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INJECTIVE PRECOVERS AND MODULES OF
GENERALIZED INVERSE POLYNOMIALS∗∗
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Abstract

This paper is motivated by S. Park [10] in which the injective cover of left R[x]-
module M [x−1] of inverse polynomials over a left R-module M was discussed. The
author considers the Ω-covers of modules and shows that if η : P −→ M is an Ω-
cover of M , then [ηS,≤] : [P S,≤] −→ [MS,≤] is an [ΩS,≤]-cover of left [[RS,≤]]-module
[MS,≤], where Ω is a class of left R-modules and [MS,≤] is the left [[RS,≤]]-module of
generalized inverse polynomials over a left R-module M . Also some properties of the
injective cover of left [[RS,≤]]-module [MS,≤] are discussed.
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Let (S,≤) be an ordered set. Recall that (S,≤) is artinian if every strictly decreasing
sequence of elements of S is finite, and that (S,≤) is narrow if every subset of pairwise
order-incomparable elements of S is finite. Let S be a commutative monoid. Unless stated
otherwise, the operation of S shall be denoted additively, and the neutral element by 0. The
following definition is due to [11].

Let (S,≤) be a strictly ordered monoid (that is, (S,≤) is an ordered monoid satisfying
the condition that, if s, s′, t ∈ S and s < s′, then s + t < s′ + t), and R a ring. Let [[RS,≤]]
be the set of all maps f : S −→ R such that

supp(f) = {s ∈ S | f(s) 6= 0}
is artinian and narrow. With pointwise addition, [[RS,≤]] is an abelian additive group. For
every s ∈ S and f, g ∈ [[RS,≤]], let

Xs(f, g) = {(u, v) ∈ S × S | s = u + v, f(u) 6= 0, g(v) 6= 0}.
It follows from [11, 4.1] that Xs(f, g) is finite. This fact allows to define the operation of
convolution:

(fg)(s) =
∑

(u,v)∈Xs(f,g)

f(u)g(v).
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With this operation, and pointwise addition, [[RS,≤]] becomes a ring, which is called the
ring of generalized power series. The elements of [[RS,≤]] are called generalized power series
with coefficients in R and exponents in S.

For example, if S = N ∪ {0} and ≤ is the usual order, then [[RN∪{0},≤]] ∼= R[[x]], the
usual ring of power series. If S is a commutative monoid and ≤ is the trivial order, then
[[RS,≤]] = R[S], the monoid-ring of S over R. Further examples are given in [12, 13]. Some
results on the rings of generalized power series are given in [11–14, 8].

If M is a left R-module, we let [MS,≤] be the set of all maps φ : S −→ M such that
the set

supp(φ) = {s ∈ S |φ(s) 6= 0}
is finite. Now [MS,≤] can be turned into a left [[RS,≤]]-module under some additional
conditions. The addition in [MS,≤] is componentwise and the scalar multiplication is defined
as follows:

(fφ)(s) =
∑

t∈S

f(t)φ(s + t) for every s ∈ S,

where f ∈ [[RS,≤]], and φ ∈ [MS,≤]. From [8] it follows that if (S,≤) is a strictly totally
ordered monoid and ≤ is also artinian, then [MS,≤] becomes a left [[RS,≤]]-module.

For example, if S = N ∪ {0} and ≤ is the usual natural order, then

[MN∪{0},≤] ∼= M [x−1],

the usual left R[[x]]-module discussed in [10].
Let r ∈ R. Define a mapping cr ∈ [[RS,≤]] as follows:

cr(0) = r, cr(s) = 0, 0 6= s ∈ S.

Let s ∈ S. Define a mapping es ∈ [[RS,≤]] as follows:

es(s) = 1, es(t) = 0, s 6= t ∈ S.

Let Ω be a class of left R-modules. We assume that Ω is closed under isomorphisms.
According to [4] (or [15], or [3]), an Ω-cover of a left R-module M is a linear map η : P −→ M
with P in Ω such that

(1) any diagram with Q ∈ Ω,

Q

↓ δ ↘
P

η−−−−→ M

can be completed by a linear map δ : Q −→ P and
(2) the diagram

P

↓ ↘η

P
η−−−−→ M

can only be completed by an automorphism of P .
If (1) holds (and perhaps not (2)), then η : P −→ M is called an Ω-precover of M .
Note that if an Ω-cover exists, then it is unique up to isomorphism.
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If Ω is the class of all injective left R-modules (the class of all flat left R-modules),
then an Ω-cover is called an injective cover (a flat cover, respectively) and an Ω-precover is
called an injective precover (a flat precover, respectively). If Ω is the class of all torsion-free
injective left R-modules, then an Ω-cover is called a torsion-free injective cover (see [1]). If
Ω is the class of all left R-modules of finite injective dimension, or equivalently, the class of
all left R-modules of finite projective dimension (see [7]), then Ω-covers exist by [5]. Enochs
and Jenda in [4], Enochs and Xu in [6] and Auslander and Buchweitz in [2] studied Ω-covers
when Ω is other classes of left R-modules.

We shall henceforth assume that (S,≤) is a strictly totally ordered monoid which is
also artinian. Then, from [9], for any s ∈ S, we have 0 ≤ s. This result will be often used
throughout the rest of this paper.

Let M be a left R-module. For any t ∈ S and m ∈ M , define φtm ∈ [MS,≤] as follows:

φtm(x) =

{
m, x = t,

0, x 6= t.

Denote Gt = {φtm |m ∈ M}. Then Gt is a left R-module by the left R-action: r · φtm =
crφtm. Clearly there exists an isomorphism of left R-modules λt : M −→ Gt via λt(m) =
φtm. The following lemma appeared in [8, Lemma 2.3].

Lemma 1. Let M, N be left R-modules. Then there exists an isomorphism of abelian
groups

F : Hom[[RS,≤]]([M
S,≤], [NS,≤]) ∼= [[HomR(M,N)S,≤]].

We note that F is defined via F (α) : S −→ HomR(M, N) as

F (α)(s) = βαλs

for any α ∈ Hom[[RS,≤]]([MS,≤], [NS,≤]), where β : [NS,≤] −→ N is an R-homomorphism
defined via β(φ) = φ(0) for any φ ∈ [NS,≤]. By the proof of Lemma 1 (see [8, Lemma 2.3]),
for any h ∈ [[HomR(M, N)S,≤]], F−1(h) : [MS,≤] −→ [NS,≤] is defined via

F−1(h)(φ) : S −→ N

s 7−→
∑

u∈S

h(u)(φ(s + u))

for every φ ∈ [MS,≤].
Let P,M be left R-modules. If η ∈ HomR(P, M), then we define g : S −→ HomR(P,M)

via

g(s) =

{
η, s = 0,

0, s 6= 0.

By Lemma 1, there exists α ∈ Hom[[RS,≤]]([PS,≤], [MS,≤]) such that F (α) = g. We denote
α by [ηS,≤].

Set [ΩS,≤] = {[NS,≤]|N ∈ Ω}.
Proposition 1. Let M be a left R-module. Suppose that η : P −→ M is an Ω-precover.

Then [ηS,≤] : [PS,≤] −→ [MS,≤] is an [ΩS,≤]-precover of left [[RS,≤]]-module [MS,≤].

Proof. By Lemma 1, [ηS,≤] is an [[RS,≤]]-homomorphism. Let Q be in Ω and α :
[QS,≤] −→ [MS,≤] an [[RS,≤]]-homomorphism. For every s ∈ S, F (α)(s) ∈ HomR(Q, M).
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Since η : P −→ M is an Ω-precover, there exists an R-homomorphism ψs : Q −→ P such
that

ηψs = F (α)(s).

Define h : S −→ HomR(Q,P ) via h(s) = ψs. Clearly h ∈ [[HomR(Q, P )S,≤]]. By Lemma 1,

F−1(h) ∈ Hom[[RS,≤]]([Q
S,≤], [PS,≤]).

Now for any φ ∈ [QS,≤] and any s ∈ S,

(([ηS,≤]F−1(h))(φ))(s)

= ([ηS,≤](F−1(h)(φ)))(s)

= (F−1(g)(F−1(h)(φ)))(s)

=
∑

u∈S

g(u)((F−1(h)(φ))(s + u))

=
∑

u∈S

g(u)
( ∑

v∈S

h(v)(φ(s + u + v))
)

=
∑

u∈S

g(u)
( ∑

v∈S

ψv(φ(s + u + v))
)

= η
( ∑

v∈S

ψv(φ(s + v))
)

=
∑

v∈S

ηψv(φ(s + v))

=
∑

v∈S

F (α)(v)(φ(s + v)) = (F−1(F (α)))(φ)(s)

= α(φ)(s)

which implies that the following diagram

[QS,≤]

↓F−1(h) ↘α

[PS,≤]
[ηS,≤]−−−−→ [MS,≤]

commutes, and thus the result follows.
For every 0 6= φ ∈ [MS,≤], we denote by σ(φ) the maximal element in supp(φ).

Theorem 1. Let η : P −→ M be an Ω-cover. Then [ηS,≤] : [PS,≤] −→ [MS,≤] is an
[ΩS,≤]-cover of left [[RS,≤]]-module [MS,≤].

Proof. By Proposition 1, [ηS,≤] : [PS,≤] −→ [MS,≤] is an [ΩS,≤]-precover of [MS,≤].
Suppose that α : [PS,≤] −→ [PS,≤] is an [[RS,≤]]-homomorphism which makes the diagram

[PS,≤]

↓α ↘[ηS,≤]

[PS,≤]
[ηS,≤]−−−−→ [MS,≤]

commutative. We will show that α is an automorphism. Suppose that h ∈ [[HomR(P, P )S,≤]]
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is such that F (α) = h. For any m ∈ P ,

(ηh(0))(m) = η(h(0)(m)) = η
( ∑

v∈S

h(v)(φ0m(v))
)

= η(α(φ0m)(0)) =
∑

u∈S

F ([ηS,≤])(u)(α(φ0m)(u))

= ([ηS,≤](α(φ0m)))(0) = ([ηS,≤]α(φ0m))(0)

= [ηS,≤](φ0m)(0) =
∑

x∈S

F ([ηS,≤])(x)(φ0m(x))

= η(φ0m(0)) = η(m).

Thus ηh(0) = η. Since η : P −→ M is an Ω-cover, it follows that h(0) is an automor-
phism.

Let φ ∈Ker(α). If φ 6= 0, then supp(φ) is not empty. Now suppose that σ(φ) = u.
Then

h(0)(φ(u)) =
∑

x∈S

h(x)(φ(u + x)) = α(φ)(u) = 0,

which implies that φ(u) = 0, a contradiction. Thus α is one to one.
Let φ ∈ [PS,≤] and φ 6= 0. Suppose σ(φ) = 0. Then φ(u) = 0 when u > 0. Set

m = h(0)−1(φ(0)), and ψ = φ0m ∈ [PS,≤]. Then

α(ψ)(s) =
∑

u∈S

h(u)(ψ(s + u))

=

{
h(0)(ψ(0)), s = 0,

0, s 6= 0

= φ(s),

which implies that α(ψ) = φ.
Suppose that u ∈ S is such that, for any φ ∈ [PS,≤] with σ(φ) < u, there exists

ψ ∈ [PS,≤] such that α(ψ) = φ. Now suppose that φ is in [PS,≤] such that σ(φ) = u. We
will show that there exists ψ ∈ [PS,≤] such that α(ψ) = φ. Set m = h(0)−1(φ(u)), and
ψ1 = φum ∈ [PS,≤]. Then for any s ≥ u, we have

α(ψ1)(s) =
∑

v∈S

h(v)(ψ1(s + v)) =

{
h(0)(ψ1(u)) = φ(u), s = u,

0, s > u.

Thus (φ − α(ψ1))(s) = 0 when s ≥ u. If φ 6= α(ψ1), then supp(φ − α(ψ1)) is not empty.
Clearly σ(φ− α(ψ1)) < u. Thus, by hypothesis, there exists ψ2 ∈ [PS,≤] such that α(ψ2) =
φ− α(ψ1). Now φ = α(ψ1 + ψ2). This means that α is onto. Hence α is an automorphism.

If g : M1 −→ M2 is a morphism and η1 : F1 −→ M1, η2 : F2 −→ M2 are Ω-precovers,
then the diagram

F1
h−−−−→ F2

η1

y η2

y
M1

g−−−−→ M2

can be completed to a commutative diagram. According to [3], h is called a lifting of g
(relative to the two precovers). A morphism g : M1 −→ M2 is said to be an Ω-covering if
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M1 and M2 have Ω-covers η1 : F1 −→ M1 and η2 : F2 −→ M2 and some lifting h : F1 −→ F2

is an isomorphism. Equivalently, g : M1 −→ M2 is an Ω-covering morphism if and only if
M1 and M2 have Ω-covers η1 : F1 −→ M1 and η2 : F2 −→ M2 and every lifting h : F1 −→ F2

is an isomorphism.

Corollary 1. If g : M1 −→ M2 is an Ω-covering morphism, then [gS,≤] : [MS,≤
1 ] −→

[MS,≤
2 ] is an [ΩS,≤]-covering [[RS,≤]]-morphism.

Proof. It was proved in [9, Lemma 5] that the functor [(−)S,≤] is exact. Now the
result follows from Theorem 1.

It was showed in [10] that if η : P −→ M is an injective cover of M , then η[x−1] :
P [x−1] −→ M [x−1] is an Ω[x−1]-cover of left R[x]-module M [x−1], where

η[x−1] = η + 0 · x + 0 · x2 + · · ·
∈ HomR(P, M)[[x]] ∼= HomR[x](P [x−1], M [x−1]),

Ω[x−1] = {P [x−1]|P ∈ Ω}.
From Theorem 1, we have

Corollary 2. Let η : P −→ M be an Ω-cover. Then η[x−1] : P [x−1] −→ M [x−1] is
an Ω[x−1]-cover of left R[[x]]-module M [x−1], where Ω[x−1] = {P [x−1] |P ∈ Ω}.

Corollary 3. Let R be a ring. Denote

Γ1 = {[ES,≤] |E is a quasi-injective left R-module}.
If P −→ M is a quasi-injective cover of M , then [PS,≤] −→ [MS,≤] is a Γ1-cover of [MS,≤].

Note from [8, Lemma 3.2] that a left R-module M is quasi-injective if and only if the
left [[RS,≤]]-module [MS,≤] is quasi-injective.

Denote
Γ0 = {[ES,≤] |E is an injective left R-module}.

Corollary 4. If P −→ M is an injective cover of M , then [PS,≤] −→ [MS,≤] is a
Γ0-cover of [MS,≤].

Note from [9] that if S is a finitely generated monoid, R is a left noetherian ring and
M a left R-module, then [MS,≤] is an injective left [[RS,≤]]-module if and only if M is an
injective left R-module.

In the following we will give a characterization of the elements of Γ0.

Lemma 2. Let M be a left R-module. Then for any φ ∈ [MS,≤],

|{s ∈ S | esφ 6= 0}| < ∞.

Proof. Suppose that D = {s ∈ S | esφ 6= 0} is infinite. Then for any s ∈ D, there
exists x ∈ S such that

0 6= (esφ)(x) =
∑

u∈S

es(u)φ(u + x) = φ(s + x).

Thus s+x ∈ supp(φ). Since supp(φ) is finite, there exists an infinite subset {sj |j ∈ J} such
that sj + xj = sk + xk for any j, k ∈ J . Since (S,≤) is artinian and narrow, by [11, 1.2],
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there exist indices n1 < n2 < n3 < · · · such that n1, n2, · · · ∈ J and xn1 ≤ xn2 ≤ xn3 ≤ · · · .
Now it follows that

sn1 ≥ sn2 ≥ sn3 ≥ · · · .

Since (S,≤) is artinian, we have snm = snm+1 = · · · for some positive integer m, which is a
contradiction.

Proposition 2. Let A be an injective left [[RS,≤]]-module. Then the following condi-
tions on A are equivalent:

( i ) There exists a left R-module E such that A ∼= [ES,≤].
(ii) There exists an injective left R-module E such that A ∼= [ES,≤].
(iii) For every z ∈ A, |{s ∈ S | esz 6= 0}| < ∞.

Proof. (i)⇔(ii). It was showed in the proof of [9, Theorem 6] that if [ES,≤] is an
injective left [[RS,≤]]-module then E is an injective left R-module.

(i)⇒(iii). It follows from Lemma 8.
(iii)⇒(i). Denote

E = {z ∈ A | esz = 0 for any 0 < s ∈ S}.

Assume that z ∈ A. Then {s ∈ S|esz 6= 0} is finite. Denote

t = max{s ∈ S | esz 6= 0}.

Then etz 6= 0. But for any 0 < s ∈ S,

es(etz) = es+tz = 0.

Thus etz ∈ E. This means that E 6= 0. Clearly E is an additive subgroup of A. For any
z ∈ E, any f ∈ [[RS,≤]] and any 0 < s ∈ S, es(fz) = f(esz) = 0. Thus fz ∈ E. This means
that E is an [[RS,≤]]-submodule of A and, so is an R-submodule of A by action of r ·z = crz
for any r ∈ R.

For any z ∈ E, define λz = φ0z ∈ [ES,≤]. Denote G = {λz|z ∈ E}. Then it is
easy to see that there is an isomorphism of left R-modules λ : E −→ G, where the left
action on G of R is defined by r · λz = crλz. Now, by injectivity of A, there exists an
[[RS,≤]]-homomorphism α : [ES,≤] −→ A such that the following diagram commutes:

E
λ−−−−→ [ES,≤]

↓τ ↙α

A

where τ is the natural inclusion map.
Suppose that 0 6= φ ∈ [ES,≤] is such that α(φ) = 0. Denote t = σ(φ). Then

(etφ)(x) =
∑

u∈S

et(u)φ(u + x) = φ(t + x) =

{
φ(t), x = 0,

0, x 6= 0.

Thus etφ = λφ(t) = λ(φ(t)). Hence we have φ(t) = τ(φ(t)) = αλ(φ(t)) = α(etφ) = etα(φ) =
0, a contradiction. Therefore α is a monomorphism.

Suppose that z ∈ A− α([ES,≤]). Then

|{s ∈ S | esz 6= 0}| < ∞.
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Denote
s1 = max{s ∈ S | esz 6= 0}.

For any 0 < s ∈ S,
es(es1z) = (eses1)z = es+s1z = 0.

Thus es1z ∈ E. Denote a1 = es1z. Define ψ1 = φs1a1 ∈ [ES,≤]. Then z − α(ψ1) 6= 0.
Now assume that there exist ψ1, ψ2, · · · , ψn−1 ∈ [ES,≤] such that

z − α(ψ1)− · · · − α(ψi) 6= 0, i = 1, 2, · · · , n− 1,

s1 > s2 > · · · > sn,

where si = max{s ∈ S | es(z − α(ψ1)− · · · − α(ψi−1)) 6= 0}, i = 2, · · · , n. Since z − α(ψ1)−
· · · −α(ψi−1) 6= 0 and {s ∈ S | es(z−α(ψ1)− · · · −α(ψi−1)) 6= 0} is finite, si is well defined.
Denote

zn = z − α(ψ1)− · · · − α(ψn−1).

For any 0 < s ∈ S,
es(esnzn) = (esesn)zn = es+snzn = 0.

Thus esnzn ∈ E. Denote an = esnzn. Define ψn = φsnan ∈ [ES,≤]. Then

(esnψn)(x) = ψn(x + sn) =

{
esnzn = an, x = 0,

0, x 6= 0.

Thus esnψn = λan and, so

esn(zn − α(ψn)) = esnzn − α(esnψn) = esnzn − α(λan) = esnzn − τ(esnzn) = 0.

For any sn < s ∈ S,

es(zn − α(ψn)) = eszn − α(esψn) = −α(esψn) = 0,

since esψn = 0. Obviously

zn − α(ψn) = z − α(ψ1)− · · · − α(ψn−1)− α(ψn) 6= 0

(otherwise, z ∈ α([ES,≤])). Denote

sn+1 = max{s ∈ S | es(zn − α(ψn)) 6= 0}.

Then clearly sn+1 < sn.
By induction principle, we obtain a descending chain of elements of S:

s1 > s2 > · · · > sn > sn+1 > · · · ,

which is contradicted with the hypothesis that (S,≤) is artinian.
Hence A = α([ES,≤]) and, so α is an isomorphism of left [[RS,≤]]-modules.

Proposition 3. Let M be a left R-module and β : A −→ [MS,≤] an injective precover
of left [[RS,≤]]-module [MS,≤]. Denote

E = {z ∈ A | fz = cf(0)z for all f ∈ [[RS,≤]]}.

Then E is an injective precover of M .
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Proof. For any m ∈ M , define λm = φ0m ∈ [MS,≤]. Denote

G(M) = {λm |m ∈ M}.
Then it is easy to see that there is an isomorphism of left R-modules λ : M −→ G(M),
where the left action on G(M) of R is defined by r · λm = crλm.

For any f ∈ [[RS,≤]] and any m ∈ M ,

(fλm)(x) =
∑

u∈S

f(u)λm(u + x)

=

{
f(0)m, x = 0,

0, x 6= 0

= λf(0)m(x).

Thus fλm = λf(0)m ∈ G(M). This means that G(M) is an [[RS,≤]]-submodule of [MS,≤].
For any f, g ∈ [[RS,≤]] and any z ∈ E,

f(gz) = (fg)z = c(fg)(0)z = cf(0)g(0)z

= (cf(0)cg(0))z = cf(0)(cg(0)z) = cf(0)(gz).

Thus gz ∈ E. This means that E is an [[RS,≤]]-submodule of A.
Let V be a left R-module and W ≤ V . Suppose that α : W −→ E is an R-

homomorphism. Define θ : G(W ) −→ E via

θ(λw) = α(w), ∀w ∈ W.

For any f ∈ [[RS,≤]] and any w ∈ W , we have

θ(fλw) = θ(λf(0)w) = α(f(0)w) = f(0)α(w)
= cf(0)α(w) = fα(w) = fθ(λw).

Now it is easy to see that θ is an [[RS,≤]]-homomorphism. Since A is injective, there exists
an [[RS,≤]]-homomorphism h : G(V ) −→ A such that the following diagram commutes:

G(W ) −→ G(V )

↓θ ↙α

A

For any v ∈ V and any f ∈ [[RS,≤]], we have

fh(λv) = h(fλv) = h(λf(0)v) = h(cf(0)λv) = cf(0)h(λv).

Thus h(λv) ∈ E. So we can regard h as an [[RS,≤]]-homomorphism from G(V ) to E. Now
for any w ∈ W ,

hλ(w) = h(λw) = θ(λw) = α(w).

Thus (hλ)|W = α. This means that E is an injective left R-module.
For any z ∈ E, and any 0 < s ∈ S, we have

β(z)(s) =
∑

u∈S

es(u)β(z)(u) = (esβ(z))(0)

= β(esz)(0) = β(ces(0)z)(0) = β(c0z) = 0.
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Thus β(z) = λβ(z)(0). Hence λ−1β : E −→ M is an R-homomorphism.
Suppose that E1 is an injective left R-module and η : E1 −→ M is an R-homomorphism.

Then there exists an [[RS,≤]]-homomorphism δ such that the following diagram commutes:

[ES,≤
1 ]

↓δ ↘[ηS,≤]

A
β−−−−→ [MS,≤]

For any e ∈ E1, and any 0 < s ∈ S,

fδ(λe) = δ(fλe) = δ(λf(0)e) = δ(cf(0)λe) = cf(0)δ(λe).

Thus δ(λe) ∈ E. Now, by β(δ(λe)) = λβ(δ(λe))(0), it is easy to see that the following diagram

E1

↓δλ ↘η

E
λ−1β−−−−→ M

commutes. This means that λ−1β : E −→ M is an injective precover of M .
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