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Abstract

The authors give an algebraic method to add uniton numbers for harmonic maps
from a simply connected domain Ω ⊆ R2∪{∞} into the unitary group U(N) with finite
uniton number. So, it is proved that any n-uniton can be obtained from a 0-uniton
by purely algebraic operations and integral transforms to solve the ∂̄-problem via two
different ways.
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§ 0 . Introduction

In [1–4] it has been proved that any harmonic map ϕ : Ω → U(N) from a simply
connected domain Ω ⊆ R2 ∪ {∞} to the unitary group U(N) with finite uniton number
can be factorized into a product of a finite number of flag factors (called unitons in [1]). In
[6–9], by using Darboux transformations, a purely algebraic explicit algorithm to construct
unitons from a known one was given. Particularly, the singular Darboux transformation
realizes the singular Bäcklund transformation via purely algebraic operations. These have
been generalized to harmonic maps into the symplectic group in [10, 11].

However, flag factors given as in [4–9] are used to substract or to preserve uniton num-
bers. So far as known, it is an open problem to construct flag factors adding uniton numbers
via purely algebraic operations (see [8, Remark 3.1]). In this direction, K. Uhlenbeck firstly
proposed a criterion of such flag factors in [1]. Introducing the so-called basic flag factors,
an explicit construction of basic flag factors was given in [2], where the Cauchy’s integral
transform to solve ∂̄-problem is required. The basic flag factors may be either to add, to
substract, or to preserve uniton numbers, but it is very hard to find out basic flag factors
adding uniton numbers (see Theorem 2.4 and Theorem 2.5 of [2]) because the condition (iii)
of Theorem 2.4 in [2] can not be checked.

The purpose of this paper is to give a concrete algebraic method (including integral
transforms) to construct flag factors adding uniton numbers for harmonic maps ϕ : Ω →
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U(N) with finite uniton number. Firstly, we introduce the notion on the standard extended
solution of type two, and give two kinds of criterions of flag factors adding uniton numbers,
which are more simplified than that of [1]. Next, by using the theory due to J. C. Wood in
[2], we give a concrete algebraic method to construct flag factors adding uniton numbers,
which are called AUN-flag factors. By using AUN-flag factors, any n-uniton can be obtained
from a 0-uniton by purely algebraic operations together with integral transforms to solve
∂̄-problem. Finally, for some special unitons, we give more simplified algebraic methods to
construct AUN-flag factors. The notations used here will follow those in [1, 2].

§ 1 . Preliminaries

Let U(N) be the unitary group of order N , whose Lie algebra is u(N). Let Ω ⊆
R2 ∪ {∞} = C ∪ {∞} be a simply connected domain, and z the complex coordinate on Ω.
Consider a smooth map ϕ : Ω → U(N). On putting

Aϕ =
1
2
ϕ−1dϕ = Aϕ

z dz + Aϕ
z̄ dz̄,

we have

ϕ∗ = ϕ, (Aϕ
z̄ )∗ = −Aϕ

z , (1.1)
∂̄Aϕ

z − ∂Aϕ
z̄ − 2[Aϕ

z , Aϕ
z̄ ] = 0, (1.2)

where ∂ = ∂/∂z, ∂̄ = ∂/∂z̄. The map ϕ is harmonic if and only if

∂̄Aϕ
z + ∂Aϕ

z̄ = 0. (1.3)

The Lax pair of the harmonic maps is

∂̄Φλ = (1− λ)ΦλAϕ
z̄ , ∂Φλ = (1− λ−1)ΦλAϕ

z , (1.4)

of which the integrability condition is (1.2) and (1.3). A nondegenerated N × N matrix
solution Φλ to (1.4) is called an extended solution of the harmonic map ϕ. Moreover, Φλ

can be normalized as

Φ1 = I, (Φσ(λ))∗ = Φ−1
λ , σ(λ) = (λ̄)−1, (1.5)

so that Φ−1 = Qϕ for some constant Q ∈ U(N).
A harmonic map ϕ : Ω → U(N) is called an n-uniton if ϕ has the extended solution of

the following form:

Φλ =
n∑

α=0

Tαλα, Tα : Ω → gl(N,C). (1.6)

Such Φλ is also called the extended n-uniton. In general, the extended solution of ϕ is not
unique. The minimal uniton number of ϕ is defined as (see [1])

m(ϕ) = min
{

n
∣∣∣ Φλ =

n∑
α=0

Tαλα is the extended solution of ϕ
}

.

From (1.4) and the reality condition (1.5) it follows that

TnT ∗0 = 0, T ∗nT0 = 0, (1.7)
∂̄Tα = (Tα − Tα−1)A

ϕ
z̄ , ∂Tα = (Tα − Tα+1)Aϕ

z , (1.8)
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where α = 1, · · · , n + 1, T−2 = T−1 = Tn+1 = Tn+2 = 0.
Set

V0(Φλ) = span{ImT0(z), z ∈ Ω}, Vn(Φλ) = span{ImTn(z), z ∈ Ω}. (1.9)

Definition 1.1. Φλ is called the standard extended solution of type one if V0(Φλ)
= CN ; and is called the standard extended solution of type two if Vn(Φλ) = CN .

It is proved in [1, Theorems 13.2 and 13.3] that there exists uniquely the standard
extended solution of type one for a uniton ϕ with minimal uniton number. Moreover, by its
proof, it is seen that the standard extended solution of type one for ϕ can be obtained by
any extended solution of ϕ with minimal uniton number via purely algebraic constructions.
By using the similar way, we may prove the following lemma, whose proof is omitted.

Lemma 1.1. There exists uniquely the standard extended solution of type two for a
uniton ϕ with minimal uniton number. Moreover, it can be obtained by any extended solution
of ϕ with minimal uniton number via purely algebraic constructions.

Let CN = Ω × CN be the trivial bundle over Ω, and π : CN → CN a Hermitian
projection. We write Imπ = Ω × {Imπ} ⊂ CN , or simply, π = Ω × {Imπ}. Similarly, for
T ∈ Hom(CN ,CN ), we write kerT = Ω× {kerT} ⊂ CN . Let Φλ be an extended solution of
a harmonic map ϕ : Ω → U(N). If π is a Hermitian projection such that Φ̃λ = Φλ(π +λπ⊥)
is the extended solution of ϕ̃ = Φ̃−1, then π − π⊥ (resp. π or π) is called a flag factor of
ϕ. For Aϕ = 1

2ϕ−1dϕ, Dϕ = d + Aϕ is a unitary connection on CN , so that there are the
Koszul-Malgrange holomorphic structures determined by Dϕ and the trivial connection d
respectively. If α ⊂ CN is a smooth subbundle of CN , then the connection (denoted still
by Dϕ) on α induced from Dϕ determines the Koszul-Malgrange holomorphic structure on
α. If α is a holomorphic (resp. anti-holomorphic) subbundle of CN , then any holomorphic
(resp. anti-holomorphic) section of (α,Dϕ) is also the holomorphic (resp. anti-holomorphic)
section of (CN , Dϕ). It is known in [1, 2] that a Hermitian projection π : CN → π is a flag
factor of ϕ if and only if π is the holomorphic subbundle of (CN , Dϕ) and Aϕ

z : π → π.
It follows from (1.2) and (1.3) that ImAϕ

z and kerAϕ
z are flag factors of ϕ. Moreover, the

holomorphic subbundles of (CN , Dϕ) containing ImAϕ
z and the holomorphic subbundles of

kerAϕ
z all are flag factors of ϕ, called the flag factors of type one and type two, respectively,

in [2]. The flag factors of type two are also called basic.

Lemma 1.2. (cf. [2]) Let π be a flag factor of the harmonic map ϕ : Ω → U(N).
Then π⊥ is the flag factor of ϕ̃ = ϕ(π − π⊥) and ImAϕ

z ⊆ π (resp. π ⊆ kerAϕ
z ) if and only

if π⊥ ⊆ kerAeϕz (resp. ImAeϕz ⊆ π⊥).

In the following, we shall use the following convention on the range of indeces unless
otherwise stated: 1 ≤ i, j, · · · ≤ N . Set

F = {the set of meromorphic functions on S2},

so that F becomes a field with pointwise addition and multiplication. Let α be a k-
dimensional smooth subbundle of CN . The sets of meromorphic sections of (α,Dϕ) and
(CN , Dϕ) become respectively the k-dimensional and N -dimensional vector spaces over the
field F , denoted by Γ(α,Dϕ) and Γ(CN , Dϕ), whose bases are called the meromorphic bases
on (α,Dϕ) and (CN , Dϕ), respectively.



122 HE, Q. & SHEN, Y. B.

Lemma 1.3. (cf. [2]) Let ϕ : Ω → U(N) be a harmonic map and {ei} a meromorphic
basis of (CN , Dϕ). Then there are meromorphic functions λij on Ω such that

Aϕ
z (ei) =

∑

j

λijej .

Lemma 1.4. Let Φλ =
n∑

α=0
Tαλα be the extended solution of a harmonic map ϕ : Ω →

U(N), and {ei} and {e0
i } the meromorphic bases of (CN , Dϕ) and (CN , d), respectively.

Then there are meromorphic functions µij and νij on Ω so that

T0(ei) =
∑

j

µije
0
j , T ∗n(e0

i ) =
∑

j

νijej .

Proof. It follows from (1.8) that ∂̄T0 = T0A
ϕ
z̄ and ∂Tn = TnAϕ

z . One may see
easily that T0 and T ∗n are the global holomorphic sections of Hom{(CN , Dϕ), (CN , d)} and
Hom{(CN , d), (CN , Dϕ)}, respectively. Thus, T0(ei) and T ∗n(e0

i ) are the meromorphic sec-
tions of (CN , d) and (CN , Dϕ), respectively. Hence, µij and νij are meromorphic on Ω.

As is well known, there exists always the meromorphic basis {e0
i } of (CN , d), for ex-

ample, the constant orthonormal basis in CN . For the meromorphic basis of (CN , Dϕ), we
have the following

Lemma 1.5. (cf. [2]) Let ϕ : Ω → U(N) be a harmonic map and {ei} a meromorphic
basis of (CN , Dϕ). If π is the basic flag factor of ϕ and ϕ̃ = ϕ(π−π⊥), then the meromorphic
basis of (CN , Deϕ) can be obtained by algebraic operations and Cauchy’s integral transforms
to solve the ∂̄-problem.

Here the ∂̄-problem is as follows. Let D ⊆ C = R2 be a connected open subset with
compact closure D̄. Let F be a C∞ function on an open set containing D̄. Then the equation
∂̄λ = F has a C∞ solution on D given by the Cauchy integral transform (see [12] for detail)

λ(z) =
1

2πi

∫

D

F (w)
w − z

dw ∧ dw̄.

By factorization theorems in [1, 2, 4], any uniton ϕ can be factorized into a product of
the basic flag factors. So, we have

Lemma 1.6. For any uniton ϕ : Ω → U(N), there exists a meromorphic basis {ei} of
(CN , Dϕ) which can be obtained via a meromorphic basis {e0

i } of (CN , d) by finite algebraic
operators and Cauchy’s integral transforms to solve the ∂̄-problem.

§ 2 . Adding One Uniton Number

Let Φλ =
n∑

α=0
Tαλα be the extended solution of a uniton ϕ. It is shown in [1, 9]

that kerT0 and ImT ∗n are flag factors such that the uniton number is subtracted one. The
factorization theorems imply that any n-uniton may be obtained from a constant map (i.e.,
0-uniton) by n flag transforms. However, the key of realizing this construction is to find out
the flag factor adding uniton numbers. In [1] such flag factor was characterized firstly (see
[1, Proposition 14.5]).
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Theorem A. (cf. [1]) Let Φλ =
n∑

α=0
Tαλα be the standard extended n-uniton of type

one, n > 0. Then Φ̃λ = Φλ(π + λπ⊥) is the standard extended (n + 1)-uniton of type one
satisfying kerT̃0 = π⊥ if and only if the Hermitian projection π : CN → CN satisfies

(a) π is holomorphic in (CN , Dϕ);
(b) π ⊂ kerAϕ

z ;
(c) π ∩ kerT0 = 0;
(d) π /∈ kerρT0 for ρ ∈ CPN .

However, it is very difficult to check the condition (d). We now reduce these conditions
as follows.

Theorem 2.1. Let Φλ =
n∑

α=0
Tαλα be the standard extended n-uniton of type two,

n > 0. Then Φ̃λ = Φλ(π + λπ⊥) is the standard extended (n + 1)-uniton of type two
satisfying kerT̃0 = π⊥ if and only if the Hermitian projection π : CN → CN satisfies

(a) π is a holomorphic subbundle of (kerAϕ
z , Dϕ);

(b) π ∩ kerT0 = 0.

Proof. Consider the sufficiency. The condition (a) implies that π is a basic flag factor

of ϕ. Set Φ̃λ =
n+1∑
α=0

T̃αλα, so that T̃0 = T0π and T̃n+1 = Tnπ⊥. It follows from the condition

(b) that T0π 6= 0 and kerT̃0 = π⊥. If Tnπ⊥ = 0, then ImT ∗n ⊆ π and ImT ∗n ⊆ kerT0 according
to (1.7). This contradicts the condition (b). Hence, Φ̃λ is an extended (n + 1)-uniton.

On the other hand, it follows from the condition (b) that kerT̃ ∗n+1 = ker(π⊥T ∗n) =
kerT ∗n . Thus, when Vn(Φλ) = CN , we have

⋂

z∈Ω

kerT̃ ∗n+1(z) =
⋂

z∈Ω

kerT ∗n(z) = 0.

This implies that Vn(Φ̃λ) = CN , i.e., Φ̃λ is a standard extended (n + 1)-uniton of type two.
The necessity follows from Theorem A directly.

By the similar way, we have

Theorem 2.2. Let Φλ =
n∑

α=0
Tαλα be a standard extended n-uniton of type one, n >

0. Then Φ̃λ = Φλ(π + λπ⊥) is a standard extended (n + 1)-uniton of type one satisfying
ImT̃ ∗n+1 = π⊥ if and only if the Hermitian projection π⊥ : CN → CN satisfies

(a) π⊥ is an anti-holomorphic subbundle of (kerAϕ
z̄ , Dϕ);

(b) π⊥ ∩ kerTn = 0.

Definition 2.1. The flag factors satisfying the conditions in Theorem 2.2 (resp. 2.1)
are called AUN-flag factors of type one (resp. two). The corresponding flag transforms are
called AUN-flag transforms of type one (resp. two).

Clearly, the necessary condition that there exist the AUN-flag factors of type one (resp.
two) is that kerAϕ

z̄ \ kerTn 6= ∅ (resp. kerAϕ
z \ kerT0 6= ∅). The unitons (resp. extended

solutions) satisfying this necessary condition are called AUN-unitons (resp. extended solu-
tions) of type one (resp. two); otherwise, are called the End-unitons. It follows from [1, 9]
that any n-uniton can be obtained from an AUN-(n− 1)-uniton of type one (resp. two) by
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the AUN-flag transform of type one (resp. two). This implies that there is a semi-ordering
relation on the set

U = {unitons} = {harmonic maps with finite uniton number},

of which the maximum elements are the End-unitons. The 0-uniton is its minimum element.
Thus, if one can construct all of AUN-flag factors for every AUN-uniton ϕ, then any element
of U can be obtained from a 0-uniton by a finite number of AUN-flag transforms. We now
give a purely algebraic method to construct AUN-flag factors.

Lemma 2.1. Let Φλ =
n∑

α=0
Tαλα be the extended solution of a uniton ϕ : Ω → U(N).

Assume that rankAϕ
z = r. Then a meromorphic basis {b1, · · · , bN−r} of (kerAϕ

z , Dϕ) can be
obtained by solving the system of linear algebraic equations, so that {b1, · · · , bs} (1 ≤ s ≤
N − r) is the local meromorphic basis of (kerAϕ

z ∩ kerT0, D
ϕ). If ϕ is the AUN-uniton of

type two, i.e., s < N − r, then

π = span{bs+1, · · · , bs+k} (k ≤ N − r − s)

is an AUN-flag factor of type two with rank k.

Proof. Noting that ImAϕ
z , kerAϕ

z and kerT0 are global holomorphic subbundles of
(CN , Dϕ), we see that r and s are constants. Since ImT ∗n ⊂ kerAϕ

z ∩ kerT0, then s > 0. Let
{ei} be a meromorphic basis of (CN , Dϕ) (see Lemma 1.6), and v =

∑
j

xjej . By Lemma 1.2

and Lemma 1.3, we see that v is a meromorphic section of (kerAϕ
z ∩ kerT0, D

ϕ) if and only
if {xi} is a meromorphic solution to the system of linear algebraic equations on the field F :

∑

i

λijxi = 0,

∑

i

µijxi = 0.

Thus, solving the system gives the required meromorphic basis {b1, · · · , bN−r}. If s < N−r,
then the projection π corresponding to π = span{bs+1, · · · , bs+k} satisfies the conditions (a)
and (b) of Theorem 2.1.

Let GL(n,F) be the group of n× n invertible matrices on the field F . Set

G(N − r; s) =
{( P1 ∗

0 P2

)
∈ GL(N − r,F) : P1 ∈ GL(s,F)

}
,

K1(k) =








P1 0 ∗
0 P2 ∗
0 0 P3


 ∈ GL(N − r,F) : P1 ∈ GL(s,F), P2 ∈ GL(k,F)





for k ≤ N − r − s. From Lemma 2.1 we have immediately

Proposition 2.1. Let Φλ =
n∑

α=0
Tαλα be the extended solution of a uniton ϕ : Ω →

U(N). Then there is a bijection from the set

f2(Φλ; k) = {AUN-flag factors of ϕ of type two with rank k}

to GL(N − r, s)/K1(k).
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By the similar way, we can construct AUN-flag factors of type one with rank k.

Lemma 2.2. Let Φλ =
n∑

α=0
Tαλα be the extended solution of a uniton ϕ : Ω → U(N).

Assume that rankAϕ
z = r. Then another meromorphic basis {bi} of (CN , Dϕ) can be obtained

by algebraic operations, so that {b1, · · · , br} is a meromorphic basis of (ImAϕ
z , Dϕ) and

{b1, · · · , br+t} (0 ≤ t < N − r) is a meromorphic basis of (ImAϕ
z + ImT ∗n , Dϕ). If ϕ is an

AUN-uniton of type one, i.e., t > 0, then

π = span{b1, · · · , br+t+k−N , br+t+1, · · · , bN} (N − t ≤ k < N)

is an AUN-flag factor of type one with rank k.

Proof. Since r is constant and ImAϕ
z + ImT ∗n is a global holomorphic subbundle of

(CN , Dϕ), t is constant. Since ImT ∗0 ⊆ kerAϕ
z̄ ∩kerTn, r + t = dim(ImAϕ

z +ImT ∗n) < N . Let
{e0

i } be a meromorphic basis of (CN , d), from which we can construct a meromorphic basis
{ei} of (CN , Dϕ) according to Lemma 1.6. By Lemmas 1.2 and 1.3, we see that

ai = Aϕ
z (ei) =

∑

j

λijej and di = T ∗n(e0
i ) =

∑

j

γijej

are meromorphic sections of (CN , Dϕ). In {ai} and {di} we choose r linearly independent
sections {b1, · · · , br} and t linearly independent sections {br+1, · · · , br+t} respectively, so
that {b1, · · · , br+t} are linearly independent. Thus, by complementing {br+t+1, · · · , bN},
we can obtain another meromorphic basis {bi} of (CN , Dϕ) as required. If t > 0 and
N − t ≤ k < N for some k, then

π = span{b1, · · · , br+t+k−N , br+t+1, · · · , bN}

is a holomorphic subbundle of (CN , Dϕ), which contains ImAϕ
z and satisfies π+ImT ∗n = CN .

Hence, π satisfies the conditions (a) and (b) of Theorem 2.2.

Set

G(N ; r, t) =








P1 ∗ ∗
0 P2 ∗
0 0 P3


 ∈ GL(N,F) : P1 ∈ GL(r,F), P2 ∈ GL(t,F)



 ,

K2(k) =








P1 ∗ ∗ ∗
0 P2 ∗ ∗
0 0 P3 0
0 0 0 P4


 ∈ GL(N,F) :

P1 ∈ GL(r,F),
P2 ∈ GL(k + t−N,F),
P3 ∈ GL(N − k,F)





for N − t ≤ k < N . By Lemma 2.2, we have

Proposition 2.2. Let Φλ =
n∑

α=0
Tαλα be the extended solution of a uniton ϕ : Ω →

U(N). Then there is a bijection from the set

f1(Φλ; k) = {AUN-flag factors of ϕ of type one with rank k}

to G(N ; r, t)/K2(k).
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If ϕ is a 0-uniton, then there is a bijection from the set of all flag factors of ϕ with
rank k, i.e., the set of all k-dimensional holomorphic subbundles of (CN , d) to

G(N − r; s)/K1(k) = G(N ; r, t)/K2(k) = GL(N ;F)/G(N ; k).

Also, there is a bijection from the set of AUN-1-unitons of type one (resp. two) to the set

{β : β is the full holomorphic subbundle of (CN , d), rank(∂β) < rankβ⊥}

(resp. the set

{β⊥ : β⊥ is the full anti-holomorphic subbundle of (CN , d), rank(∂β) < rankβ}).

By Lemmas 1.1 and 1.6, Theorems 2.1 and 2.2, Lemmas 2.1 and 2.2, we have proved the
following

Theorem 2.3. Let ϕ : Ω → U(N) be an AUN-uniton and m(ϕ) = n ≥ 0. Then
all of two kinds of AUN-flag factors π can be constructed by finite algebraic operations and
Cauchy’s integral transforms to solve the ∂̄-problem, so that ϕ̃ = ϕ(π − π⊥) is a minimal
(n+1)-uniton. Hence, any n-uniton can be obtained from a 0-uniton by the purely algebraic
algorithms and Cauchy’s integral transforms to solve the ∂̄-problem via two different ways.

§ 3 . Commutative Extended Solutions

Let Φλ =
n∑

α=0
Tαλα be the extended solution of a harmonic map ϕ : Ω → U(N). It

follows from (1.7) and (1.8) that

T0T
∗
n = 0, Aϕ

z T ∗n = 0, T0A
ϕ
z = 0.

Set

α : CN → kerAϕ
z , ρ : CN → ImAϕ

z , β : CN → ImT ∗0 , σ : CN → ImT ∗n , (3.1)

which are Hermitian projections. Thus, we have

ασ = σ, ρβ = 0, βσ = 0. (3.2)

Definition 3.1. Φλ is called the kerAϕ
z -commutative extended solution if αβ = βα;

the ImAϕ
z -commutative extended solution if ρσ = σρ.

For any extended 1-uniton Φλ = π + λπ⊥ where π is a Hermitian projection, we have

ρ = ImAϕ
z = Im∂π⊥ ⊂ π⊥ = σ,

α⊥ = ImAϕ
z̄ = Im∂̄π ⊂ π = β,

from which it follows that
αβ = βα, ρσ = σρ.

Hence, we have the following

Lemma 3.1. Any extended 1-uniton is both kerAϕ
z -commutative and ImAϕ

z -commuta-
tive.
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Next, we may give more succinct global AUN-flag factors for commutative extended
solutions.

Lemma 3.2. If Φλ =
n∑

α=0
Tαλα is the kerAϕ

z -commutative AUN-extended solution of

type two, then π = kerAϕ
z ∩ ImT ∗0 is an AUN-flag factor of type two.

Proof. It is sufficient to prove that π⊥ = ImAϕ
z̄ +kerAϕ

z ∩kerT0 is an anti-holomorphic
subbundle of (CN , Dϕ). Since ImAϕ

z̄ is an anti-holomorphic subbundle of (CN , Dϕ), it is
sufficient to prove that ∂v is a section of π⊥ when v is a section of kerAϕ

z ∩ kerT0. Assume
that Aϕ

z v = 0 and T0v = 0. Then we have

0 = ∂(T0v) = −T1A
ϕ
z v + T0∂v = T0∂v,

which implies that ∂v is a section of kerT0 ⊂ π⊥.

In the same way we can prove the following

Lemma 3.3. If Φλ is the ImAϕ
z -commutative AUN-extended solution of type one, then

π = ImAϕ
z + kerAϕ

z̄ ∩ kerTn is an AUN-flag factor of type one.

Finally, we have

Theorem 3.1. Let Φλ be the ImAϕ
z -commutative (resp. kerAϕ

z -commutative) AUN-
extended n-uniton. Assume π is given as in Lemma 3.3 (resp. Lemma 3.2). Then Φ̃λ =
Φλ(π +λπ⊥) is the ImAϕ

z -commutative (resp. kerAϕ
z -commutative) extended (n+1)-uniton.

Moreover, if rank(∂π) < rankπ⊥ (resp. rankπ), then Φ̃λ is an AUN-extended (n+1)-unoton.

Proof. Let Φλ be the ImAϕ
z -commutative extended n-unoton of a harmonic map

ϕ : Ω → U(N), and π = ρ + ρ⊥σ⊥. Then we see from Lemma 3.3 and Theorem 2.2 that Φ̃λ

is an extended (n + 1)-unoton and π⊥ is an anti-holomorphic subbundle of (CN , Dϕ), i.e.,

π(Aϕ
z π⊥ + ∂π⊥) = 0, π⊥ = ρ⊥ ∩ σ ⊂ σ.

Thus, it follows from (3.1) and (3.2) that Aϕ
z π⊥ = 0, i.e., π∂π⊥ = 0. Set

ρ′ = ImAeϕz = Im(Aϕ
z + ∂π⊥), σ′ = ImT̃ ∗n+1 = π⊥.

Since σ⊥ is an anti-holomorphic subbundle of (CN , Dϕ), then σ(Aϕ
z σ⊥ + ∂σ⊥) = 0, i.e.,

Im∂σ⊥ ⊂ ρ⊥σ⊥ + ρ = π, which implies that π⊥∂σ⊥ = 0. Thus, we have

Aeϕz σ = (∂π⊥)σ = ∂(π⊥σ) = ∂π⊥, Aeϕz σ⊥ = Aϕ
z σ⊥ + (∂π⊥)σ⊥ = Aϕ

z ,

which implies that ρ′ = ImAϕ
z + Im∂π⊥. Since Im∂π⊥ ⊂ π⊥ = σ′ and ImAϕ

z ⊂ π, it is clear
that ρ′σ′ = σ′ρ′, i.e., Φ̃λ is ImAϕ

z -commutative. Moreover, if rank(∂π⊥) < rankπ⊥, then
kerAeϕz \ kerT̃ ∗n+1 6= ∅, i.e., Φ̃λ is an AUN-extended solution.

Remark. By using Lemma 3.1 and Theorem 3.1 and repeating the flag transforms
given as in Lemma 3.2 (resp. Lemma 3.3), we can obtain a series of unitons ϕ = ϕ1, ϕ2, · · · , ϕn

(1 < n ≤ N − 1) from any given AUN-1-uniton ϕ, such that m(ϕk) = k (k = 1, 2, · · · , n)
and ϕn is the End-uniton.
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