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Abstract

Here the authors are interested in the zero set of Sobolev functions and functions
of bounded variation with negative power of integrability. The main result is a general
Hausdorff dimension estimate on the size of zero set. The research is motivated by
the model on van der waal force driven thin film, which is a singular elliptic equation.
After obtaining some basic regularity result, the authors get an estimate on the size of
singular set; such set corresponds to the thin film rupture set in the thin film model.
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§ 1 . Introduction

Let Ω ⊂ Rn (n ≥ 1) be an open set, p ≥ 1. We consider functions u ∈ W 1,p (Ω), such
that, for some α > 0, ∫

Ω

|u|−α < ∞. (1.1)

When p = 1, it is also natural to consider u ∈ BV (Ω) which satisfies (1.1).
For any u ∈ W 1,p (Ω), p ≥ 1 or u ∈ BV (Ω), we define its zero set by

Σ =
{

x ∈ Ω : lim
r→0+

1
|Br (x)|

∫

Br(x)

|u| exists, and is equal to 0
}

. (1.2)

Our main theorem is the following:

Theorem 1.1. Hs(Σ) = 0, where s = max
{

0, n− p +
p2

p + α

}
.

We note that, when n − p + p2

p+α ≤ 0, one has in particular that Σ is empty. This
latter fact follows also from the Sobolev imbedding theorem: u ∈ W 1,p (Ω), p > n, implies
u ∈ Cβ (Ω), β = 1− n

p . Indeed, if u (x0) = 0 for some x0 ∈ Ω, then

|u (x)| ≡ |u (x)− u (x0)| ≤ c (u) |x− x0|β .
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Thus ∫

Ω

|u|−α (x) dx ≥ c2 (u, α)
∫

Ω

1

|x− x0|αβ
= +∞

whenever αβ ≥ n. That is equivalent to n − p + p2

p+α ≤ 0. In other words, under the

additional assumption
∫
Ω
|u|−α < ∞, one would have u never vanish if n− p + p2

p+α ≤ 0.
We also note that, for a W 1,p (Ω) function u, the set

Σ∗ =
{

x ∈ Ω : lim
r→0+

1
|Br (x)|

∫

Br(x)

|u| does not exist, or is equal to ∞
}

(1.3)

is of Hausdorff dimension at most n−p, by a theorem of Federer-Ziemer [3]. And for functions
of bounded variation, we have Hn−1 (Σ∗) = 0, see Section 5.9 of [1] for more information
on fine properties of BV functions. Hence our result concerning Σ, the Lebesgue set of u of
the value zero makes sense because s > n− p.

In order to show Theorem 1.1, we will need a Poincaré type inequality which will be
proven in the next section.

We will concentrate our proof on the cases that n ≥ 2 and p > 1. When n = 1,
any function in W 1,p (Ω) is Hölder continuous for p > 1 and absolutely continuous when
p = 1. So it is easy to check that our theorem is valid in this case. In the case p = 1, since
W 1,1 (Ω) ⊂ BV (Ω), the theorem can be proved in the same manner as in the case p > 1,
with the help of Theorem 2.2.

Our motivation for studying the zero set of general Sobolev function comes from consid-
erations on the so-called rupture set of thin films, see [5]. Indeed, we consider a nonnegative
solution u of

4u− 1
uα

+ h (x) = 0 (1.4)

in Ω ⊂ Rn, where α > 1, and h is a smooth function in Ω. The value u represents the
thickness of the thin films, and the zero set of u represents the ruptures. Naturally one is
interested in how big can such rupture sets be.

We say that u ≥ 0 is a finite energy solution of (1.4), if u is nonnegative and continuous,
satisfying (1.4) in {x ∈ Ω : u(x) > 0}, and such that

∫

Ω

[
|Ou|2 − 1

α− 1
|u|−α+1

]
dx

is of finite value.
Applying Theorem 1.1, we have

Corollary 1.1. Hµ1(Σ1) = 0, where Σ1 = {x ∈ Ω : u(x) = 0}, and µ1 = n−2+
4

α + 1
.

Alternatively, we say u ≥ 0 is a weak solution of (1.4) in Ω, if u ∈ L1(Ω), u−α ∈ L1(Ω),
and (1.4) holds in the sense of distribution. Then we have the following:

Theorem 1.2. u ∈ H1
loc(Ω). Moreover, for any K ⊂⊂ Ω, there is a constant C > 0,

such that for any x ∈ K, 0 < r <
1
2
dist (K, ∂Ω), we have

∫

Br(x)

|Ou|2 (y) dy ≤ Crn−2.

Furthermore, Hµ(Σ) = 0 for µ = n− 2 +
4

α + 2
, where µ is defined in (1.2).
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The above estimates on the zero set of weak solutions of (1.4 ) is probably the first of
its kind. However, we expect better estimates may be valid. The reason is that very little
information of u being a weak solution of (1.4) is used in the proof of Theorem 1.2.

The paper is organized as follows: We will prove several Poincaré type inequalities in
Section 2. Then we prove Theorem 1.1 in Section 3, and then discuss its application to (1.4)
in the last section.

§ 2 . Poincaré Type Inequality

If p > n and u ∈ W 1,p (BR), then u is Hölder continuous, and hence we have the
following classical Poincaré lemma:

Proposition 2.1. Let p > n, and BR be any ball in Rn with radius R. Then for any
u ∈ W 1,p (BR) such that u(x) = 0 for some point x ∈ BR, we have

∫

BR

up ≤ c (n, p)Rp

∫

BR

|Ou|p .

If 1 < p ≤ n, then u(x) = 0 for some point x ∈ BR is not well defined. However, we
still have Poincaré inequality if the zero set is large enough.

Theorem 2.1. Let n ≥ 2, 1 < p ≤ n, and n − p < s ≤ n, let BR be any ball in Rn

with radius R, and T ⊂ BR be a Hs-measurable set, such that

Hs (T ) ≥ θ1R
s,

and that for any x ∈ Rn, and r > 0,

Hs (T ∩Br (x)) ≤ θ2r
s

holds. Then for any u ∈ W 1,p (BR) such that T ⊂ Σ, where Σ is defined in (1.2), we have
∫

BR

up ≤ c (n, p, s)
θp
2

θp
1

Rp

∫

BR

|Ou|p .

Proof. After a scaling, we can always assume R = 1.
Step I. Let µ = HsbT . Then µ is a Radon measure supported on B1, such that

µ(B1) ≥ θ1,

and for any Br(x) ⊂ Rn,
µ(Br (x)) ≤ θ2r

s.

By applying Theorem 4.7.5 in [6], we have µ ∈ (W 1,p(Rn))∗. Furthermore,

‖µ‖(W 1,p(Rn))∗ ≤ c(n, p)
( ∫

Rn

∫ ∞

0

(µ(Br(y))
rn−p

) 1
p−1 dr

r
dµ(y)

) p−1
p

≤ c(n, p, s)θ2,

where in the last inequality, we used the fact that µ is supported on B1 and µ(Br(y)) ≤
θ2min{1, rs}. Since every function u ∈ W 1,p(B1) can be extended to ũ defined on whole Rn,
so that

||ũ||W 1,p(Rn) ≤ c(n, p)‖u‖W 1,p(B1),
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we can define for any u ∈ W 1,p(B1), µ(u) = µ(ũ), where ũ ∈ W 1,p(Rn) is an extension of u.
Thus µ can be viewed as a member of (W 1,p(B1))∗, with

‖µ‖(W 1,p(B1))∗ ≤ c(n, p, s)θ2.

Step II. Applying Lemma 4.1.4 in [6], we have

∫

B1

|u− µ(u)|p ≤ c (n, p, s)
‖µ‖p

(W 1,p(B1)∗

(µ(1))p

∫

B1

|Ou|p

≤ c (n, p, s)
θp
2

θp
1

∫

B1

|Ou|p .

Step III. Finally, we need to show µ(u) = 0 under our assumption. To see this, let ũ
be the extension of u, and ũM be the cutoff function of ũ so that |ũM | ≤ M , then ũM → ũ
in W 1,p(Rn) as M →∞. Let ũM

ε be the standard mollification of ũM , then ũM
ε → 0, µ-a.e.

as ε → 0+. Hence the Lebesgue dominated convergence theorem implies
∫

Rn

ũM
ε dµ → 0

as ε → 0. On the other hand, since ũM
ε → ũM in W 1,p(Rn), and µ is a bounded operator

on W 1,p(Rn), we have as ε → 0,
∫

Rn

ũM
ε dµ → µ(ũM ).

Therefore, one has µ(ũM ) = 0. Letting M →∞, we deduce µ(u) = µ(ũ) = 0.
When u is a function of bounded variation, we have a similar Poincaré type inequality:

Theorem 2.2. Let n ≥ 2, n − 1 ≤ s ≤ n, and BR be any ball in Rn with radius R,
and T ⊂ BR be a Hs-measurable set, such that

Hs (T ) ≥ θ1R
s,

and that for any x ∈ Rn, and r > 0,

Hs (T ∩Br (x)) ≤ θ2r
s

holds. Then for any u ∈ BV (BR) such that T ⊂ Σ, where Σ is defined in (1.2), we have

∫

BR

|u| ≤ c(n)R
( ∫

BR

u
n

n−1

)n−1
n ≤ c (n)

θ2

θ1
R

∫

BR

|Ou| .

Proof. We assume R = 1. Let µ = HsbT . Then µ is a Radon measure supported on
B1, such that

µ(B1) ≥ θ1,

and for any Br(x) ⊂ Rn,
µ(Br (x)) ≤ θ2r

s.

Since s ≥ n− 1, we have for any Br(x) ⊂ Rn,

µ(Br (x)) ≤ θ2r
n−1
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when r ≤ 1, and when r > 1,

µ(Br (x)) ≤ µ(B1 (0)) ≤ θ2 ≤ θ2r
n−1.

So in either case, we always have

µ(Br (x)) ≤ θ2r
n−1.

The theorem then follows from Theorem 5.12.7 in [6].

Corollary 2.1. Let p ≥ 1, s = max
{

n− p +
p2

p + α
, 0

}
for some α > 0 and consider

u ∈ W 1,p(BR) or u ∈ BV (BR) with R ≤ 1. Suppose either p > n and u(x) = 0 for some
x ∈ BR, or 1 ≤ p ≤ n and there exists T such that u satisfies conditions in Theorem 2.1 or

2.2. Then under the assumption
∫

BR

|u|−α < ∞, we have

∫

BR

|Ou|p +
∫

BR

|u|−α ≥ cRs,

where c = c(n, p) if p > n and c = c(n, p, α, θ1, θ2) if 1 ≤ p ≤ n.

Proof. Applying the Poincaré inequalities we just proved, we have
∫

BR

|Ou|p +
∫

BR

|u|−α ≥ cR−p

∫

BR

|u|p +
∫

BR

|u|−α

≥ cRn−p+ p2

p+α

≥ cRs.

Here we have used Young’s inequality.

§ 3 . Hausdorff Dimension Estimate for Zero Set

Proof of Theorem 1.1. We prove it by contradiction. Suppose Hs (Σ) > 0 (possibly
with infinite measure). Then since Σ is a Souslin set, Theorem 5.6 and its proof in [2] say
that, there is a closed subset T ⊂ Σ, with 0 < Hs (T ) < ∞, and for some constant θ > 0,

Hs (T ∩Br (x)) ≤ θrs

holds for any x ∈ Rn, r > 0.
For such T , the basic density lemma says that for Hs-a.e. x ∈ T ,

1
2s
≤ lim sup

r→0

Hs (Br (x) ∩ T )
α (s) rs

≤ 1.

Let

T ∗ =
{

x ∈ T : lim sup
r→0

Hs (Br (x) ∩ T )
α (s) rs

≥ 1
2s

}
.

Then for any δ > 0 and for any U open, such that T ∗ ⊂ U ,

{
Br(x) : x ∈ T ∗, 0 < r <

1
2
δ, Br(x) ⊂ U and

Hs (Br (x) ∩ T )
α (s) rs

≥ 1
2s+1

}
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is a fine covering of T ∗. Hence, by Vitali covering lemma, there is a pairwise disjoint sub-

collection {Brk
(xk)}∞k=1, such that T ∗ ⊂

∞⋃
k=1

B5rk
(xk). Hence, applying Corollary 2.1, we

have

Hs
5δ(T

∗) ≤
∞∑

k=1

α(s)(5rk)s

≤ c(n, p, s, θ)
∞∑

k=1

∫

Brk
(xk)

[|Ou|p + |u|−α]

≤ c(n, p, s, θ)
∫

U

[|Ou|p + |u|−α].

Since Hs(T ∗) < ∞, we can choose U with arbitrary small Hn-measure so that the right hand
side of the inequality can be arbitrary small. Thus we would have Hs

5δ(T
∗) = 0. Letting

δ → 0, we conclude Hs(T ∗) = 0, hence Hs(T ) = 0, which gives the contradiction.

§ 4 . Rupture Set of Thin Film Model

Proof of Corollary 1.1. Since the energy is finite, we have u ∈ W 1,2(Ω) and u−α+1 ∈
L1(Ω), hence the result follows from Theorem 1.1.

Now we turn to the proof of Theorem 1.2. Actually, we would like to prove the theorem
in a more general setting. Let Ω ⊂ Rn, f ∈ L1 (Ω), f ≥ 0 in Ω and g ∈ Lq (Ω) for some
q ≥ n

2 . We consider nonnegative solutions of

4u = f + g in Ω. (4.1)

Since f + g ∈ L1 (Ω), classical elliptic theory implies u ∈ W 1,p
loc (Ω) for any 1 ≤ p < n

n−1 . In
our setting, we expect better results. First, we have

Lemma 4.1. Let f , g, u be as above with q > n
2 . For any B2R ⊂ Ω, and for any p > 1

such that ‖u‖Lp(B2R) < ∞, we have

sup
BR

u ≤ c (n, p, q) (R−
n
p ‖u‖Lp(B2R) + R2−n

q ‖g‖Lq(B2R)).

Proof. This follows from the fact that u is a subsolution of 4u = g. We could apply
Theorem 8.17 in [4] directly if we have u ∈ H1

loc (Ω). So naturally, we consider uε, the
standard mollification of u, then we have

4uε = fε + gε.

Now uε is smooth, so we can apply Theorem 8.17 in [4] to the mollified equation, and get

sup
BR

uε ≤ c (n, p, q) (R−
n
p ‖uε‖Lp(B2R) + R2−n

q ‖gε‖Lq(B2R)).

The lemma follows by letting ε → 0+.
Next, we need the following technical lemma.
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Lemma 4.2. Let f , g and u be as above and q = n
2 . Then for any x ∈ Ω, 0 < r ≤

min{1, dist (x, ∂Ω)}, we have

r2−n

∫

B r
2
(x)

f (y) dy ≤ c
(

sup
Br

u + ‖g‖
L

n
2 (Br)

)
,

where c = c(n).

Proof. For any x ∈ Ω, 0 < r ≤ min{1,dist (x, ∂Ω)}, we have Br(x) ⊂ Ω. Now let ϕ
be the first eigenfunction of the Laplacian on the unit ball of Rn:




−4ϕ = λ1ϕ(x), in B1(0),
ϕ = 0, on ∂B1(0),
ϕ > 0, in B1(0),

and define ϕr(x) = ϕ(x
r ). Now let ηm ∈ C∞0 (Br(x)) be a smooth cutoff function such that

ηm = 1 in B (m−1)r
m

(x) and |Oηm| ≤ 2m
r . Using ηmϕr as a test function, we have

−
∫

Br(x)

ϕrOu · Oηm +
∫

Br(x)

uOϕr · Oηm

=
∫

Br(x)

u4ϕrηm +
∫

Br(x)

fϕrηm +
∫

Br(x)

gϕrηm.

Now let m →∞, then ηm → χBr(x), and Oϕr · Oηm → c0
r Hn−1b∂Br(x), where c0 = ∂ϕ

∂r |r=1.
Hence we deduce

lim
m→∞

∫

Br(x)

uOϕr · Oηm =
c0

r

∫

∂Br(x)

u.

On the other hand, since ϕrOηm is uniformly bounded in Br(x) and tends to 0 a.e., we have

lim
m→∞

∫

Br(x)

ϕrOu · Oηm = 0.

Combining these limits, we have

r2−n

∫

Br(x)

fϕr = c0r
1−n

∫

∂Br(x)

u− λ1r
−n

∫

Br(x)

uϕr + r2−n

∫

Br(x)

gϕr

≤ c(n)(‖u‖L∞(Br(x)) + r2−n ‖g‖L1(Br(x)))

≤ c (n) (‖u‖L∞(Br(x)) + ‖g‖
L

n
2 (Br(x))

).

Now we can present our regularity result.

Theorem 4.1. Let f , g, u as above with q > n
2 . Then u is locally bounded. Further-

more, u ∈ H1
loc (Ω), and for any B2R ⊂ Ω with R ≤ 1, we have

R2−n

∫

B R
2

|Ou|2 dx ≤ c sup
BR

u
(

sup
BR

u + ‖g‖
L

n
2 (BR)

)
,

where c = c(n).
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Proof. Again, we consider the mollified equation

4uε = fε + gε.

Then we have
4u2

ε = 2 |Ouε|2 + 2uε (fε + gε) .

Since u2
ε is locally bounded, applying Lemma 4.2, we have

R2−n

∫

B R
2

(x)

(|Ouε|2 + uεfε)dy ≤ c
(

sup
BR

u2
ε + ‖uεgε‖L

n
2 (BR)

)

≤ c sup
BR

uε

(
sup
BR

uε + ‖gε‖L
n
2 (BR)

)
.

The theorem is proved by letting ε → 0.

Proof of Theorem 1.2. Take f = u−α and g = −h. Then Theorem 4.1 says
u ∈ H1

loc(Ω). Hence, the result follows from Theorem 1.1 since we also have u−α ∈ L1(Ω).
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