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SPECTRAL GAP SOLUTIONS OF THE
DISSIPATIVE KIRCHHOFF EQUATION∗∗

S. PANIZZI∗

Abstract

The author proves that for initial data in a set S ⊂ (H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω),
unbounded in H1

0 (Ω) × L2(Ω), the solutions of the Cauchy-Dirichlet problem for the
dissipative Kirchhoff equation

∂2
t u−

�
ν + L

Z
Ω

| 5x u|2dx
�
4x u + δ∂tu = 0 (x ∈ Ω, t > 0),

are global in [0, +∞) and decay exponentially. The functions in S do not satisfy any
additional regularity assumption, instead they must satisfy a condition relating their
energy with the largest lacuna in their Fourier expansion. The larger is the lacuna the
larger is the energy allowed.
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§ 1 . Introduction

This paper is devoted to the question of the global solvability of the dissipative Kirch-
hoff equation

∂2
t u−m

(∫

Ω

| 5x u|2dx
)
4x u + δ∂tu = 0 (x ∈ Ω, t > 0),

u(x, t) = 0 (x ∈ ∂Ω, t > 0),
(1.1)

where Ω is a bounded open subset of Rn, m is a positive function of one real variable and
δ > 0.

The non dissipative case (δ = 0) has been studied starting from the pioneering paper
of S. Bernstein [1] in 1940, who proved in the case n = 1 and m an affine function, the
local existence for solutions having sufficiently high Sobolev regularity and the global exis-
tence for real analytic solutions. From then on, many authors [2–6] have generalized and
improved the results of [1], but the global solvability for general (H2(Ω) ∩H1

0 (Ω))×H1
0 (Ω)
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(or even C∞) initial data still remains as the main open question (see the surveys [7, 8] for
more mathematical references and physical motivations). In particular, in [2, 4] the global
solvability was proved for C∞ initial data satisfying an additional regularity condition (in
fact for quasi-analytic classes in the sense of Denjoy-Carleman). In the same direction of
research, in a recent and remarkable paper [9], R. Manfrin proved the global solvability for
solutions in the class B2

∆ × B1
∆.

The functions f belonging to the spaces Bs
∆ are well described in terms of their Fourier

expansion

f =
∑

k≥1

f̂(k)φk,

where φk are the eigenvectors of the Laplace operator with corresponding eigenvalues µ2
k,

and f̂(k) are the Fourier coefficients of f with respect to the basis {φk}. Following [9], we
say that f ∈ Bs

∆ if there exists a sequence {ρj}j∈N, such that ρj → +∞, and there exists
η > 0, such that

∞∑
1

µ2s
k |f̂(k)|2 < ∞, sup

j

∑

ρj<µk<ρ2
j

µ2s
k |f̂(k)|2 exp(ηρ2

j/µk) < ∞.

The most interesting feature of these spaces is that a function in Bs
∆ has, in general,

only Hs-Sobolev regularity. On the other hand, the behaviour of the Fourier coefficients in
the sequence of ‘gaps’ (ρj , ρ

2
j ), renders these spaces quasi-analytic classes, in the sense that

functions having compact support must vanish everywhere.
For the dissipative equation (δ > 0), in addition to the regularity assumptions men-

tioned above, global existence theorems are also available for small initial data (see [10–12]).
In this case it is assumed that the size of the data in the H2 ×H1 norm does not exceed a
certain bound depending on the parameters of the equation.

This note represents an attempt to introduce some of the ideas of [9] in the study of
the dissipative equation. By estimating an energy functional introduced in [9] for δ = 0,
we obtain the global existence of solutions under hypotheses which relate certain spectral
properties of the initial data to their size in the H2×H1 norm. The typical situation is that
of initial data having at least one large lacuna in their spectra, i.e. f̂(j) = 0 for n0 < j < n1

with µn1 ∼ µ2
n0

. If this is the case, the bound we need to prescribe on the initial energy
increases with the ratio µn1/µ2

n0
. Roughly speaking, the combination of the damping with

the spectral gap prevents the energy from moving from the low to the high frequencies.
We stress the fact that our initial data are not lacunary in the sense of Hadamard

or similar, for by ‘gap solutions’ we simply mean that the Fourier coefficients vanish on a
sufficiently large interval. The precise statement of the result, being rather technical, is
postponed to Section 3 (Theorem 3.1 or Proposition 3.2 for a more explicit version). Here
we limit ourselves to give a simple example.

Let us consider the equation

utt −
(
1 + L

∫ π

0

u2
x dx

)
uxx + δut = 0 (x ∈]0, π[ ) (t > 0),

u(0, t) = u(π, t) = 0,

(1.2)

where L > 0 and 0 < δ < 1. We have

µj = j, φj(x) =
√

2/π sin(jx) (j ∈ N).
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To avoid needless complications, assume that

u(·, 0) = 0, ut(·, 0) = u1 ∈ H1
0 ( ]0, π[ ),

where u1 is a perturbation of the monochromatic datum Aφ1(x), i.e, for k > 1, let

u1(x) = Aφ1(x) + gk(x), gk(x) =
∞∑

j=k

βjφj(x).

It is well known that in the case gk ≡ 0, Equation (1.2) reduces to a globally solvable
ODE of Duffing’s type. We ask under which conditions on the H1

0 -perturbed initial data
we can ensure the global solvability of Equation (1.2). The usual smallness conditions (see
[10, 11]) would require

A2 + ‖gk‖2H1
0

< C,

where C is a suitable constant independent of k. Thus, according to this requirement,
perturbations are allowed only for a bounded interval of amplitudes A. On the other hand,
as an application of Proposition 3.2 (in the form of Remark 3.3), we get that, if

‖gk‖2H1
0

< A2 + ‖gk‖2L2 <
δ ln 2
9L

k,

then the problem is globally solvable and the solution decays exponentially. Thus, on con-
dition that the spectral gap (in this case the integer k) be large enough, we can perturb any
monochromatic initial datum with a H1

0 -function and still have global existence.
This is the plan of the paper. In Section 2 we introduce the abstract setting in which

we study the Kirchhoff equation, we recall the exponential decay of the Hamiltonian, and
state a global existence theorem for small initial data in H3/2 ×H1/2. This result extends
other known global existence theorems for small data in H2×H1. In Section 3 we state and
prove our main result (Theorem 3.1). The statement is rather implicit and a set of sufficient
conditions is given in Proposition 3.2.

A general warning is in order. Since our main purpose is that of illustrating a method,
which hopefully may be improved, we do not provide the result in its full generality. This
is the reason why we have chosen to keep things as simple as possible: the function m
is assumed to be affine, the damping parameter δ is sufficiently small (non over-damping
regime).

§ 2 . Preliminary Results

We reformulate the Kirchhoff equation (1.1) as an evolution equation in a Hilbert space.
Let V and H be real Hilbert spaces, normed respectively by ‖ · ‖ and | · |, V ⊆ H. If V ′

denotes the dual of V , we have then V ⊆ H ⊆ V ′, in the sense that the duality bracket
〈 ·, · 〉 := 〈 ·, · 〉V×V ′ coincides with the inner product (·, ·) := (·, ·)H on H × V . Let
A : V −→ V ′ be a linear bounded operator, symmetric in the sense that

〈Av, w〉 = 〈Aw, v〉 (w ∈ V, v ∈ V ),

and such that for some η > 0,

〈Av, v〉≥ η‖v‖2 (v ∈ V ).
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The operator A turns out to be an isomorphism of V onto V ′. Moreover, if we denote
D(A) := {v ∈ V : Av ∈ H}, the operator

A : D −→ H

turns out to be a self-adjoint positive definite operator on H. Under these hypotheses (see,
e.g. [13]), we may consider the power operators As of A for s ∈ R and the spaces D(As) are
Hilbert spaces for the scalar product (Asu,Asv). In particular, we have V = D(A1/2) and

〈Au, u〉 = |A1/2u|2 (u ∈ V ).

Finally, since our main tool will be Fourier expansion, we assume that A−1 : H → H
is compact. In this case there exists an orthonormal basis {φj : j ∈ N} of H consisting of
eigenvectors of A1/2,

A1/2φj = µjφj (j ∈ N),

where the eigenvalues satisfy

0 < µ1 ≤ µ2 ≤ · · · , µj →∞ as j →∞.

In this paper we consider the Cauchy problem for the abstract evolution equation (dots
denote time derivatives),

ü + m(|A1/2u|2)Au + δu̇ = 0 (t > 0) (2.1)

with initial data
u(0) = u0, u̇(0) = u1. (2.2)

To keep our arguments as clear as possible and to provide precise computations of the
constants involved, we assume that m is a positive affine function, that is,

m(r) = ν + Lr (2.3)

with ν > 0 and L ≥ 0. Actually, in what follows, the assumption (2.3) might be replaced
by the weaker condition: m ∈ C2, positive and m(ρ)ρ ≥ CM(ρ) (C > 0), where

M(ρ) :=
∫ ρ

0

m(r)dr. (2.4)

The starting point of our argument is the following simple remark. Let a(t) be a
positive function, and let v be a solution of the linear equation

v̈ + a(t)Av + δv̇ = 0 (t > 0). (2.5)

Since Equation (2.5) may be seen as an infinite system of uncoupled linear oscillators, if for
some integer i, we have

(v(0), φi) = (v̇(0), φi) = 0,

then
(v(t), φi) = (v̇(t), φi) = 0 for all t > 0.

The same considerations apply to the Kirchhoff equation (2.1), where

a(t) = m(|A1/2u|2).
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Therefore if, for a given solution u(·) of Equation (2.1), {µnk
} is the sequence of frequencies

which are ‘on’ at time zero, we shall write

λk = µnk
= µnk

(u), yk(t) = (u(t), φnk
),

and, for notations consistency,

λ0 = 0, φn0 = 0, y0(t) ≡ 0,

in such a way that, for initial data (u0, u1) given by

up =
∞∑

j=1

(up, φnj
)φnj

(p = 0, 1), (2.6)

we have

u(t) =
∞∑

j=0

yj(t)φnj , Au(t) =
∞∑

j=0

λ2
jyj(t)φnj . (2.7)

We recall that the Hamiltonian for Equation (2.1) is given by the following functional
(M is defined in (2.4))

H(t, u) := |u̇|2 + M(|A1/2u|2).
If the solution is global in time, the Hamiltonian decays exponentially. This is a result due
to Biler [14].

Proposition 2.1. Assume that m satisfies condition (2.3) and that the initial data
(u0, u1) ∈ D(A3/4) ×D(A1/4) are given by (2.6). Then, as long as u(t) exists in the phase
space D(A3/4)×D(A1/4), H(t) is decreasing1. Moreover, there exist constants

C = C(δ, ν, L, λ1,H(0))

such that

( i ) If δ < 2
√

νλ1 then H(t) ≤ Ce−δt;
(ii) If δ = 2

√
νλ1 then H(t) ≤ C(1 + t2)e−δt;

(iii) If δ > 2
√

νλ1 then H(t) ≤ Ce−(δ−σ)t, where σ2 = δ2 − 4νλ2
1.

Proof. We prove only the easy case (i). Deriving the Hamiltonian we have

Ḣ(t) = −2δ|u̇|2,
thus H(t) is decreasing. To prove the exponential decay, we introduce the following modified
energy functional

V (t) := H(t) + δ(u, u̇).

Since |(u, u̇)| ≤ H(t)/2λ1

√
ν, we have

0 <
(
1− δ

2λ1
√

ν

)
H(t) ≤ V (t) ≤

(
1 +

δ

2λ1
√

ν

)
.

Deriving V (t) with respect to time, we get

V̇ (t) = 2(ü, u̇) + 2m(|A1/2u|2)(Au, u̇) + δ|u̇|2 + δ(u, ü)

= −δ|u̇|2 − δm(|A1/2u|2)|A1/2u|2 − δ2(u, u̇)
≤ −δV (t),

1Hereafter, in our notations, we shall drop the dependence on the function u.
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since in our case m(ρ)ρ ≥ M(ρ). Integrating this differential inequality, we get V (t) ≤
e−δtV (0), thus

H(t) ≤ Ce−δtH(0),

where
C = (1 + δ/2λ1

√
ν)(1− δ/2λ1

√
ν)−1.

Remark 2.1. In particular, if

δ <
√

νλ1, (2.8)

we have
H(t) ≤ 3e−δtH(0). (2.9)

This estimate will be used later in the proof of the main result.
We recall that the Kirchhoff equation (2.1) is globally solvable for small initial data in

D × V . In the next theorem, by generalizing the estimates introduced in [11], we extend
this result to data which lie in D(A3/4)×D(A1/4). This is the weaker space in which a local
existence theorem is available (see, e.g. [15]). For the sake of completeness we prove the
exponential decay of the energy for initial data satisfying an additional assumption. The
exponential decay for solutions satisfying only condition (2.10) below is an open problem.

We define the following energies, for α > 0,

Gα(t, u) :=
|A(α−1)/2u̇|2
m(|A1/2u|2) + |Aα/2u|2.

Theorem 2.1. Assume that m satisfies the condition (2.3) and that the initial data

(u0, u1) ∈ D(Aα/2)×D(A(α−1)/2), 3/2 ≤ α ≤ 2.

If
|A(α−1)/2u1|2

ν
+ |Aα/2u0|2 <

((1 ∧ ν1/2)δ)2(α−1)

L
, (2.10)

then there exists a unique global solution

(u, u̇) ∈ C0([0, +∞[, D(Aα/2)×D(A(α−1)/2))

to (2.1), (2.2). Moreover, if

|A1/4u1|2
ν

+ |A3/4u0|2 <
(1 ∧ ν1/2)δ

18L(1 + δ2/4νλ2
1)

, (2.11)

then G3/2(t) decays exponentially.

Proof. We limit ourselves to provide the a priori estimates for regular solutions. The
construction and the uniqueness of the solution are given, for instance, in [15].

Deriving Gα with respect to time, we obtain

Ġα(t) = −
(ṁ

m
+ 2δ

) |Aα−1)/2u̇|2
m

. (2.12)

We have

|ṁ| = 2L|(A1/2u,A1/2u̇)|
= 2L|(A(3−α)/2u,A(α−1)/2u̇)|
≤ 2L|A1/2u|θ|Aα/2u|1−θ|A(α−1)/2u̇|,
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where θ is defined by
θ + α(1− θ) = 3− α.

It follows that (ρ = |A1/2|2)
|ṁ|
m

≤ 2
( (Lρ)θ

ν + Lρ

)1/2

(LGα(t))1−θ/2 ≤ 2(1 ∨ ν−1/2)(LGα(t))1−θ/2. (2.13)

Inserting this last inequality into (2.12), we get

Ġα(t) ≤ 2((1 ∨ ν−1/2)(LGα(t))1−θ/2 − δ)
|Aα−1)/2u̇|2

m
. (2.14)

Note that
(1− θ/2)−1 = 2(α− 1)

and set

T := sup
{

t > 0 : Gα(s) <
((1 ∧ ν1/2)δ)2(α−1)

L
for 0 ≤ s ≤ t

}
.

Under the assumption (2.10), we have

Gα(0) <
((1 ∧ ν1/2)δ)2(α−1)

L
.

If, by absurd, T < ∞, thanks to (2.14), we would get Ġα(t) ≤ 0 for 0 ≤ t < T . Thus

Gα(T ) < Gα(0),

which is a contradiction.
To prove the exponential decay for initial data satisfying (2.11), let us set

β := δ(1 + δ2/4νλ2
1)
−1

and introduce the functional

V3/2(t) := G3/2(t) +
β(A1/4u,A1/4u̇)

m(|A1/2u|2) .

Since, for any δ > 0, β ≤ √
νλ1 and

|(A1/4u, A1/4u̇)|
m(|A1/2u|2) ≤ G3/2(t)

2
√

νλ1
,

we have
1
2
G3/2(t) ≤ V3/2(t) ≤

3
2
G3/2(t). (2.15)

Deriving V3/2 with respect to time, we obtain

V̇3/2(t) = −
(ṁ

m
+ 2δ

) |A1/4u̇|2
m

− βṁ

m2
(A1/4u,A1/4u̇)

+ β
|A1/4u̇|2

m
− β|A3/4u|2 − βδ

m
(A1/4u, A1/4u̇)

= −ṁ

m

( |A1/4u̇|2
m

+
β

m
(A1/4u,A1/4u̇)

)

− (2δ − β)
|A1/4u̇|2

m
− β|A3/4u|2 − βδ

m
(A1/4u,A1/4u̇)

≤ |ṁ|
m
V3/2(t)− (2δ − β)

|A1/4u̇|2
m

− β|A3/4u|2 − βδ

m
(A1/4u,A1/4u̇). (2.16)
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Let us set for a moment x2 = |A3/4u|2 and y2 = |A1/4u̇|2/m. The lowest eigenvalue of
the positive quadratic form

(2δ − β)y2 + βx2 + (βδ/
√

νλ1)xy,

is given by

δ

1 + δ2/4νλ2
1

(1 + (1− (1 + δ2/4νλ2
1)
−1)1/2)−1 ≥ δ

2(1 + δ2/4νλ2
1)

= β/2.

Therefore, from (2.16), (2.15) and (2.13) for θ = 0, it follows that

V̇3/2(t) ≤
( |ṁ|

m
− β

3

)
V3/2(t) ≤

(
4(1 ∨ ν−1/2)LV3/2(t)−

β

3

)
V3/2(t).

Thus, by a standard comparison argument, we get

V3/2(t) ≤
(β/3)V3/2(0)

(β/3− 4(1 ∨ ν−1/2)LV3/2(0))e(β/3)t + 4(1 ∨ ν−1/2)LV3/2(0)
.

The thesis now follows from (2.15) and hypothesis (2.11).
Remark 2.2. An immediate consequence of Theorem 2.1 is that, for initial data in

D(Aα/2) ×D(A(α−1)/2), α ≥ 3/2, with Fourier expansion (2.6), Equation (2.1) is globally
solvable under the assumption

|A(α−1)/2u1|2
ν

+ |Aα/2u0|2 <
(1 ∧ ν1/2)δλ2α−3

1

L
. (2.17)

In particular, for α = 2, from (2.10) and (2.17), we obtain the smallness condition

|A1/2u1|2
ν

+ |Au0|2 <
(1 ∧ ν1/2)δ

L
max{(1 ∧ ν1/2)δ, λ1}. (2.18)

§ 3 . Main Result

Let us introduce a few functionals we shall use hereafter. Let a ∈ C2([0, T [) be a
positive function. If u ∈ C0([0, T [, D) ∩ C1([0, T [, V ) is given by (2.7), we define

γ(t) :=
ȧ(t)

2a3/2(t)
,

ej(t, u) := (a(t))−1/2λ2
j ẏ

2
j + (a(t))1/2λ4

jy
2
j ,

fj(t, u) := λ2
jyj ẏj ,

wj(t, u) := ej(t, u) + [δ(a(t))−1/2 + γ(t)]fj(t, u),

E(t, u) :=
∞∑
0

ej(t, u) = (a(t))−1/2|A1/2u̇|2 + (a(t))1/2|Au|2.

Moreover, we shall adopt the following notations: for a given integer k, we shall write

E〈 k 〉(t, u) :=
∞∑

k

ej(t, u), E〈 k 〉(t, u) :=
k−1∑
0

ej(t, u).

The proof of Theorem 3.1 is based on the following energy identity for the linear ODE

ÿj + a(t)λ2
jyj + δẏj = 0. (3.1)

In the non dissipative case (δ = 0), the identity is due to Manfrin [9].
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Proposition 3.1. Let a(t) be a positive C2([0, T [) function. Then the solutions of the
Equation (3.1) satisfy the following energy identity

ẇj(t) = (γ̇(t)− δγ(t))fj(t)− δwj(t). (3.2)

Proof. The identity (3.2) is equivalent to

ėj(t) +
( δ√

a(t)
+ γ(t)

)
ḟj(t) = −δwj(t). (3.3)

Using Equation (3.1), we have

ḟj(t) = λ2
j ẏ

2
j − a(t)λ4

jy
2
j − δfj(t),

ėj(t) = −2δ
λ2

j ẏ
2
j√

a(t)
− γ(t)λ2

j ẏ
2
j +

ȧ(t)
2
√

a(t)
λ4

jy
2
j .

Now (3.3) follows by straightforward computations.

For a given local solution u of the Kirchhoff equation (2.1), we set

a(t) = m(|A1/2u|2).

Lemma 3.1. Assume that m satisfies the condition (2.3). Let the initial data (u0, u1) ∈
D× V be given by (2.6). Let u ∈ C0([0, T [, D)∩C1([0, T [, V ) be the solution of the problem
(2.1), (2.2). Then the following estimates hold true

|γ̇(t)| ≤ L

ν
E(t) + δ|γ(t)|, (3.4)

|γ(t)| ≤ L

2ν3/2λ1
E(t), (3.5)

|γ(t)| ≤ L

ν7/4
(H(t)E(t))1/2. (3.6)

Proof. Under the assumption (2.3), we simply have ȧ(t) = 2L(Au, u̇), thus

γ(t) =
L(Au, u̇)

m3/2
,

and, using the equation, we get

ä(t) = 2L(|A1/2u̇|2 −m(|A1/2u|2)|Au|2)− 2δL(Au, u̇). (3.7)

Since

γ̇(t) =
ä

2a3/2
− 3̇a

2

4a5/2
,

by (3.7), we obtain

γ̇(t) = −3
( L

m

)2 (Au, u̇)2√
m

+
L

m3/2
(|A1/2u̇|2 −m|Au|2)− δL

m3/2
(Au, u̇)

=
( L

m
− 3θ(t)

( L

m

)2

|A1/2u|2
) |A1/2u̇|2√

m
− L

m

√
m|Au|2 − δγ(t), (3.8)
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where, by the Cauchy-Schwartz inequality, 0 ≤ θ(t) ≤ 1. Since

( L

m
− 3θ(t)

( L

m

)2

|A1/2u|2
) |A1/2u̇|2√

m
− L

m

√
m|Au|2

≤ max
{

3
( L

m

)2

|A1/2u|2 − L

m
,

L

m

}
E(t) =

L

m
E(t),

thanks to (3.8), we have proved (3.4).
The inequality (3.5) follows at once by

|γ(t)| = L

m3/2
|(A1/2u,A1/2u̇)| ≤ L

λ1ν3/2
|(Au,A1/2u̇)|,

and by the Cauchy-Schwartz inequality. On the other hand, we have

|(Au, u̇)| ≤ (H(t))1/2 m1/4|Au|
ν1/4

≤ ν−1/4(H(t)E(t))1/2,

from which (3.6) follows immediately.

In order to state our main result, we need two more functions. Let (u0, u1) ∈ D × V
be given by (2.6). For any k ≥ 1, we define

Gk(x) :=
6λ2

k−1√
ν

H(0) + 3
∞∑

j=k

ej(0) exp
( 3L

2νλj
x
)

(x ∈ R),

ψk(x) :=
∫ x

0

dy

Gk(y)
(x ∈ R).

Theorem 3.1. Assume that the conditions (2.3) and (2.8) hold true. Let the initial
data (u0, u1) ∈ D × V be given by (2.6).

If for some integer k ≥ 1, such that

λk ≥ 2δ√
ν

, (3.9)

(u0, u1) satisfies the following assumptions

lim
x→+∞

ψk(x) > 1/δ, (I)

(Gk ◦ ψ−1
k )(1/δ) <

ν7/2

4L2H(0)
λ2

k, (II)

then the problem (2.1), (2.2) has a unique global solution

u ∈ C0([0,∞[; D) ∩ C1([0,∞[; V ).

Moreover the following estimate holds true

E(t) ≤ (Gk ◦ ψ−1
k )(1/δ)e−δt (t > 0). (3.10)

Proof. Let us set
C1 :=

L

ν7/4
, C2 :=

3L

2ν
. (3.11)
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Under the hypothesis (2.8), and thanks to (3.4)–(3.6) of Lemma 3.1, we have

|γ̇(t)− δγ(t)| ≤ C2E(t, u). (3.12)

Thanks to the inequality
|fj | ≤ ej

2λj
, (3.13)

and by (3.6) and definition (3.11), we get that, for any j ∈ N,
∣∣∣
( δ√

a
+ γ

)
fj

∣∣∣ ≤
( δ√

ν
+ C1(H(t)E(t))1/2

) ej

2λj
. (3.14)

Note that

E(t) = E〈 k 〉(t) + E〈 k 〉(t) ≤ 2λ2
k−1√
ν

H(t) + E〈 k 〉(t). (3.15)

Therefore, thanks to the hypotheses (I), (II) and by the monotonicity of Gk, we have

E(0) < Gk(0) < (Gk ◦ ψ−1
k )(1/δ) <

λ2
k

4C2
1H(0)

. (3.16)

Let Tk be defined as follows

Tk := sup
{

t > 0 : E(s) <
λ2

k

4C2
1H(0)

, s ∈ [0, t]
}

.

The inequality (3.16) implies that Tk > 0. Thanks to (3.14), (3.9) and Proposition 2.1
we have ∣∣∣

( δ√
a

+ γ
)
fj

∣∣∣ ≤ ej

2
(j ≥ k) (0 ≤ t < Tk),

thus
ej(t)

2
≤ wj(t) ≤ 3ej(t)

2
(j ≥ k) (0 ≤ t < Tk). (3.17)

Now we use the energy identity (3.2) and thanks to (3.12), (3.13), (3.17), for j ≥ k and
0 < t < Tk, we have

ẇj(t) = (γ̇(t)− δγ(t))fj(t)− δwj(t) ≤
(C2E(t)

λj
− δ

)
wj(t). (3.18)

An application of the comparison principle to (3.18) yields

wj(t) ≤ wj(0)e−δt exp
[C2

λj

∫ t

0

E(s)ds
]

(j ≥ k) (0 ≤ t < Tk).

Thus, by (3.17), we have

ej(t) ≤ 3ej(0)e−δt exp
[C2

λj

∫ t

0

E(s)ds
]

(j ≥ k) (0 ≤ t < Tk). (3.19)

Summing up in (3.19) with respect to j, we get

E〈 k 〉(t) ≤ 3e−δt
∞∑

j=k

ej(0) exp
[C2

λj

∫ t

0

E(s)ds
]

(0 ≤ t < Tk). (3.20)
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On the other hand, by (2.8) and (2.9), we have

H(t) ≤ 3e−δtH(0). (3.21)

Putting together (3.15), (3.20) and (3.21), it follows that the function
∫ t

0
E(s)ds satisfies

the following differential inequality

E(t) ≤ Gk

( ∫ t

0

E(s)ds
)
e−δt (0 < t < Tk).

Let ϕ : [0, Tϕ[→ R be the maximal solution of the Cauchy problem

ϕ̇(t) = Gk(ϕ(t))e−δt, ϕ(0) = 0. (3.22)

Since Gk is increasing, by a standard comparison argument, we have, as long as t <
min(Tk, Tϕ),

E(t) ≤ Gk

( ∫ t

0

E(s)ds
)
e−δt ≤ Gk(ϕ(t))e−δt. (3.23)

The solution ϕ of the Cauchy problem (3.22) is easily computed. In fact, by the
definition of ψk, we have

ϕ(t) = ψ−1
k ((1− e−δt)/δ).

Thanks to the assumption (I) we have Tϕ = +∞. Thus, by (3.23),

E(t) ≤ (Gk ◦ ψ−1
k )(1/δ)e−δt <

λ2
k

4C2
1H(0)

(0 < t < Tk),

thanks to the assumption (II). We have then that Tk = +∞ and the estimate (3.10).

Remark 3.1. The assumption δ <
√

ν was made only to keep the statement of the
theorem at a reasonable length. In the general case, we should replace the definition of Gk

with

Gk(x) =
2λ2

k−1C√
ν

+ 3
∞∑

j=k

ej(0) exp
(C2x

λj

)
,

where C = C(δ, ν, L, λ1, H(0)) is the constant in Proposition 2.1, C2 = L/ν + L/(2ν3/2λ1)
and replace (II) with lim

x→∞
ψk(x) > 1/(δ − σ).

It is clear that for a fixed amount of initial energy H(0), (I), (II) of Theorem 3.1 may be
interpreted as conditions relating the high-frequencies energy E〈 k 〉(0) with the gap between
the eigenvalues λk−1, λk. The larger is the gap, actually the ratio λk/λ2

k−1, the larger is
the energy E〈 k 〉(0) allowed. In the next proposition we provide a set of sufficient conditions
which make this argument more explicit.

Proposition 3.2. Assume that the conditions (2.3) and (2.8) hold true. Let the initial
data (u0, u1) ∈ D × V be given by (2.6). If for some integer k ≥ 1, such that (3.9) holds
true, (u0, u1) satisfies the following conditions:

H(0) <
ν3/2δ

9L

λk

λ2
k−1

ln
(
1 +

λ2
k−1H(0)√
νE〈 k 〉(0)

)
, (Ia)

6λ2
k−1√
ν

H(0)2 + 3E〈 k 〉(0)H(0) <
ν7/2

8L2
λ2

k, (IIa)
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then the problem (2.1), (2.2) has a unique global solution

u∈C0([0,∞[; D) ∩ C1([0,∞[; V ).

Moreover, the following estimate holds true

E(t) ≤
(12λ2

k−1H(0)√
ν

+ 6E〈 k 〉(0)
)
e−δt. (3.24)

Proof. We have to prove that (Ia) and (IIa) imply conditions (I) and (II). For brevity,
let us set

Ak =
6λ2

k−1H(0)√
ν

, Bk = 3E〈 k 〉(0), εk =
C2

λk
.

Since
Gk(x) < G̃k(x) := Ak + Bkeεkx,

we have
ψ̃k(x) :=

∫ x

0

dy

G̃k(y)
< ψk(x), ψ−1

k (x) < ψ̃−1
k (x). (3.25)

It follows that
(Gk ◦ ψ−1

k )(x) < (G̃k ◦ ψ̃−1
k )(x). (3.26)

By a simple computation we obtain

lim
x→∞

ψ̃k(x) =
1

εkAk
ln

(
1 +

Ak

Bk

)
. (3.27)

Since the condition (Ia) may be written as follows

1
εkAk

ln
(
1 +

Ak

2Bk

)
> 1/δ,

we have that, thanks to (3.25) and (3.27), (I) is satisfied.
On the other hand, by the condition (Ia) we have

(G̃k ◦ ψ̃−1
k )(1/δ) = Ak +

Bk(
1 + Bk

Ak

)
e−(εkAk)/δ − Bk

Ak

≤ 2(Ak + Bk). (3.28)

The condition (II) follows by (IIa), (3.26) and (3.28) whereas the estimate (3.24) follows by
(3.26), (3.28) and (3.10).

Remark 3.2. By letting λk−1 → 0, the conditions (Ia), (IIa) have a meaning even for
k = 1. Thus, in addition to (2.18), we obtain another sufficient condition for initial data in
D × V : λ1 ≥ 2δ/

√
ν, and

|A1/2u1|2
ν

+ |Au0|2 < (m(|A1/2u0|2))−1/2 min
{δνλ1

9L
,

λ2
1ν

7/2

24L2H(0)

}
.

Remark 3.3. Other sets of sufficient conditions may be derived by (Ia) and (IIa).
This is the version we used in the Introduction:

E〈 k 〉(0) <
λ2

k−1H(0)√
ν

,

H(0) < min
{ν3/2δ ln 2

9Lλk−1
,

ν2

6
√

2L

} λk

λk−1

for some k ≥ 1.
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