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SYMMETRIC AND ASYMMETRIC DIOPHANTINE
APPROXIMATION

TONG Jingcheng∗

Abstract

Let ξ be an irrational number with simple continued fraction expansion

ξ = [a0; a1, · · · , ai, · · · ]

and pi
qi

be its ith convergent. Let Ci be defined by ξ − pi
qi

= (−1)i/(Ciqiqi+1). The
author proves the following theorem:

Theorem. Let r > 1, R > 1 be two real numbers and

L = 1
r−1

+ 1
R−1

+ anan+1rR, K = 1
2

�
L +

q
L2 − 4

(r−1)(R−1)

�
.

Then
( i ) Cn−2 < r, Cn < R imply Cn−1 > K;
(ii) Cn−2 > r, Cn > R imply Cn−1 < K.

This theorem generalizes the main result in [1].
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§ 1 . Introduction

Let ξ be an irrational number with simple continued fraction expansion

ξ = [a0; a1, · · · , ai, · · · ]
and pi

qi
be its ith convergent. In [1], the present author considered the well-known inequality

in the theory of continued fractions
∣∣∣ξ − pi

qi

∣∣∣ < 1/(qiqi+1). (1.1)

It has been proved that among any three consecutive convergents pi

qi
(i = n−2, n−1, n),

at least one satisfies
∣∣ξ − pi

qi

∣∣ < 1/(αnqiqi+1) for some αn > 1, and that among any four
consecutive convergents, at least one satisfies −1/(βnqiqi+1) < ξ − pi

qi
< 1/(βnqiqi+1) for

some βn > 1. These results are consequences of the following theorem (cf. [1]):
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Theorem 1.1. Let ξ = [a0; a1, · · · , ai, · · · ] be an irrational number and

Dn = [an+1;an, · · · , a1][an+2; an+3, · · · ].

If r > 1 is a real number and L =
(√

anan+1 + 1√
r

)/
(
√

r −√anan+1), then
( i ) Dn−1 < r implies max (Dn−2, Dn) > L;
(ii) Dn−1 > r implies min (Dn−2, Dn) < L.

Theorem 1.1 can be restated in an equivalent form below.

Theorem 1.1A. Let R > 1 be a real number and

L′ =
1
4

[√
anan+1

(
1 +

1
R

)
+

√
anan+1

(
1 +

1
R

)2

+
4
R

]2

.

Then

( i ) Dn−2 < R and Dn < R imply Dn−1 > L′;
(ii) Dn−2 > R and Dn > R imply Dn−1 < L′.

The proof of the equivalence of Theorem 1.1 and Theorem 1.1A is very easy since
R = L is equivalent to r = L′ as follows:

R =
(√

anan+1 +
1√
r

)/
(
√

r −√anan+1),

rR− 1 =
√

anan+1(R + 1)
√

r,

r −√anan+1

(
1 +

1
R

)√
r − 1

R
= 0,

r =
1
4

[√
anan+1

(
1 +

1
R

)
+

√
anan+1

(
1 +

1
R

)2

+
4
R

]
.

Theorem 1.1A suggests a very natural generalization of Theorem 1.1: if r,R are two real
numbers greater than 1, and Dn−2 < r,Dn < R, what expression can we have to estimate
the magnitude of Dn−1? It is easily seen that Theorem 1.1 is the special case for r = R.

In this paper, using the idea developed in [2–4], we find this explicit expression in two
parameters r,R.

§ 2 . Preliminaries

Let ξ = [a0; a1, · · · , ai, · · · ] and pi

qi
= [a0; a1, · · · , ai].

Let Dn = [an+1; an, · · · , a1][an+2; an+3, · · · ] and Cn = 1 + 1
Dn

.

As pointed out in [1], we have

ξ − pi

qi
= (−1)n/(Cnqnqn+1). (2.1)

Let P = [an+1; an+2, · · · ] and Q = [an; an−1, · · · , a1]. Then it is easily seen that

Dn−2 = (an + P−1)/(Q− an), (2.2)

Dn−1 = PQ, (2.3)

Dn = (an+1 + Q−1)/(P − an+1). (2.4)
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By (2.3) we have Q = P−1Dn−1. Replacing Q in (2.2) by P−1Dn−1 yields

Dn−2 = (an + P−1)/(P−1Dn−1 − an). (2.5)

From (2.5) we have
P−1 = an(Dn−2 + 1)/(Dn−2Dn−1 − 1). (2.6)

By (2.3) we have P = Q−1Dn−1. Replacing P in (2.4) by Q−1Dn−1 yields

Dn = (an+1 + Q−1)/(Q−1Dn−1 − an+1). (2.7)

From (2.7) we have
Q−1 = an+1(Dn + 1)/(DnDn−1 − 1). (2.8)

From (2.3), (2.6) and (2.8), we have

Dn−1 =
(Dn−2Dn−1 − 1)(DnDn−1 − 1)

an(1 + Dn−2)an+1(1 + Dn)
, (2.9)

which yields

D2
n−1 −

[ 1
Dn−2

+
1

Dn
+ anan+1

(
1 +

1
Dn−2

)(
1 +

1
Dn

)]
Dn−1 +

1
Dn−2Dn

= 0. (2.10)

The formula (2.10) plays a key role in the proof of our main result.

§ 3 . Main Result

Theorem 3.1. Let ξ = [a0; a1, · · · , an, · · · ] be an irrational number and

Dn = [an+1; an, · · · , a1][an+2; an+3, · · · ].

If r > 1, R > 1 are two real numbers and

M =
1
2

{1
r

+
1
R

+ anan+1

(
1 +

1
r

)(
1 +

1
R

)

+

√[1
r

+
1
R

+ anan+1

(
1 +

1
r

)(
1 +

1
R

)]2

− 4
rR

}
,

then
( i ) Dn−2 < r and Dn < R imply Dn−1 > M ;
(ii) Dn−2 > r and Dn > R imply Dn−1 < M.

Proof. Consider formula (2.10). Let

f(Dn−2, Dn) = D−1
n−2 + D−1

n + anan+1(1 + D−1
n−2)(1 + D−1

n ).

Then formula (2.10) becomes

D2
n−1 − f(Dn−2, Dn)Dn−1 + (Dn−2Dn)−1 = 0. (3.1)

Because an ≥ 1, an+1 ≥ 1, it is easily seen that

f(Dn−2, Dn) ≥ D−1
n−2 + D−1

n + (1 + D−1
n−2)(1 + D−1

n ) > 2D−1
n−2 + 2D−1

n .
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From the quadratic equation (3.1) in Dn−1, we have f2(Dn−2, Dn) − 4(Dn−2Dn)−1 > 0.
Because Dn−2 > an−1an ≥ 1, Dn > an+1an+2 ≥ 1, we have

f2(Dn−2, Dn) ≤ f2(Dn−2, Dn) + 4− 4(Dn−2Dn)−1

< f2(Dn−2, Dn)− 4(Dn−2, Dn) + 4
√

f2(Dn−2, Dn)− 4(Dn−2Dn)−1 + 4.

Hence f(Dn−2, Dn)−
√

f2(Dn−2, Dn)− 4(Dn−2Dn)−1 < 2. Therefore the quadratic equa-
tion (3.1) in Dn−1 has only one solution as follows:

Dn−1 =
1
2
[f(Dn−2, Dn) +

√
f2(Dn−2, Dn)− 4(Dn−2Dn)−1 ]. (3.2)

Now we show that Dn−1 is a decreasing function of both Dn−2 and Dn. It is obvious that
f(Dn−2, Dn) is a decreasing function of both Dn−2 and Dn. We need only to show that the
function F (Dn−2, Dn) = f2(Dn−2, Dn)−4(Dn−2Dn)−1 is also a decreasing function of both
Dn−2 and Dn. This can be done easily by showing that ∂F/∂Dn−2 < 0 and ∂F/∂Dn < 0.
Because F (Dn−2, Dn) is symmetric in Dn−2 and Dn, we need only checked one of the partial
derivatives.

∂F/∂Dn = 2f(Dn−2, Dn)[−D−2
n − anan+1(1 + D−1

n−2)D
−2
n ] + 4D−1

n−2D
−2
n

< −4D−2
n + 4D−1

n−2D
−2
n < 0.

The conclusion of Theorem 3.1 is immediate because

Dn−1 =
1
2
[f(Dn−2, Dn) +

√
F (Dn−2, Dn) ]

is a decreasing function of both Dn−2 and Dn.
For the convenience of application, Theorem 3.1 can be restated in terms of Cn =

1 + D−1
n instead of Dn.

Theorem 3.1A. Let ξ = [a0; a1, · · · , an, · · · ] be an irrational number and pn

qn
=

[a0; a1, · · · , an]. Let Cn be defined by ξ − pn

qn
= (−1)n/(Cnqnqn+1). If r > 1, R > 1 are

two real numbers and

K =
1
2

[ 1
r − 1

+
1

R− 1
+ anan+1rR +

√( 1
r − 1

+
1

R− 1
+ anan+1rR

)2

− 4
(r − 1)(R− 1)

]
,

then
( i ) Cn−2 < r and Cn < R imply Cn−1 > K;
(ii) Cn−2 > r and Cn > R imply Cn−1 < K.

Remark 3.1. Letting r = R in Theorem 3.1A, we have the result in [2]; letting
r = R =

√
a2

n + 4, we have the result in [4].
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