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Abstract

This paper characterizes all connected graphs with exactly two Laplacian eigenval-
ues greater than two and all connected graphs with exactly one Laplacian eigenvalue
greater than three.
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§ 1 . Introduction

Let G = (V, E) be a simple graph. The Laplacian matrix of G is L(G) = D(G)−A(G),
where D(G) = diag (du, u ∈ V (G)) (du is the degree of a vertex u) and A(G) are the degree
diagonal and the adjacency matrices of G. The eigenvalues of L(G) are called the Laplacian
eigenvalues and denoted by

λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) = 0

or for short
λ1 ≥ λ2 ≥ · · · ≥ λn = 0.

The Laplacian matrix of a simple graph has been extensively investigated for a long time,
in particular, for the past twenty years. It has been established that there are a lot of rela-
tions between its spectrum and numerous graph invariants, including connectivity, diame-
ter, isoperimetric number, maximum cut, expanding property of a graph (see, for example,
[10, 11] and the references therein). There may be two reasons for stimulating us to deter-
mine graphs with a small number of Laplacian eigenvalues exceeding a given value. On one
hand, there are close relations between the number of Laplacian eigenvalues and some graph
invariants, such as matchings, etc. (for instance, see [5, 9]). On the other hand, Getman,
Babic and Gineityte in [6] and Getman, Gineityte, Lepovic and Petrovic in [7] discovered
some connections between photoelectron spectra of saturated hydrocarbons (alkanes) and
the Laplacian eigenvalues of the underlying molecular graphs. Recently, Petrovic, Getman,
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Lepovic and Milekic determined all bipartite connected graphs with exactly two Laplacian
eigenvalues greater than two and all connected bipartite graphs with exactly one Laplacian
eigenvalue greater than three. In this paper, we characterize all connected graphs with ex-
actly two Laplacian eigenvalues greater than two and all connected graphs with exactly one
Laplacian eigenvalue greater than three.

§ 2 . Graphs with Exactly Two Laplacian
Eigenvalues Greater than Two

Denote by H7 = H7(p, q) (p ≥ 1, q ≥ 0), H8 = H8(p, q, m) (p ≥ 0, q ≥ 0,m ≥ 1), H9 =
H9(p, q, m) (p ≥ 0, q ≥ 0,m ≥ 1).

Theorem 2.1. The graphs H1 − H9 in Fig. 1 have the property λ3(Hi) ≤ 2 for i =
1, · · · , 9.
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Proof. It follows from Theorem 5 in [12] that

λ3(Hi) ≤ 2 for i = 1, 2, 3, 7, 8.

Moreover, by a direct calculation,

λ3(Hi) ≤ 2 for i = 4, 5, 6.

Now we show that
λ3(H9) ≤ 2.

It is not difficult to see that the characterization polynomial of L(H9) is

λ(λ− 2)m−1(λ− 1)p+q−2{λ4 + aλ3 + bλ2 + cλ + d}
= λ(λ− 2)m−1(λ− 1)p+q−2F (λ),

where

a = −(2m + p + q + 6),

b = m2 + (p + q + 8)m + 4(p + q) + pq + 13,

c = −{2m2 + (2p + 2q + 10)m + 5(p + q) + 2pq + 12},
d = m2 + (p + q + 4)m + 2(p + q) + 4.

If p ≥ q ≥ 1, then there are only two eigenvalues which are greater than two, since
F (0) > 0, F (1) = −pq < 0, F (2) = m2 + (p + q)m > 0, F (p + m + 2) = −pq < 0 and
F (∞) > 0. Hence λ3(H9) ≤ 2. If p = 1, q = 0, or p = q = 0, then by a similar argument, we
may show that the assertion holds.

Now we consider all connected graphs G with the property

λ3(G) ≤ 2. (2.1)

The property (2.1) is hereditary, because it follows from a directed consequence of the
interlacing theorem (see [4]). Hence there are minimal graphs that do not obey (2.1).
Such graphs are called forbidden subgraphs. By a direct calculation, we have the following
subgraphs: F1 and F2 are forbidden subgraphs.

c c c cA
A

AA
c

¢
¢
¢¢

c c£
£
££

B
B

BB
cc @

@
@

¡
¡

¡
cHHHHHHHH

©©©©©©
c

F1
F2

Fig. 2

A set of pairwise independent edges in G is called a match in G. The cardinality of a
maximum matching of G is known as its matching number and denoted by µ(G). We may
slightly generalize the result of Theorem 4 in [5] as follows.
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Lemma 2.1. Let G be a connected graph of order n with the matching number k.
( i ) If n > 2k, then λk > 2.
(ii) If n = 2k, then λk−1 > 2.

Proof. (i) follows from Theorem 4 in [5]. For (ii), since G is connected, there exists
a block which has only one cut vertex (for instance, see [2]). Hence there exists a vertex v
such that G1 = G\{v} is still connected. Thus G1 has the matching number k − 1, since
n = 2k. Moreover the cardinality of G1 is n − 1 > 2(k − 1). Thus λk−1 > 2 by (i). Hence
the assertion of (ii) follows from the interlacing theorem.

Corollary 2.1. Let G be a connected graph of order n > 6. If the matching number
of G is k ≥ 3, then λ3 > 2.

Proof. It is a direct consequence of Lemma 2.1.

Lemma 2.2. Let G be a connected non-bipartite graph of order n. If λ3 ≤ 2, then G
must be one of the following graphs H4, H5, H6 and H9.

Proof. Since G is a non-bipartite graph, there exists an odd cycle C2p+1. By Corollary
2.1, G does not contain odd cycle of order greater than 6, since the matching number of
C2p+1 is p. Hence we consider the following two cases.

Case 1. G contains an odd cycle C5 of order 5. If |V (G)| > 6, then G contains H5

as a subgraph, since G is connected. Hence by Corollary 2.1, λ3 > 2, since the matching
number is at least three. So it is a contradiction. Hence |V (G)| = 6 or 5. Since F1 and F2

are forbidden subgraphs, G has to be either H5 or H4.

Case 2. G contains an odd cycle C3 = v1v2v3 of order 3. If there are greater than one
common neighbor for two vertices of v1, v2, v3, then we may assume that

|N(v1) ∩N(v2)| > 1,

where |N(v1)| is the cardinality of set of neighbors of v1. Hence N(v3) = {v1, v2}, since F1

and K4 (complete graph of order 4) are forbidden subgraphs. Therefore it is easy to see that
G has to be H9. If there are only one common neighbor for any two vertices in {v1, v2, v3},
then we consider the number of N(vi) for i = 1, 2, 3. If |N(vi)| ≥ 3 for i = 1, 2, 3, then
|V (G)| ≤ 6. Otherwise the matching number of G is at least 3 and |V (G)| ≥ 7, then by
Corollary 2.1, λ3 > 2. It is a contradiction. Hence G has to be H6. If there exists a vertex
in {v1, v2, v3} whose neighbor number is just two. Since F1 is forbidden subgraphs, G must
be H9.

We are ready to present the characterization of all connected graph with exactly two
eigenvalues greater than two.

Theorem 2.2. A connected graph G has exactly two Laplacian eigenvalues greater
than two if and only if G is one of the following graphs H1 −H9 in Fig.1 except H7(p, 0),
p ≥ 1, H7(1, 1), H8(0, 0, 1), H8(0, 0, 2) and H8(1, 0, 1) = H8(0, 1, 1).

Proof. Sufficiency. By a direct calculation, the following graphs H1 − H6 in Fig. 1
have exactly two Laplacian eigenvalues greater than two. Further by Theorem 4 in [12] and
Theorem 2.1, the graphs H7,H8,H9 in Fig. 1, except H7(p, 0), p ≥ 1, H7(1, 1), H8(0, 0, 1),
H8(0, 0, 2) and H8(1, 0, 1) = H8(0, 1, 1), have exactly two Laplacian eigenvalues greater than
two.

Necessity. If G is bipartite, then by Theorem 4 in [12], G is one of the following
graphs H1 − H3 and H7,H8 except H7(p, 0), p ≥ 1, H7(1, 1), H8(0, 0, 1), H8(0, 0, 2) and
H8(1, 0, 1) = H8(0, 1, 1). If G is non-bipartite, then by Lemma 2.2, G is one of the following
graphs H4, H5,H6 and H9 in Fig. 1.
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§ 3 . Graphs with Exactly One Laplacian Eigenvalue
Greater than Three

In this section, we determine all connected graphs with exactly one Laplacian eigenvalue
greater than three.

Theorem 3.1. The following graphs W1 −W5 in Fig. 3 have property

λ2(Wi) ≤ 3, i = 1, · · · , 5. (3.1)
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Proof. Proof Denote by W5 = W5(p, q,m), p ≥ 0, q ≥ 0,m ≥ 1. By a direct
calculation, we show that λ2(Wi) ≤ 3, i = 1, · · · , 4. For W5, we consider the submatrix
M of L(W5) by deleting the row and column corresponding to the vertex with the largest
degree. It is easy to see that M is direct sum of submatrices of order 1 and 2. Moreover
the largest eigenvalues of these submatrices of order 1 and 2 are no greater than 3. Hence
λ2(W5) ≤ 3 follows from interlacing theorem.

Let G be the set of all connected graphs of order n with the property (3.1). Note that
the Laplacian eigenvalues of cycle of order n are 2 + 2 cos 2πj

n for j = 0, 1, · · · , n − 1. By a
direct calculation, we have λ1 > λ2 > 3 for n = 5 and n ≥ 7. Hence odd cycles of order
n ≥ 5 are forbidden subgraphs of G ∈ G. Moreover, it is easy to see that the following
graphs F3 − F8 are forbidden subgraphs of G in G.
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Lemma 3.1. Let G ∈ G contain at least a triangle. If the largest and second largest
degrees are d1 and d2 = 2, respectively, then G is one of the following graphs W3,W4,W5 in
Fig. 3.

Proof. Let v1v2v3 be a triangle of G. Since G is connected and d2 = 2, we may
assume that d1 = d(v1) ≥ 3 and d2 = d(v2) = 2 (otherwise G = W5(0, 0, 1)). We consider
the following two cases.

Case 1. Suppose that the order of graph G is n ≥ 7. If there exists a vertex v such
that the length of a path from u to v1 is greater than 3 or equal to 3 respectively, then G
contains F3 or F4 as a subgraph, respectively. It is a contradiction to G ∈ G. Hence the
lengths of any paths from v ∈ G to v1 are no greater than 2. Hence, G must be W5, since
any other vertices, except vertices v1, v2, v3, of G are not adjacent to v1, v2.

Case 2. n ≤ 6. If n = 4, then G is just W5(1, 0, 1). If n = 5, then it is easy to see
that G must be W5(0, 1, 1) , W5(0, 0, 2) or W5(2, 0, 1). If n = 6, it is not difficult to see that
G must be one of the following graphs W3,W4,W5(1, 0, 2) and W5(1, 1, 1).

Lemma 3.2. Let G ∈ G contain at least a triangle. If the largest and second largest
degrees are d1 and d2 with d1 ≥ d2 ≥ 3, then G is one of the following graphs W1,W2 in
Fig. 3.

Proof. By Theorem 4 in [8], λ2 ≥ d2 ≥ 3. Since G ∈ G, we have d2 = 3. We now
assume that v1v2v3 is a triangle with d(v1) ≥ d(v2) ≥ d(v3), where d(vi) is the degree of
vertex vi, i = 1, 2, 3. We consider the following two cases.
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Case 1. d(v2) ≥ 3. Then there exists a vertex v4 such that v4 is adjacent to v2. Since
F5 is a forbidden subgraph of G and d(v1) ≥ 3, v4 is adjacent to v1. Let H be the induced
subgraph of G by vertices v1, v2, v3, v4. Clearly, λ2(H) > 3 which implies λ2(G) > 3. It is a
contradiction.

Case 2. d(v2) = 2. Since d1 ≥ d2 = 3, there exists a vertex v4 such that d(v4) ≥ 3.
Since F3 and F6 are forbidden subgraphs of G, v4 must be adjacent to v1. On the other
hand, there exist two vertices v5 and v6 such that v5 and v6 are adjacent to v4. Since F7

and F8 are forbidden subgraphs of G, the number of vertices of G is 6. Moreover, v5 and v6

are not adjacent to v1, since F5 is a forbidden subgraph of G. Hence G is one of the graphs
W1 and W2.

We are ready to present our main result in this section.

Theorem 3.2. A connected graph G has exactly one Laplacian eigenvalue greater than
three if and only if

( i ) G is a connected bipartite graph with four or five vertices.
(ii) G is a connected spanning subgraph of one of the graphs W6,W7 in Fig. 5.
(iii) G is one of the graphs W1 −W5 in Fig. 3 and W8 in Fig. 5 except W5(0, 0, 1).
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Proof. Sufficiency. By the direct calculation, it is easy to see that all graphs in (i), (ii)
and W1 −W4,W6,W7 have only one Laplacian eigenvalue greater than three. Further W5

and W8 have only one Laplacian eigenvalue greater than three by Theorem 3.1 and Theorem
7 in [12].

Necessity. If G is a bipartite graph, then by Theorem 7 in [12], G is one of the graphs
in (i), (ii) and W8. If G is a non-bipartite graph, then G contains a triangle, since odd cycle
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of order greater than 3 is forbidden subgraph. Hence by Lemmas 3.1, 3.2, G is one of the
graphs W1 −W5 in Fig. 2 except W5(0, 0, 1).
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