have
© _ @ Q)

—uy = — Uy
— A@D)u) — Al
= AW®) @)~ u®) 4+ (A@D) - A@))ul?

= A(uM)ul® + Z(A(u(l)) — AW®))r; (@), (2.31)
Thus, noting (2.28), we get

2
(M)l = A () () <o>+z M) = X5 ()l (D) (0 )

(1) ey Z (1)
Jj=1

+Z (1) (2)))5( (1)) (u (2)) §_2)
=1
= (MR + 37 X ()1 () Vry (u M) ulD

=1

+Z (1) (2)))1( (1)) i (u (2)) §2)

= M(uM)eld) + Z X (@)1 (D) Vs (D) (u )P Y

G k=1

N Z (M) = Ay (@)D )r; (@ )yw?. (2.32)

Noting (2.9), combining (2.30) and (2.32) gives
fgl) + A (u (1))§g1)

= 3 g E_Z X LMy P (2.33)

J,k=1

Noting (1.5), we have
= 2 () = X5 @) (D (o
=1

)~ A
3 au®) = 3 @) M) ry (w D) = 1y (). (2:34)
J#i



44 ZHOU, Y.

Thus

5gl)jL)\,( (1))5(1)

Z Bigr (Mg w — (@) = X))l (s (u®)yw
7,k=1
+Z (N (M) (s (u (1))—rj(u(2)))wj(.2),

J#i

Similarly to (2.11) , we can also get

€8+ i)y,

= 37 Biew™)ePw — (@) = X))y (u® )
j,k=1
> ™) = X )L )y (D) = ()
JFi

In a similar way, we get

€8 + \(u®)e?)y,

= 3 Bir@®)ePwi® + (i) = X @)l (w®)ry (M o
k=1

> S ONL ) (s (D) = (@)’

i

§3. L! Estimates

(2.35)

(2.36)

(2.37)

In this section, we give some basic L' estimates. They are essentially due to Schartzman

[9, 10].
Lemma 3.1. Let ¢ = ¢(t,x) € C* satisfy

ot + (Mt,2)d)x = F, 0<t<T, zr€R,
¢(0,z) = g(x),
where X € C1. Then

+oo +oo T +o0
/ (¢, 2)|dz < / lg(a)|dz + / / F(t,0)\dedt,  VE<T,
—00 —00 0 — 00

provided that the right hand side of the inequality is bounded.

Proof. To estimate fj;f |o(t, x)|dx, we need only to estimate

l
/_ Jott.a) o

for any given [ > 0 and then let | — 4o0.

(3.3)
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From point (7, L), we draw a C! characteristic curve z = z,.(t) such that
dz,(t
xdt( ) At ),  t<T, (3.5)
t=T: z,=1L. (3.6)
From point (T, —L), we draw a C! characteristic curve z = z;(t) such that
dx(t
”Zi ) \tm(),  t<T (3.7)
t=T: x;=—L. (3.8)
Let L be sufficiently large so that
() < =l <l <z (t), 0<t<T. (3.9)
From (3.1), we have
1¢l: + (Al9]) = sgn(e) F. (3.10)
Thus
d -'L'r(t) ‘LT(t) a ,
G [ ettaide = [ ot a)lds + i @)lo(t,a, (0)] - ai O]t (6)
x1(t) z1(t)
(1) (1)
— [ sen@irde— [ (a6t 0)ado
zl(t) z(t)
+ 2L ()]t 2 (1)) — 21 ()] 6(t, 21 (1))
(1)
= Lo sgn(@)Fdz — (A(t, 2, (1)) — 2,.(1)) (¢, 2 (1))
xy(t
= (@) = At zu(8)|o(t, 2 (t)))|
z,(t) z(t)
:/ sgn(¢)Fdx S/ |F'(t, z)|dx. (3.11)
$l(t) Il(t)
Therefore it follows that
zr(t) :Cr(O) Ty (t)
/ 6(t, 2)|dz < / 2)|da +/ / F(t, 2)|ddt
z(t) =1(0) z(t)
+o0 +oo
< / l9(2)|dz +/ / \F(t, )| dzdt. (3.12)
—oo 0 —00
Thus
+oo +oo
/ |o(t, x)|dx </ |da:+/ / F(t,z)|dxdt. (3.13)
Letting [ — +o00, the desired conclusion follows.
Lemma 3.2. Let ¢ = ¢(t,x) and 1 = (t,z) be C' functions satisfying
or+ (At x)p)y = F, 0<t<T, z€R, (3.14
¢(0,2) = g1 () (3.15)
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and

e+ (u(t, 2)). = G, 0<t<T, z€R, (3.16)
¥(0,7) = g2(x), (3.17)

respectively, where \, ;n € C' such that there exists a positive constant &y independent of T
verifying
w(t,x) — A(t, z) > do, 0<t<T, z€R. (3.18)

Then

/OT /_ :O (8, )| (8, )| dwdt

gc*(/+°o |gl(sc)|d:c+/0T /_:O|F(t,x)dxdt)

— o0

(/:O |92(x)|d:c+/0T/_+:G(t,x>|dxdt), (3.19)

provided that the two factors on the right hand side of the inequality are bounded.
Proof. To estimate
T +oo
| et oo (3.20)
0 —o00
it is enough to estimate

T l
| [ etaliv.ads (3.21)

for any given [ > 0 and then let [ — 4oc0.
From point (7T, L), we draw a C! characteristic curve z = z,.(t) such that

dx,(t)
dt

= Atz (t), t<T, (3.22)
t=T: x, = L. (3.23)

From point (T, —L), we draw a C! characteristic curve z = z;(t) such that

da(t)

o HGm),  t<T, (3.24)
t=T: z;=—L. (3.25)

Let L be sufficiently large so that
() < =l <1<z (t), 0<t<T. (3.26)

We introduce the “continuous Glimm'’s functional”

aw=[[ Wl vy (327
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Then, it is easy to see that

d zr(t) Ir(t)
o = 0lott . (0) (¢, 2)ldx — i (D] (t, 21 (1))] / 6(t,7)|da
dt x(t) o0
0
ot - dxd
' /‘/zl(t)<1<y<mr(t) at‘w<t7m)| ‘¢(t7y)| xray
0
gien dzxd
+//wl(t)<w<y<zr(t) [ (t,2)| - 5 16(ty)|ddy
o zr(t)
= o @éte @)l - W olds = n@kEa) / 6(t, 2)|dx
x1(t) )
0
- // 55 Wl 2))) -t y)ldady
zi(t)<z<y<z(t) OT

0
-/ 0t 2)| - - ((t, ) )drdy
x (t) <z <y<z,(t) Y

+ / / sen()G(t, 2)|6(t, ) dwdy
() <z<y<z,(t)

T / / sen ()| (¢, 2) | F(t, y)dedy
() <z<y<z,(t)

"Er(t)
|

= (z,(t) = At 2 (1)) |6 (t, 2, (1)) " | (t, z)|dx

., (t)

+ (ult, 2 (1) — ()| (t, 2:(2))] lo(t, x)|d

Il(t)

- (t)
- / |, (2 =Dt o0t )l

+ / / sen()G(t, 2)|6(t, y)|dzdy
z(t)<zx<y<z,(t)

+ / / sn ()| (¢, 2) | F (1, y)dudy
x () <z <y<z,(t)

z,(t) z,(t) z,(t)
< by / Wt 2)|8(¢, ) + / G(t, 2)|de / 16(t, 2)|de
xy(t) 1 (t) z(t)

x(t) - (t)
+ / (¢, 2)|da / b (t, 7)|dx. (3.28)
z(t) x1(t)

It then follows from Lemma 3.1 that

dQ(t) i
R N CRIEORTEE

(1) +oo T px.(t)
g/ |G(t,a:)\da:</ |gl(:1:)|dz+/ / |F(t,x)|dxdt)
i (t) - 0 Jat)

oo

., (t) 400 T px(t)
+ / |F(t,x)|dx( / lg2(2)|dz + / / \G(t,x)|dxdt>. (3.29)
T 0 1 (t)

1 (t) —o00
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Therefore
w,(t
50/ / U(t, z)||o(t, x)|dzdt
a:l(t
z(t)
/ / G(t, z)|dzdt
z(t)
+oo
- (/ lg1(x |dx+/ / F(t,x |dmdt>
zr(t
/ / F(t,x)|dzdt
zy(t)
+o0 T . (t)
: (/ |gz(x)|dx+/ / |G(t,:r)|dmdt).
—00 0 x(t)
Noting
“+o0 400
QO < [ ln@lds [ loa(a)ldz,
we get

xr(t)
50/ / Y(t,x)||p(t, x)|dzdt
I[(t)

400 z,(t)
<2(/ g1 (z |dx+/ /@) F(t,z) |dxdt)
_ "

o0 ., (t)
) (/ |92(17)|d1‘+/ / |G(t,x)|da:dt).
—oQ 0 Cl)[(t)

It thus follows

@ (t)
/ / o(t, z)||Y (¢, z)|dxdt
z1(t)
400 mr(t)
< C(/ lg1(z |dm+/ / F(t,x |dxdt)
- z(t)
+oo Ir(t
. (/ lg2(x |d3:—|—/ / G(t,z |d:z:dt>
— Il(t

/ ' / ll ot 2|Vt 2)\dadt
gc(/:o |gl(x)|dx+/OT /:O|F(t,x)dxdt>
(/:o gg(x)|dx+/0T/J:O |G(t,x)|d:1:dt)

and the desired conclusion follows by taking [ — +oo.

Therefore

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)
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§4. Proof of Theorem 1.1

By Lemma 2.5 in [5], there exists a normalized transformation. Without loss of gener-
ality, we assume that v = (uy,--- ,u,)? are already normalized variables.

By the existence and uniqueness of local C'!' solution to the Cauchy problem, in order
to prove Theorem 1.1, it suffices to establish a uniform a priori estimate on the C° norm of
u and % on the existence domain of C'* solution u = u(t, x).

By (1.2), there exist positive constants § and dy so small that

)\j+1(u)—)\j(v) 2(50, V|u|, |’U| S(S (j:1,~-~ ,’I’L—l). (41)

For the time being it is supposed that on the existence domain of C! solution u =
u(t, z), we have
lu(t, z)| < 0. (4.2)

In what follows, we shall explain that this hypothesis is reasonable. Thus, to prove Theorem
1.1, we only need to establish a uniform a priori estimate on the supreme norm of v and w
defined by (2.3) and (2.4) on any given time interval [0, 7.

Let

Voo (T) = sup sup |v(t, )], (4.3)
0<t<T z€R

Unel(T) = sup sup lu(t, 2)], (4.4)
0<t<T z€R

WaolT) = sup_sup [u(t, 2)], (45)
0<t<T z€R

+oo

W(T) = sup/ [v(t, x)|dz, (4.6)
0<t<T J_

VA(T) = max maxsup/ |v; |dt, (4.7)
i=1,--,n j#i ¢ Jeoy

where C; stands for any given j-th characteristic on the domain 0 <t < T

+oo
Wi (T) = sup / |w(t, z)|dz, (4.8)
0<t<T J oo
Wi(T) = max maxsup/ |w; |dt, (4.9)
i=1,--,n j#i ¢ Jeoy
where v = (vy, -+ ,v,)T, w= (w1, -+ ,w,)T and |v| = \/v? +--- +v2, etc. Noting (2.3)—
(2.6) and (4. ) Oo( ) is obviously equivalent to Uy (T).
Noting j; |f/(z)|dx < 400, we conclude that
i f@)=f. lm f) =/ (4.10)

exist. By fjooj |f(z)|dz < 400, we see that f_ = f, =0.
By finite propagation speed of waves, we have

lim wu(t,z) = lim w(t,z) =0, Vte[0,T]. (4.11)

T——00 r— 400
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Thus, it follows

u(t,x) = /j uy (¢, y)dy, (4.12)
oo
lu(t, 2)| < /_ s (1, 2)|dz < CWA(T). (4.13)

Here and hereafter, C' will denote a generic constant independent of ¢ and T, the meaning
of C' may change from line to line.

Lemma 4.1. There exists a positive constant C independent of €, T and M, such that

Wi (T), W1 (T) < Ce, (4.14)
VA(T), Vi(T) SO%, (4.15)
Woo(T) < CM. (4.16)

Proof. We introduce

=¥§ [ [ a0 g (@17)

and let

; [ [ it (1.18)

j=14
By (2.20), it follows from Lemma 3.2 that

Qw(T )<C W1 / /|G|dmdt , (4.19)

where G = (G4, -+ ,G,) with

G; = Z Fij}g(u)ijk. (4.20)
jk=1
Noting (2.23), we have
T
/ / \Gldadt < CQu (T). (4.21)
o JR
It then follows that
Qw (T) < C(W1(0) + Qw (T))*. (4.22)

We now estimate Q. By (2.11) and (2.20), it follows from Lemma 3.2 that

Qv (T )<C Vi(0 / /|F|dxdt W1 (0 / /|G|dmdt , (4.23)

where F = (Fy,---, F,) with

Fi = Z Bijk(u)vjwk. (424)
J,k=1
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Noting (2.15), we can use Hadamard’s formula to get
Bijj(u) = Bijj(u) — Bijj(uje;)
_ Zuh /1 OBijj(suy, -+, 8uj_1,uj,5Uj41," " ’Su")ds. (4.25)
hzj o 70 Oun
Thus
I
We shall prove that
Z |up| < CZ |vg]. (4.27)
h#j h#j
As a matter of fact N
Up =1U-ep = Z verk(u) - ep, (4.28)
k=1
noting (2.1), we have
ri(uje;) - en =0, Vj #h. (4.29)
By Hadamard’s formula, we get
[ri(u) - en] <O Jukl- (4.30)
Py
It thus follows from (4.28) that
D lunl <CY fonl + Clol > fun < C Y fonl + C8 Y Junl. (4.31)
W I W W hj
Thus, (4.27) is valid provided that § is sufficiently small. Thus, it follows
|Biji(w)| < C Y |onl. (4.32)
h#j
Thus, we get
T
/ / |F;|dzdt < CQvy(T). (4.33)
o Jr
It follows that
Qv (T) < C(V1(0) + CQv(T))(e + Qw(T)). (4.34)
We now estimate W1 (7). By Lemma 3.1,
o0 T
/ (i (£, ) |dz < W1 (0) + / / \Gldadt < W1(0) + CQuw (T). (4.35)
oo o JR
Therefore
Wi(T) < CW1(0) + CQw (T). (4.36)

To estimate W, (T), we need to estimate

/ .
C,

J
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We assume that C; intersects ¢t = 0 with point A, intersects ¢t = T" with point B. We draw
an i-th characteristic C; from B downward and intersects t = 0 with point C.
We rewrite (2.21) as

d(|w; (t, )| (dx — Ni(uw)dt)) = sgn(w;)G;dzdt, (4.37)

and we integrate it in the region ABC to get

\/C|wi(t,x)|(xj(u)fAi(u))dt‘ g/AC |wi(0,x)|dx+//ABC|Gi|d:rdt

< Wi (0) + CQw (). (4.38)
In the definition of W1, j # 4, thus
|Aj(w) = Ai(w)] = do, (4.39)
therefore, it follows that
[ twiteolar < cwi(0) + CQu (1), (4.40)
Cj
hence .
We now estimate V1(T'). By Lemma 3.1, we have
+oo € T c
/ \vi(t,x)|dx§0f+/ / |Fldzdt < C— 4+ CQv(T). (4.42)
—o00 M 0 R M
Thus we get
VA(T) < C% +CQv(T). (4.43)

In a similar way, we can get

TA(T) < O + CQu (D). (4.44)

Finally, we estimate Woo(T). By (2.16), we have
|wi|co < WOO(O) + ‘/ Z 'yijk(u)ijk . (4.45)
Ci k=1
Noting (2.18), we have
[ vrtwwu] < [ hutwpu?] + Cwa (D)
<CWL) [ bsla)] + CWn(DIAD). (140)
Ci

By Hadamard’s formula, it holds that

i ()] = [yasi (w) = Yoo (wies)| < C Y Jug| < C Y Joyl. (4.47)
i i
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Thus
[ hustw)| < cVi() (4.48)
C;
Therefore B .
WoolT) < nM + CW2 (T)Vi(T) + CWao (T)W1(T). (4.49)
Combining (4.22), (4.34), (4.36), (4.41), (4.43), (4.44) and (4.49) all together, we can prove
that

Qw(T) < C<*, (4.50)
2

Qu(T) <0 (4.51)

as well as the conclusion of the lemma. This proves Lemma 4.1.
It follows from Lemma 4.1 that
Uso(T) < CW(T) < Ce. (4.52)
Taking e sufficiently small, we get
Usxe(T) <

N | —

g, (4.53)

so the hypothesis (4.2) is reasonable.
Theorem 1.1 is a direct consequences of Lemma 4.1.

§5. Proof of Theorem 1.2

To estimate

+oo
| O,

—0o0

it suffices to estimate
“+o0 )
/ |§£ )(t,$)|da:, Vie{l,---,n}

on a fixed time interval [0, 7.
By Lemma 3.1, we get

+o00 o0 T
/ €D (4, 2))dar < / 1€D(0, 2)|da + / / \FO (¢, 2)|dadt, (5.1)
oo oo o JR

where

FO = 37 B ul? — () A ) (a0 )l
J,k=1

+ 3 a@®) = X (@) (D) (5 (D) 75 (). (5.2)

J#i
We first estimate the term X;(u(?)) — \;(u(?). We have

Ai(u®) = X (u®) — Ai(u(”ei)

7

Ol R DR C I CO RS (3
= / (R bis.  (53)
5‘uj

J#i
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In a similar way, we have

Loi( su csut s su(Q))
(2) 2) 1 7 U; 1, Uy 5 SU; ; SUn
J#i Uy
Thus
M) = ()
o [ 6)‘2'(5“51)’ T Sugl)b 51)75“&)1 o sul))
i 0 Ou;
() Lo (sugl), e suz(l)l, Ugl)SUEi)l, .. sug))
21 / ( )
- . 0 8“»
JFi j
O\ su(2), L su(z) u(2) (2) e sug)
- Ol SR L ))ds. (5.5)
o (2)
wy
J
Therefore
Xi(@®) = 2@ < O3 w1+ 0> [l |u®)
J#i j#i
0 2
<O 140N o lu®) (5.6)
J#i j#i
We have .
Wl =3P () - ¢;. (5.7)

k=1
Noting (2.1), by Hadamard’s formula, we get, for j # i,

i (u®) - e = [ri(u®) - e —ri(ulVe;) - e
<CY lu? <0y ) (5.8)
h#i h#i
Thus o @ _—
ST < IEP 0> Pe?). (5.9)
JFi J#i JFi
Finally, we get
() = X @) < TP+ 03 10?1 (5.10)
J#i J#i

By a similar argument, we get

(D) — ;@) <SP+ 0 [P 1e?). (5.11)
k#j k#j

The estimate of B;jx(u(!) is the same as in the proof of Theorem 1.1. We have

|Bij; (u) < 3 o). (5.12)
Py
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Combining all the above facts, we get
T
/O /R\Fi(l)|dzdt < C(Qey (T) + MDe (T) + Qe (T) + MDeexy (T), (5.13)
where
- e M
Q@ =33 [ [ 60 ol ) dodr, (5.14)
j=1i£; 70 R
- @ @)
Qe =33 [ [ 162 ol b, dod, (5.15)
j=1i£; 70 R
- W
D§<1>(T):ZZ/ /|vh 1€5Y | dacdt, (5.16)
j=1h#j’0 IR
- T @)
D§<2>(T):ZZ/ /|vh |1€5” | dacdt. (5.17)
j=1h#j 70 IR
Therefore, it remains to estimate Q¢ (1), Q¢ (T'), Dey (T') and D) (T).
Noting (2.20), (2.37), by Lemma 3.2, we get
n T
T) < C(|f© FY|dzd
Qe (T) < C(If P+ |F; | daedt
=170 JR
n T ) N
'(W1(0)+ Z / /|Fijk(u(1))wj(~ )w,(C |da:dt>
i k=170 /R
n LT
gcs(|f<°>\Ll+Z/ /\Fi(1)|dzdt), (5.18)
=170 JR
where (0 = (1) _ £(2)
Noting (2.11), (2.37), by Lemma 3.2, we have
n T
Dei (T) < C(|f© FY |dwdt
o (T) < C(1F O+ |F; - |d
=170 JR
= r 1 1
. (Vl(o) + Z / / \Bijk(u(l))vj(- Jw! )|dxdt)
i k=170 YR
€ (11O ~ [ 1
<C—(|£° F 7 |dxdt). 5.19
SIS CRPED o) Ay ALRTD (519)
Similar estimates hold true for Qg (1) and D) (T'). Therefore, we obtain
Qe (T), Qe» (T) < Ce| f O 1, (5.20)
Ce
Deia) (T), Dgea) (T) < 57| FOLa. (5.21)
By (5.13), this implies
n T
Z/ / \FV|dzdt < Ce|f ). (5.22)
=170 JR
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It then follows from (5.1) that

+oo
|10 widn < cisl. (5.29)

This is exactly what we want.
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