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Abstract

Here the authors are interested in the zero set of Sobolev functions and functions
of bounded variation with negative power of integrability. The main result is a general
Hausdorff dimension estimate on the size of zero set. The research is motivated by
the model on van der waal force driven thin film, which is a singular elliptic equation.
After obtaining some basic regularity result, the authors get an estimate on the size of
singular set; such set corresponds to the thin film rupture set in the thin film model.
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§1. Introduction

Let Q € R"(n > 1) be an open set, p > 1. We consider functions u € W? (Q), such
that, for some a > 0,

/Q\ura < 00. (1.1)

When p = 1, it is also natural to consider v € BV () which satisfies (1.1).
For any u € WP (Q), p > 1 or u € BV (Q), we define its zero set by

Z:{mEQ: lim o

|u| exists, and is equal to 0}. (1.2)
r—0t |Br (SU) B,(z)

Our main theorem is the following:

2

Theorem 1.1. H*(X) = 0, where s = max {O,n —p+ }
D+ o

We note that, when n — p + 2% < 0, one has in particular that ¥ is empty. This

latter fact follows also from the Sobolev imbedding theorem: u € W1P (Q), p > n, implies
ueCh(Q), =1~ %. Indeed, if u (z¢) = 0 for some zg € 2, then

[u ()] = Ju (@) = u(20)| < ¢ (u) o — wo|”.
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Thus )
/ |u|~% (z) dz > co (u,a)/ —— =4
Q Q

|z — x|’
2
whenever a8 > n. That is equivalent to n — p + zﬁ < 0. In other words, under the
2
additional assumption [, [u|~* < co, one would have u never vanish if n — p 4+ £— < 0.

pta —
We also note that, for a WP () function u, the set

Z*:{er: lim Lt

|u| does not exist, or is equal to oo} (1.3)
r—=0t |Br ()| /B, @)

is of Hausdorff dimension at most n—p, by a theorem of Federer-Ziemer [3]. And for functions
of bounded variation, we have H"~! (£*) = 0, see Section 5.9 of [1] for more information
on fine properties of BV functions. Hence our result concerning ¥, the Lebesgue set of u of
the value zero makes sense because s > n — p.

In order to show Theorem 1.1, we will need a Poincaré type inequality which will be
proven in the next section.

We will concentrate our proof on the cases that n > 2 and p > 1. When n = 1,
any function in WP (Q) is Hélder continuous for p > 1 and absolutely continuous when
p = 1. So it is easy to check that our theorem is valid in this case. In the case p = 1, since
Wbl (Q) C BV (Q), the theorem can be proved in the same manner as in the case p > 1,
with the help of Theorem 2.2.

Our motivation for studying the zero set of general Sobolev function comes from consid-
erations on the so-called rupture set of thin films, see [5]. Indeed, we consider a nonnegative
solution u of

Au—uia—kh(a:):O (1.4)

in Q C R"™, where a > 1, and h is a smooth function in 2. The value u represents the
thickness of the thin films, and the zero set of u represents the ruptures. Naturally one is
interested in how big can such rupture sets be.

We say that u > 0 is a finite energy solution of (1.4), if u is nonnegative and continuous,
satisfying (1.4) in {x € Q : u(x) > 0}, and such that

1
/ [|Vu|2 - 7|u\_"+1} dx
Q a — 1
is of finite value.

Applying Theorem 1.1, we have

4
Corollary 1.1. H*1 (%) =0, where ¥1 = {z € Q : u(z) =0}, and py = n72+?.
a
Alternatively, we say u > 0 is a weak solution of (1.4) in €, if u € LY(Q), u=® € L*(Q),
and (1.4) holds in the sense of distribution. Then we have the following;:

Theorem 1.2. v € H!

loc

1
such that for any x € K, 0 <r < idist (K,00), we have

(Q). Moreover, for any K CC §, there is a constant C > 0,

/ |Vul? (y) dy < Cr™—2.
B, (z)

4
Furthermore, H*(X) =0 for p=n—2+ panTE where p is defined in (1.2).
!
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The above estimates on the zero set of weak solutions of (1.4 ) is probably the first of
its kind. However, we expect better estimates may be valid. The reason is that very little
information of u being a weak solution of (1.4) is used in the proof of Theorem 1.2.

The paper is organized as follows: We will prove several Poincaré type inequalities in
Section 2. Then we prove Theorem 1.1 in Section 3, and then discuss its application to (1.4)
in the last section.

8 2. Poincaré Type Inequality

If p>n and u € WHP (Bg), then u is Holder continuous, and hence we have the
following classical Poincaré lemma:

Proposition 2.1. Let p > n, and Bgr be any ball in R™ with radius R. Then for any
u € WYP (Bg) such that u(z) = 0 for some point x € B, we have

/ upgc(n,p)Rp/ |Vaul’.
BR BR

If 1 < p < n, then u(z) = 0 for some point = € By is not well defined. However, we
still have Poincaré inequality if the zero set is large enough.

Theorem 2.1. Letn > 2, 1 <p<n, andn—p < s < n, let Bg be any ball in R™
with radius R, and T C Br be a H®-measurable set, such that

H(T) > 6,R?,
and that for any x € R™, and r > 0,
H? (TN B, (x)) < Oar®
holds. Then for any u € WP (Br) such that T C X, where ¥ is defined in (1.2), we have
0?
/ uP < c(n,p,s) G%Rp/ |Vul?.
BR 1 BR

Proof. After a scaling, we can always assume R = 1.
Step I. Let = H*®| 7. Then p is a Radon measure supported on By, such that

,M(Bl) Z 917

and for any B,(z) C R",
w(B, (z)) < 0ar°.
By applying Theorem 4.7.5 in [6], we have pu € (W1P(R™))*. Furthermore,
p—1

oy < conp)( [ [ (LB g )

S C(n7pa 8)927

where in the last inequality, we used the fact that p is supported on By and p(B,(y)) <
Gomin{1,7°}. Since every function u € WP (B;) can be extended to @ defined on whole R™,
so that

a|lwrrrey < c(n,p)llullwie(s,),
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we can define for any u € WP (By), u(u) = u(), where @ € WHP(R™) is an extension of u.
Thus p can be viewed as a member of (W1P(By))*, with

el wre By < c(n,p,s)0a.

Step II. Applying Lemma 4.1.4 in [6], we have

||N||€W1 P(B1)*
u— up<cn,,3%/ vulP
[t < enp ) 2 [ o

< 975’ vulP
= C(n7p7 S) op B | u| N
1 1

Step III. Finally, we need to show p(u) = 0 under our assumption. To see this, let @
be the extension of u, and @™ be the cutoff function of @ so that [a™| < M, then @™ — @
in WLP(R") as M — co. Let @ be the standard mollification of @, then @ — 0, u-a.e.
as ¢ — 0%. Hence the Lebesgue dominated convergence theorem implies

/ aMdp — 0

as € — 0. On the other hand, since @ — @M in W1P(R"), and p is a bounded operator
on WHP(R™), we have as € — 0,

/ aMdp — p(aM).

Therefore, one has p(a*) = 0. Letting M — oo, we deduce u(u) = (@) = 0.
When w is a function of bounded variation, we have a similar Poincaré type inequality:

Theorem 2.2. Letn > 2, n—1<s <n, and B be any ball in R™ with radius R,
and T C Br be a H?-measurable set, such that

H(T) > 6,R%,
and that for any x € R™, and r > 0,
H? (TN B, (x)) < Oar®

holds. Then for any w € BV (BRr) such that T C 3, where ¥ is defined in (1.2), we have

n 0
/ lu] < c(n)R(/ uﬁ) <c(n) =R |Vul.
Br Br 01 Br

Proof. We assume R = 1. Let 4 = H*|p. Then u is a Radon measure supported on
By, such that

H(Bl) > 913

and for any B,(z) C R",
(B (z)) < far°.

Since s > n — 1, we have for any B,.(z) C R",

By (x)) < O™



ZERO SET OF SOBOLEV FUNCTIONS WITH NEGATIVE POWER 69

when r < 1, and when r > 1,
u(B, (1)) < ju(B1 (0)) < 05 < 0o,
So in either case, we always have
w(By (x)) < 0"

The theorem then follows from Theorem 5.12.7 in [6].

p2

p+a
u € WYP(Bg) or u € BV (Bg) with R < 1. Suppose either p > n and u(z) = 0 for some
x € Br, or 1 < p <n and there exists T such that u satisfies conditions in Theorem 2.1 or

Corollary 2.1. Let p > 1, s = max {n —p+ ,O} for some o > 0 and consider

2.2. Then under the assumption / lu| 7 < o0, we have
Br

/|wﬁ+/\wﬂzma
Br Br

where ¢ = ¢(n,p) if p>n and ¢ = c¢(n,p,a,01,02) if 1 <p<n.

Proof. Applying the Poincaré inequalities we just proved, we have

/ mm+/|wﬂz£w/|w+/ [
BR BR BR BR

p2
Z CRn*er Fa
> cR?.

Here we have used Young’s inequality.
§ 3. Hausdorff Dimension Estimate for Zero Set

Proof of Theorem 1.1. We prove it by contradiction. Suppose H® (X) > 0 (possibly
with infinite measure). Then since ¥ is a Souslin set, Theorem 5.6 and its proof in [2] say
that, there is a closed subset T C X, with 0 < H* (T') < oo, and for some constant 6 > 0,

H? (TN B, (z)) <0r°

holds for any x € R™, r > 0.
For such T, the basic density lemma says that for H*-a.e. x € T,

1 H* (B T
5 < limsupw <1.

T
r—0 a(s)rs

Let

H* (B T 1
T = {x eT: limsupM > —}
r—0 OK(S)TS 2s

Then for any § > 0 and for any U open, such that T* C U,

{Br(:r) rxeT,0<r< %5, B,(z) C U and
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is a fine covering of T™. Hence, by Vitali covering lemma, there is a pairwise disjoint sub-
o0
collection {B,, (z)}rey, such that 7% C |J Bs,,(zx). Hence, applying Corollary 2.1, we

k=1
have

H3s(T*) <> als)(5ry)*
k=1

cnposf) S [ vl
k=1 Bry, (zx)
cln,p.5,6) [ (19l + u] )
U

Since H*(T™) < oo, we can choose U with arbitrary small H"-measure so that the right hand
side of the inequality can be arbitrary small. Thus we would have HZ;(T*) = 0. Letting
6 — 0, we conclude H*(T*) =0, hence H*(T) = 0, which gives the contradiction.

8§4. Rupture Set of Thin Film Model

Proof of Corollary 1.1. Since the energy is finite, we have u € W2(Q) and u=**! €
L'(Q), hence the result follows from Theorem 1.1.

Now we turn to the proof of Theorem 1.2. Actually, we would like to prove the theorem
in a more general setting. Let Q C R, f € L' (), f > 0in Q and g € L9 () for some
q > 5. We consider nonnegative solutions of

Au=f+g in Q. (4.1)

Since f +g € L' (Q), classical elliptic theory implies u € W'licp () for any 1 <p < -“5. In
our setting, we expect better results. First, we have

Lemma 4.1. Let f, g, u be as above with ¢ > 5. For any Bor C Q, and for any p > 1
such that ||ull 1, (p, ) < 00, we have

supu < c(n,p,q) (R™% [l ooy + B9 191 La(mar))-
R

Proof. This follows from the fact that « is a subsolution of Au = g. We could apply
Theorem 8.17 in [4] directly if we have u € H._ (). So naturally, we consider u., the
standard mollification of u, then we have

Aue = fo + ge.
Now u, is smooth, so we can apply Theorem 8.17 in [4] to the mollified equation, and get

_n o_n
Sélpue <c(n,p,q) (R > ”uEHLP(BZR) +R™ HQEHLG(BQR))-
R

The lemma follows by letting & — 0.
Next, we need the following technical lemma.
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n

Lemma 4.2. Let f, g and u be as above and q = 5. Then for any v € 2, 0 <r <
min{1, dist (z, 9Q)}, we have

2—n
. f )y < e(swu+ gl g )
/Bg@) e L% (B,)

where ¢ = ¢(n).

Proof. For any x € Q, 0 < r < min{1, dist (x,09)}, we have B,.(z) C . Now let ¢
be the first eigenfunction of the Laplacian on the unit ball of R™:

—Ap = A\p(z), in  Bi(0),
»=0, on 9B4(0),
>0, in B (O)7

and define ¢,.(z) = ©(¥). Now let n,, € C§°(B,(x)) be a smooth cutoff function such that
Nm = 110 Bm-n- (z) and |V, | < 277" Using 0, as a test function, we have

m

- / (,OT-VU : V77m +/ ’LLVQOT» ) V77m
B, (x) B,.(z)

:/ UALprnm +/ f@rnm +/ gPrMNm-
B, (x) B, (z) B, (z)

"

Now let m — oo, then 1y, — XxB,(2), and Vo, - Vi, — %’H"’l loB,.(z), Where co = g—f r=1-
Hence we deduce

. €0
lim UV, - Vg, = — U.

m=o JB, (z) " JoB,(x)

On the other hand, since ¢,.V7,, is uniformly bounded in B, (x) and tends to 0 a.e., we have

lim ©rVu - V), = 0.

Combining these limits, we have

7’27"/ for = corlfn/ U — )\17“7”/ uQ, + 1"27”/ gor
Br(z) 0B, () Br(z) B, (z)

< cm)(llull oo (B, (2)) + r2n 9l 21 (5, (2)))
<c(n) (HU‘HL“(BT(x)) + ||g||L%(BT(a:)))'
Now we can present our regularity result.
Theorem 4.1. Let f, g, u as above with ¢ > 5. Then u is locally bounded. Further-

more, u € HL (), and for any Bar C Q with R < 1, we have

szn/ Vu2dx§csupu(supu+ gl = ),
BEI | up ul sup 9123 (5
2

where ¢ = ¢(n).
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Proof. Again, we consider the mollified equation
Aue = fe + ge-

Then we have
Au§ =2 |Vu€|2 + 2ue (fe + 9:) .

Since 12 is locally bounded, applying Lemma 4.2, we have
Rz_n/ (19uel + we fo)dy < e sup e + lucgell 3 5, )
Bg(w) Br
< csupue(supug + ngHL%(BR)).

Br Br

The theorem is proved by letting ¢ — 0.

Proof of Theorem 1.2. Take f = v and ¢ = —h. Then Theorem 4.1 says
u € H (Q). Hence, the result follows from Theorem 1.1 since we also have u=* € L'(Q).
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