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Abstract

The author establishes a deLeeuw-type theorem on maximal multiplier operators
on local Hardy-Lorentz space.
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§1. Introduction

Let HP(R™), 0 < p < oo be the Hardy spaces defined by

HY(R") = {f € §'(R") - [suple: = /I

< oo},
Lr(R™)

where ¢ € S(R"), [¢=1and pi(z) =t""¢ ().

For convenience, we fix such a ¢ with suppy C {x el < %} once for all in the follow-
ing.
The corresponding periodic Hardy spaces are

HP(T™) = {f e ST : Hiiﬁ"ﬁt « f\HLp(Tn) < oo},

where

@ * f(a:) = Z @(t$>ak(f)62ﬂik-x7 f(.%‘) — Z ak(f)e27rilc~ac7

kezn kezZn

and

(u) = / o(x)e 2T dy

)

is the Fourier transform of .
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Let A € L*°(R"™). For each € > 0, define

)f(w), f e L*(R") N HP(R"),
T.f(x) = ) AMek)ar ()™, fe L*(T") nH(T").

We call A a maximal multiplier on HP(R™) if T* f(z) = sup|T. f(x)| can be extended
e>0

to a bounded operator from H?(R™) to LP(R").
Similarly, \ is a maximal multiplier on H?(T™) if T* f () = sup|T. f ()| can be extended
e>0
to a bounded operator from HP(T™) to LP(T").

The transference relation between maximal multilpiers on HP(R™) to HP(T™) was
studied by Kenig and Tomas [4] in the case 1 < p < oo, and by Liu and Lu [5] in the case
0<p<l.

In [5], Liu and Lu proved the following theorem.

Theorem A. Let 0 < p < 1,\ € L*(R"™) be a continuous function on R™ and satisfy

lim A(z) = a. (1.1)

|z]|— o0

Suppose that A\ is a mazimal multiplier on HP(R™). Then X is a mazimal multiplier on
HP(T™). (See also [3], in which the authors proved that the above condition (1.1) in Theorem
A is superflous).

The main purpose of this paper is to extend Theorem A to the local Hardy-Lorentz
space h(p,q), 0 < p < 00, 0 < g < co. The definition of h(p, ¢) will be reviewed in the second
section. But we point out here that h(p,q) = H? if p = ¢ > 1. It should also be noted that,
unlike H?, there is no a standard atomic decomposition for h(p, q), if p #£¢q, 0 < g < 1.

The following is the main result in the present paper.

Theorem 1.1. Let A € L*°(R"™) be a continuous function. For 0 < p,q < oo, if

T flleacrry < Cllflnep,q,rm) for all f € h(p,q,R"),

then _
IT* fllracrny < Cllfllnpgrmy  for all f € h(p,q,T™),

where LP? is the Lorentz space and h(p, q) is the local Hardy-Lorentz space. Their definitions
will be reviewed in Section 2.

The proof of the theorem will be in Section 3.
The converse part of the theorem is proved in [1].

§ 2. Basic Notation and Lemmas

Let (X, p) be a measure space. For a measurable function f, its distribution function
m is defined by

m(a) = pf{x € X : |f(x)] > a}, a>0. (2.1)
The non-increasing rearrangement of f, f, is defined by

f(t) = (ir;fo{a :m(a) < t}, t>0.



TRANSFERENCE OF MAXIMAL MULTIPLIER OPERATORS 113

Definition 2.1. The Lorentz space LP4(X), 0 < p,q < 00, is the set of all measurable
functions f on X with || f||Lr.a(x) < 0o, where

dt1s
i

llrac = [2 [ oy

A well-known result of the Lorentz space is LPP = LP (see [6]). In this paper, we are
interested in X = R™ and X = T™ with the Lebesgue measure u(E) = |E|.

Definition 2.2. Local Lorentz-Hardy space h(p,q,R™) is the set of all f € S'(R")
such that

ny = || Su * H < 0.
Iy = | sup foes 7],
Similarly, the space h(p, g, T") is the set of all f € S’(T") such that

< 00.
Lp:a(Tn)

1 lnpa ) = H sup |f * @l
0<t<1

We introduce the following known lemmas.

Lemma 2.1. (cf. [2]) Suppose that {f.} is a sequence of nonnegative functions on
the measure space (X, ) and that f is a nonnegative function on a measure space (Y,v). If
{an} is a positive sequence such that

liminfa,u{z € X : fo(z) >a} >v{y €Y : f(y) > a} for all o> 0, (2.2)
then we have
£.(1) < nminf(fn)*(ai) for all t> 0.

n

The following lemma can be found in [6, p.190].

Lemma 2.2. Suppose {fn} is a sequence of measurable functions such that for all
e X,

[fu(@)] < [fopr(@)],  n=1,2,---.

If f is a measurable function satisfying

f@)] = lim |fu(0)]  forall xe€ X,

then for each t > 0, (fn)«(t) increases monotonically to fi(t).
Also, it is easy to check

Lemma 2.3. If for any a > 0,
lim iz € X, |fu(z)| > a} =0,

then for any t > 0,
lim (f,)«(t) = 0.

n—oo
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Lemma 2.4. Suppose that ¥(x) is a continuous function with compact support. Let
Ax) be a bounded and continuous function on R™ and let T. and T. be the families of
operators on R™ and T™, respectively, associated to the function \.

Take

) =w(S

v © =v(3). (2.3
If 1 satisfies ¥(0) = 1 and ¢ € LY (R™), then for any g(z) = 3 Cre2™*e € C(T™) and
any positive integer N, we have

b(2) Teg)y) = T(g0 ) (W) + Inely), (2.4)

where
Ine(y) = Z Cre?™ke N D(Nz){A(ek) — Aek + ) }e2™ ¥ dz — 0
R’n.

uniformly on y as N — oo.

This lemma can be found in [2].
8§ 3. Proof of Theorem 1.1

Suppose now that A is a maximal multiplier on h(p, ¢, R™). Since the class of trigono-
metric polynomials forms a dense subset of h(p,q, T") and LP?(T"), we need only prove
that for every trigonometric polynomial f(x) = Y aze?™F®,

IT* 1l oagrny < CIlFf|nva(rmy- (3.1)
Define B N
Tif(x) = sup |T.f(x)l.
0<e<R

By Lemma 2.2, we only need prove

1Tl Lracrny < Cllfllneacrny, (3.2)

where C' is a constant independent of R > 0 and all trigonometric polynomials f.
For positive integers M and N, we denote the cube

o) v

Let ¢» € D(R™) be a radial function that satisfies

w.\‘o

supp(¥) CQ,  0<¢(z)<1 and ¢Y(x)=1 if v€

Since T, Lf (z) is a periodic function, for any positive even number N,

(52 i (2)] > ool 2)}]

2 0<e<R

e e Q: 1) > all < (%)
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Thus by Lemma 2.4, we have

o eQ: [Thf@) > a} < (2) o e B2 swp L(fud)@)> 2}

2 0<e<R
+ (%)n {3: € ? o osup |[Ine(z)] > %H

0<e<R

Since A is continuous, by Lemma 2.3 we know that Jy .(x) — 0 uniformly for x € R”
and 0 <e < R (R > 0 is any fixed positive integer), as N — co. So we have

N
{:E € NQ o osup |JIne(x)] > EH =0.
2 0<e<R 2

i 2\n
This shows that

{z e Q: |Thf(x)] > a}| < QRI}&ian_n {x € R" : 2sup|T.(fy~)(z)| > a}‘.

>0

By Lemma 2.1, we have

(). (0) < € Jim L[ (7ot (B[}

Therefore, by Fatou’s Lemma and changing variables, we have

- o L dih
I Tiflinacen = [2 [ 16 @ T

np [ <1 dt1z
SOy AN [/ [t {17 (Fo ™)1} (1))
N—o0 0 t
= C]\}iinooN_% 1T (F™) Lo (-
By the assumption of the theorem, we now have
i . _n, 51
TR fllraqrmy < € im NZF[ YN [4p,0R0)- (3.3)

By Lemma 2.4 again, we get

sup s « (FuR) )l < v (%) sup 135+ F)l + sup [Jns(y)l:
0<6<1

0<5<1 0<6<1
Thus
N3 | fot < ONFlu( <) 7+ FO
”f?/} ||h(p,q7R)— (8 N Oigglh%*f()‘ Lr.a(R")
+ON"F| sup || ,
0<6<1 LPa(R™)

and finally we only need to show

lim N~7 (7) sup s f (- ‘ SC’H su ~*~H , 3.4
N —o0 w N 0<5IS)1|806 f( )| LP"I(Rn) 0<621‘§06 f‘ Ll"v‘l(T") ( )
lim Nig su J . ‘ = 0. 3.5
Neoo o<5Ig)1| N, ()l Lra(Rn) (3.5)
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To prove (3.4), by the support condition of 1, we have

HxGR": 1/)(1) sup \@5*f(1’)\>0¢}’

N/ g<s<1

< HzENQ: sup |5 * f(2)] >04H = N"
0<6<1

{zeq: s 175 (o) >al|

since sup |@s * f(z)| is a periodic function.
0<s<1

By Lemma 2.2 and the definition, we now obtain

o) su 135+ F0)|

N/ o<s<1

<N G e 1), GRS

= [z, ) 0] ]’

= C’H sup |<55*f|
0<6<1

n

N »

Lra(R")

Lra(Tn)

So (3.4) is proved. We return to prove (3.5).
First, it is easy to see that

D(@) [Zs(wf + %”3) - $(5k)} )dx —O(NY)

sup [ Tys()] < /

0<6<1

uniformly on y € R™.
On the other hand, for each y there is a y; such that |y;| > % Without loss of
generality, we assume |y1]| > %
Let
.I:(Z‘l,.f), y:(ylvg)a

where T = (zg,- -+ ,z,) and § = (Y2, , Yn)-
Then

()| = /R R /R N"G(N) [G(6k + 6z) — H(OR))e2™ 0 dary 70 .

We use integration by parts with respect to z; to obtain

st < O( [ N7 (Va6 + 6) — (6K o)

n ZZ)\(NQ:)QQWW@!(S(%(Z) (0k + 5ac)dac).

+O(/HN—

Y|

So

1
sup |Ins(y)| < O,
0<<1 |yl

where C' is independent of N.
It is easy to see that if we use integration by parts for m times, then

Nmfl ‘

)l < O[5
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Since the constant C' is independent of 0 < § < 1, we have

% if |yl <N,
sup |JIns ()] < Nm-1
0<8<1 ‘ ‘ if |y| > N.
ym
So we have
HxER”: sup |JN)5(1‘>|>04}’
0<6<1
= {\x| < N: sup |JIys(z)| > a}U{|x| >N: sup |JIns(z) > a}‘
0<6<1 0<6<1
< {\x| <N: sup |Ins(z)| > a}’ + H\m| >N: sup |Ins(z)| > a}‘
0<5<1 0<5<1
m—l
< {\x|<N ‘—’>a}‘+‘{|x\>N C P >a}‘
Nm=1y &
:{\x|<N:N<—H+H\x|>N:|x|<C’( ) }’
a a

The first measure is equal to

/ dx ~ CN",
lz| <N

where N < %
For the second measure, since

Nmfl %
N < |z] <c( ) ,
(6%

we have N < %, and

N1y
v~ {| |-~
«@

Thus, for large N, we obtain some constants C and A independent of N, such that

0, a >

HxéR”: Oi%21|JN75(:z:)| >a}‘ < A(qu)%’

3

Zla =z

o <
a

This shows that

inf {a: Hx eR": sup |Ins(x)| > a}’ < t}
>0 0<6<1

< nf {or !A(Nm 1)%!9}
=g e A (Vo) <o)
= inf {0 a>A(Nm )} =)
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Thus )
N™—
A(5%).  tzam
( sup \JN,(sI) B<q 4 U
0<6<1 * = t< N™.
N’
Now choose m such that
m 1
— >
nop

Then

Q=

it (7)., (4, el 0}
— Climinf (;)[/ON {té<0i%21|JN,al)*(t)}qcﬁ

weint ()7 [ {3 (s al) 0} 4]
<ompt (3)°[ [ {#53)"7)°

went () {0 (B

o INE o (N a0t
= Climinf () W[/O ]
1

+Climinf(
N—oo

Q=

N—
H/_/
=)
~|&
—_
I

N

=3
3
|
—
[ —
B
~
S
|
NE
M
|
—
QL
Iil
Qe

1
= Climinf — = 0.
N—oo

The theorem is proved.
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