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HOMOGENIZATION OF SEMILINEAR PARABOLIC
EQUATIONS IN PERFORATED DOMAINS∗∗∗

P. DONATO∗ A. NABIL∗∗

Abstract

This paper is devoted to the homogenization of a semilinear parabolic equation with
rapidly oscillating coefficients in a domain periodically perforated by ε-periodic holes
of size ε. A Neumann condition is prescribed on the boundary of the holes.

The presence of the holes does not allow to prove a compactness of the solutions
in L2. To overcome this difficulty, the authors introduce a suitable auxiliary linear
problem to which a corrector result is applied. Then, the asymptotic behaviour of the
semilinear problem as ε → 0 is described, and the limit equation is given.
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§ 1 . Introduction

In this paper we study the asymptotic behaviour of the following semilinear parabolic
problem 




u′ε − div(Aε∇uε) = f(uε) + gε in Ωε × (0, T ),
uε = 0 on ∂Ω× (0, T ),
Aε∇uε · ν = 0 on ∂Sε × (0, T ),
uε(x, 0) = u0

ε in Ωε,

(1.1)

where Ω is a bounded open subset of Rn, Ωε = Ω\Sε is a domain perforated by a closed subset
Sε of ε-periodic holes of the same size as the period, gε ∈ L2(0, T, L2(Ωε)), u0

ε ∈ L2(Ωε) and
f is a continuous function with a linear growth. The matrix Aε is of the form Aε(x) = A(x

ε )
and A is a periodic bounded matrix field uniformly positive definite.

The homogenization of the corresponding linear problem has been originally studied
by S. Spagnolo [17, 16] in the (symmetric) general framework of the G-convergence. The
homogenization and the correctors for the non symmetric periodic case have been studied
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by A. Bensoussan, J. L. Lions and G. Papanicolaou in [1] and by S. Brahim-Otsman, G. A.
Francfort and F. Murat [4] in the framework of the H-convergence. The homogenization
and the correctors in the case of a periodically perforated domain have been studied by the
authors in [13, 14].

When there are no holes (i.e. Sε = ∅), the homogenization of Problem (1.1) follows
straightforward from the linear case. Indeed, under usual weak convergence assumptions on
the data, the boundedness of uε in L2(0, T ; H1

0 (Ω)) and of u′ε in L2(0, T ; H−1(Ω)) implies
that (up to a subsequence) uε strongly converges in L2(Ω × (0, T )) to some function u.
Hence, the continuity of the Nemyskii operator associated to f implies the convergence of
f(uε) to f(u). Consequently, the convergence results of the linear case apply and give the
limit problem solved by u.

In presence of holes, the problem is more complicated since, as already observed by
the authors in the study of the linear case [14], the boundedness of ||uε||L2(0,T ; H1(Ωε)) and
||u′ε||L2(0,T ; (H1(Ωε))′), does not provide the compactness in L2(Ω × (0, T )) of any exten-
sion of uε to the whole of Ω. The best strong convergence we could derive in [14] is in
C([0, T ]; H−1(Ω)). This convergence does not allow by itself to pass to the limit in the
nonlinear term f(uε).

Then, we look for reasonable assumptions on f and on the data gε and u0
ε, allowing to

overcome this difficulty. We prove here that if f is Lipschitz continuous and the data verify
the following convergencies:





lim
ε→0

‖u0
ε − u0‖L2(Ωε) = 0,

lim
ε→0

‖gε − g‖L2(0,T ;L2(Ωε)) = 0,
(1.2)

then

f̃(uε) ⇀ θf(u) weakly in L2(0, T ; L2(Ω)), (1.3)

where ˜ denotes the zero extension to Ω, θ is the proportion of material and where we
denoted by θu the limit of ũε in C([0, T ]; H−1(Ω)).

This allows to show (Theorem 3.1) that u is the unique solution of the homogenized
problem 




θu′ − div
(
A0∇u

)
= θf(u) + θg in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),
u(x, 0) = u0 in Ω,

A0 being the homogenized matrix of Aε.

To prove convergence (1.3), we introduce the solution vε of an auxiliary linear problem
(Problem (4.7)), whose right-hand side is the homogenized operator of the linear part of
Equation (1.1). This approach is, in spirit, that used by A. Bensoussan, L. Boccardo and F.
Murat in [2] for the homogenization of some nonlinear problems with quadratic growth in
the gradient (see also P. Donato, A. Gaudiello and L. Sgambati [12] for an extension to the
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case of perforated domains). Here, the main step (Proposition 4.2) consists in proving that

lim
ε→0

||uε − vε||L2(Ωε×(0,T )) = 0.

As a consequence, since f is Lipschitz continuous, the limit of the nonlinear term f(uε) is
the same as that of f(vε). Hence, the last step consists in computing this limit, by applying
to vε the corrector result for the linear case.

We recall that the main difference between the elliptic and the parabolic case is that
in the last one the corrector result needs a strong convergence of the data, even in the case
without holes (see [4]). This is why the assumption (1.2) has been necessary.

In Section 2, we recall the results for the linear case, together with some preliminaries.
In Section 3, we present the problem and we state the main convergence result. It is proved
in Section 4, where we introduce the auxiliary problem and its properties.

§ 2 . Preliminaries

In this section, we introduce the perforated domain and recall the homogenization and
corrector results for the linear parabolic problem.

Let Ω be a bounded connected open set of Rn, n ≥ 2, with boundary ∂Ω. Let Y =
]0, l1[× · · ·×]0, ln[ be the reference cell and S ⊂⊂ Y an open subset (the reference hole)
with a Lipschitz boundary ∂S. We denote by ε a positive parameter taking its values in a
positive sequence which tends to zero. Introduce the set of holes in Rn defined by

τ(εS̄) = {ε(k(l) + S̄), k ∈ Zn, k(l) = (k1l1, · · · , knln)}.

For simplicity, we assume that for every ε, the holes do not meet the boundary of Ω,
i.e. that

∂Ω ∩ τ(εS̄) = ∅. (2.1)

This means that there exists a subset Kε of Zn such that

Ω ∩ τ(εS̄) =
⋃

k∈Kε

(ε(k(l) + S̄)).

Set
Sε =

⋃

k∈Kε

(ε(k(l) + S̄)).

Then, the perforated domain Ωε is defined by

Ωε = Ω\Sε, (2.2)

and from (2.1) we have
∂Ω ∩ ∂Sε = ∅, ∂Ωε = ∂Ω ∪ ∂Sε.

In the following we use the notations:
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• Y ∗ = Y \S̄;

• |ω| = the Lebesgue measure of any measurable set ω of Rn;

• θ = |Y ∗|/|Y | (the proportion of material);

• χ
ω

= the characteristic function of the set ω, χ
ω
(x) =

{
1, if x ∈ ω,

0, elsewhere;

• ṽ = the extension by zero on Ω of any function v defined on Ωε;

• ν = (νi)i=1,··· ,n the unit external normal vector with respect to Y ∗ or Ωε;

• C = any constant independent of ε.

Recall that, as ε → 0,

χ
Ωε

⇀ θ = |Y ∗|/|Y | L∞(Ω) weak ∗ (2.3)

(see for instance [9, Chapter 2] for a proof). This is due to the fact that, from the assumption
(2.1), one has

χ
Ωε

(x) = (χ
Y ∗)

#
(x

ε

)
,

where (χ
Y ∗)

# is defined by

(χ
Y ∗)

#(y + k li ei) = χ
Y ∗(y) a.e. on Y, ∀ k ∈ Z, ∀ i ∈ {1, · · · , n},

and {e1, · · · , en} is the canonical basis of Rn.
Let A(y) = (aij(y))1≤i,j≤n be a n× n matrix-valued function defined on Rn such that





A ∈ (L∞(Y ))n2
,

A is Y -periodic,
there exists α > 0 such that for any λ = (λ1, · · · , λn) ∈ Rn,

n∑

i,j=1

aij(y)λiλj ≥ α ‖λ‖2 a.e. on Y,

(2.4)

and set for any ε,
Aε(x) = A

(x

ε

)
a.e. on Ω.

Let Vε be the Hilbert space

Vε = {v ∈ H1(Ωε) : v|∂Ω = 0}, (2.5)

equipped with the H1(Ωε)-norm and denote by V ′
ε its dual.

We will need in the sequel the following compactness result, which is a particular case
of Lemma 3.3 of [14].

Lemma 2.1. (cf. [14]) Let {Ωε} ⊂ Ω be given by (2.2), {vε}ε be a sequence in L∞(0, T ;
L2(Ωε)) such that {v′ε}ε is in L2(0, T ; V ′

ε ) and

( i ) ṽε ⇀ θv weakly in L∞(0, T ; L2(Ω)),

(ii) ‖v′ε‖L2(0,T ;V ′ε ) ≤ c,
(2.6)
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where θ is the constant given by (2.2). Then

ṽε −→ θv strongly in C0([0, T ];H−1(Ω)).

For every T > 0, we introduce a family {Pε} of extension operators for time-dependant
functions, recalled in the following lemma (see [6, 8]).

Lemma 2.2. (cf. [6, 8]) For all ε > 0, there exists an extension operator

Pε ∈ L(L2(0, T ;Hk(Ωε)), L2(0, T ; Hk(Ω))), k = 0, 1,

such that, for all ϕ ∈ L2(0, T ; Hk(Ωε)) and ϕ′ ∈ L2(0, T ; L2(Ωε)), one has

( i ) Pεϕ = ϕ in Ωε × (0, T ),
(ii) Pεϕ

′ = (Pεϕ)′ in Ω× (0, T ),
(iii) ‖Pεϕ‖L2(0,T ;L2(Ω)) ≤ c0‖ϕ‖L2(0,T ;L2(Ωε)),

(iv) ‖Pεϕ
′‖L2(0,T ;L2(Ω)) ≤ c0‖ϕ′‖L2(0,T ;L2(Ωε)),

( v ) ‖∇(Pεϕ)‖L2(0,T ;[L2(Ω)]n) ≤ c0‖∇ϕ‖L2(0,T ;[L2(Ωε)]n),

where c0 is a constant independent of ε.

Remark 2.1. This lemma provides a Poincaré inequality in Vε with a constant inde-
pendent of ε. Indeed,

∀v ∈ Vε, ‖v‖L2(Ωε) ≤ CΩ‖∇v‖[L2(Ωε)]n ,

where CΩ = c0C(Ω), C(Ω) being the constant in the Poincaré inequality for H1
0 (Ω).

Let us consider the following linear parabolic problem




u′ε − div(Aε∇uε) = hε + P ∗ε (σ) in Ωε × (0, T ),
uε = 0 on ∂Ω× (0, T ),
Aε∇uε · ν = 0 on ∂Sε × (0, T ),
uε(x, 0) = u0

ε in Ωε,

(2.7)

where we denote by P ∗ε ∈ L
(
L2(0, T ; H−1(Ω)), L2(0, T ;Vε)

)
the adjoint of the operator Pε

introduced in Lemma 2.2.
It is well known (see [11, Chapter XVIII, §3]) that if σ ∈ L2(0, T, H−1(Ω)), hε ∈

L2(Ωε × (0, T )) and u0
ε ∈ L2(Ωε), Problem (2.7) has a unique solution uε such that

uε ∈ L2(0, T ; Vε) ∩ C0([0, T ]; L2(Ωε)). (2.8)

In the following, we will need some homogenization and corrector results for Problem
(2.7), proved in [14]. We recall them here for the reader’s convenience.

To do that, let us introduce the homogenized matrix A0, which is the same as in the
elliptic case studied in [10]. For any λ ∈ Rn, let χ̂λ be the solution of the following problem





−div(A∇(y · λ− χ̂λ)) = 0 in Y ∗,
(A∇(y · λ− χ̂λ)) · ν = 0 on ∂S,

χ̂λ Y -periodic,∫

Y ∗
χ̂λ(y) dy = 0,

(2.9)
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where A is the matrix given by (2.4). Set

ŵλ(y) = −χ̂λ(y) + λ · y a.e. on Y ∗.

Then the n× n homogenized matrix A0 = {a0
ij}1≤i,j≤n is defined by

A0λ =
1
|Y |

∫

Y ∗
A∇ŵλ dy for any λ ∈ Rn. (2.10)

We also introduce the (n× n) Y -periodic corrector matrix C(y) = {Cij(y)}1≤i,j≤n, defined
by

Cij(y) = δij(y)− ∂χ̂j

∂yi
(y) =

∂ŵj

∂yi
(y) a.e. on Y ∗,

with
ŵj = xj − χ̂j ,

where χ̂j is the solution of (2.9) for λ = ej and δij is the Kronecker symbol.
We define

Cε(x) = C
(x

ε

)
, a.e. on Ωε, (2.11)

which, by construction, is εY -periodic.

The asymptotic behaviour of Problem (2.7) is given by the following theorem.

Theorem 2.1. (cf. [13, 14]) Let σ ∈ L2(0, T, H−1(Ω)) and ({u0
ε}, {hε}) ⊂ L2(Ωε) ×

L2(Ωε × (0, T )) be two sequences such that

( i ) ũ0
ε ⇀ θu0 weakly in L2(Ω),

(ii) h̃ε ⇀ θh weakly in L2(Ω× (0, T )).
(2.12)

Under the assumption (2.4), let uε be the solution of Problem (2.7) and {Pε} given by Lemma
2.2. Then, as ε → 0, the following convergencies hold:

( i ) P εuε ⇀ u weakly in L2(0, T ; H1
0 (Ω)),

(ii) Ãε∇uε ⇀ A0∇u weakly in [L2(Ω× (0, T ))]n,
(iii) ũε ⇀ θu weakly in L∞(0, T ; L2(Ω)),
(iv) ũε −→ θu strongly in C0([0, T ]; H−1(Ω)),

(2.13)

where u is the solution of the homogenized equation




θu′ − div(A0∇u) = θh + σ in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),
u(x, 0) = u0 in Ω

(2.14)

with A0 given by (2.10).
Moreover, if the data satisfy

( i ) lim
ε→0

‖u0
ε − u0‖L2(Ωε) = 0,

(ii) lim
ε→0

‖hε − h‖L2(0,T ;L2(Ωε)) = 0,
(2.15)
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then we have the following corrector result

( i ) lim
ε→0

‖uε − u‖C0([0,T ]; L2(Ωε)) = 0,

(ii) lim
ε→0

‖∇uε − Cε∇u‖L2((0,T ); [L1(Ωε)]n) = 0.
(2.16)

Remark 2.2. Theorem 2.1 has been proved in [14] in the case σ = 0. The same proof
with the obvious modifications is still valid when σ 6= 0. The result in this case can also be
derived from a more general one, proved, in a forthcoming paper, in the framework of the
H0-convergence. This convergence, introduced by M. Briane, A. Damlamian and P. Donato
in [5], extends the H-convergence to (not necessarily periodic) perforated domains.

§ 3 . Position of the Problem and Main Result

In this section we state the main result of this paper. We will prove it in the next
section.

Let us consider the following nonlinear parabolic problem




u′ε − div(Aε∇uε) = f(uε) + gε in Ωε × (0, T ),
uε = 0 on ∂Ω× (0, T ),
Aε∇uε · ν = 0 on ∂Sε × (0, T ),
uε(x, 0) = u0

ε in Ωε,

(3.1)

under the following assumptions:

( i ) (u0
ε, u

0) ∈ L2(Ωε)× L2(Ω) and lim
ε→0

‖u0
ε − u0‖L2(Ωε) = 0,

(ii) (gε, g) ∈ L2(0, T, L2(Ωε))× L2(0, T, L2(Ω)), lim
ε→0

‖g0
ε − g‖L2(0,T,L2(Ωε)) = 0, (3.2)

(iii) f : R −→ R is globally Lipschitz continuous.

It is well known (see for instance [7]), that if gε ∈ L2(0, T, L2(Ωε)) and u0
ε ∈ L2(Ωε), Problem

(3.1) has a unique solution uε such that

uε ∈ L2(0, T ; Vε) ∩ C0([0, T ]; L2(Ωε)).

Remark 3.1. In [14, Lemma 5.1] it is proved that the assumption (3.2)(i) is equivalent
to the following one:

( i ) ũ0
ε ⇀ θu0 weakly in L2(Ω),

(ii) ‖u0
ε‖2L2(Ωε) −→ θ‖u0‖2L2(Ω).

(3.3)

In particular, if u0
ε = h|Ωε

for some h in L2(Ω), then u0 = h and (i) and (ii) are satisfied.
Similarly, the assumption (3.2)(ii) is equivalent to the following

( i ) g̃ε ⇀ θg weakly in L2(0, T ;L2(Ω)),

(ii) ‖gε‖2L2(0,T ;L2(Ωε)) −→ θ‖g‖2L2(0,T ;L2(Ω)).
(3.4)
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Also, observe that the assumption (3.2)(iii) implies that there exists m ∈ R+ such that

∀ s ∈ R, |f(s)| ≤ m(1 + |s|). (3.5)

The asymptotic behavior of the semilinear problem (3.1) is given by the following
theorem.

Theorem 3.1. Under the assumption (3.2), let uε be the solution of Problem (3.1).
Then

( i ) P εuε ⇀ u weakly in L2(0, T ; H1
0 (Ω)),

(ii) Ãε∇uε ⇀ A0∇u weakly in [L2(Ω× (0, T ))]n,

(iii) lim
ε→0

‖f(uε)− f(u)‖L2(Ωε×(0,T )) = 0,

(iv) lim
ε→0

‖uε − u‖C0([0,T ]; L2(Ωε)) = 0,

( v ) lim
ε→0

‖∇uε − Cε∇u‖L2((0,T ); [L1(Ωε)]n) = 0,

(3.6)

where u is the solution of the homogenized equation




θu′ − div(A0∇u) = θf(u) + θg in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),
u(x, 0) = u0 in Ω

(3.7)

with A0 given by (2.10).

Remark 3.2. As seen in Remark 3.1, convergence (3.6)(iii) is equivalent to the fol-
lowing ones:

( i ) f̃(uε) ⇀ θf(u) weakly in L2(Ω× (0, T )),
(ii) lim

ε→0
‖f(uε)‖2L2(Ωε×(0,T )) = θ‖f(u)‖2L2(Ω×(0,T )).

This describes the limit behaviour, as ε → 0, of the nonlinear term f(uε) on Ωε.

§ 4 . Proof of the Main Result

The proof of Theorem 3.1 is given here in several steps. First, in Subsection 4.1, we
prove some suitable a priori estimates on uε. In Subsection 4.2 we introduce the solution
vε of the auxiliary linear problem and we show that the L2-norm of uε − vε goes to zero.
There we also prove convergence (3.6)(iii). The conclusion of the proof is given in the last
subsection.

4.1. A Priori Estimates

The variational formulation of Problem (3.1) is




Find uε ∈ L2(0, T ; Vε) with u′ε ∈ L2(0, T ; V ′
ε ), such that for every v ∈ Vε,

〈u′ε(t), v〉V ′ε ,Vε
+

∫

Ωε

Aε∇uε∇v dx =
∫

Ωε

f(uε)v dx +
∫

Ωε

gεv dx in D′(0, T ),

uε(0) = u0
ε in Ωε.

(4.1)
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Proposition 4.1. Under the assumption (3.2), let uε be the solution of Problem (3.1).
Then

( i ) ‖uε‖L∞(0,T,L2(Ωε)) ≤ C,

(ii) ‖uε‖L2(0,T,Vε) ≤ C,

(iii) ‖u′ε‖L2(0,T,V ′ε ) ≤ C,

(4.2)

where C is a constant independent of ε.

Proof. Let us choose v = uε in (4.1) and integrate in time between 0 and t. We have

1
2
‖uε(t)‖2L2(Ωε) +

∫ t

0

∫

Ωε

Aε∇uε∇uεdxds

=
1
2
‖uε(0)‖2L2(Ωε) +

∫ t

0

∫

Ωε

f(uε)uεdxds +
∫ t

0

∫

Ωε

gεuεdxds. (4.3)

On the other hand, the assumption (3.2) implies that

|f(uε)uε| ≤ m(1 + |uε|)|uε| ≤ m(1 + |uε|2) + m|uε|2 = m + 2m|uε|2,

where m is given by (3.5).
Hence, taking into account the coerciveness of Aε, one has

1
2
‖uε(t)‖2L2(Ωε) + α

∫ t

0

‖∇uε‖2[L2(Ωε)]nds

≤ 1
2
‖uε(0)‖2L2(Ωε) + m|Ω|t + 2m

∫ t

0

‖uε‖2L2(Ωε)ds +
∫ t

0

‖gε‖L2(Ωε)‖uε‖L2(Ωε)ds.

Consequently

1
2
‖uε(t)‖2L2(Ωε) + α

∫ t

0

‖∇uε‖2[L2(Ωε)]nds

≤ 1
2
‖ũ0

ε‖2L2(Ω) + m|Ω|t + 2m

∫ t

0

‖uε‖2L2(Ωε)ds +
1
2

∫ t

0

‖g̃ε‖2L2(Ω),

and from the classical Gronwall Lemma we deduce estimates (4.2)(i) and (4.2)(ii).
To prove (4.2)(iii), let v be in L2(0, T ;Vε). From the variational formulation (4.1), it

is easy to see that
∣∣∣
∫ T

0

〈u′ε(t), v〉V ′ε ,Vε
ds

∣∣∣ ≤ ‖Aε∇uε‖L2(0,T ;[L2(Ωε)]n)‖∇v‖L2(0,T ;[L2(Ωε)]n)

+ |gε‖L2(0,T ;L2(Ωε))‖v‖L2(0,T ;L2(Ωε))

+ ‖f(uε)‖L2(0,T ;L2(Ωε))‖v‖L2(0,T ;L2(Ωε)).

Hence, from (4.2)(i), (4.2)(ii), the assumption (3.2) and the Poincaré inequality on Vε,
we deduce

∣∣∣
∫ T

0

〈u′ε(t), v〉V ′ε ,Vε

∣∣∣ds ≤ C‖v‖L2(0,T ;Vε), ∀ v ∈ L2(0, T ; Vε),

where C is a constant independent of ε, which gives (4.2)(iii).
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Corollary 4.1. Under the assumptions of Proposition 4.1, there exist a subsequence of
{uε}ε, still denoted by ε, and u ∈ L2(0, T ; H1

0 (Ω))∩L∞(0, T, L2(Ω)) such that the following
convergencies hold:

( i ) P εuε ⇀ u weakly in L2(0, T ; H1
0 (Ω)),

(ii) ũε ⇀ θu weakly ∗ in L∞(0, T ;L2(Ω)),

(iii) ũε → θu strongly in C([0, T ]; H−1(Ω)).

(4.4)

Moreover

u(x, 0) = u0. (4.5)

Proof. From Proposition 4.1 and Lemma 2.2, one has

( i ) ‖P εuε‖L∞(0,T,L2(Ω)) ≤ C,

(ii) ‖ũε‖L∞(0,T,L2(Ω)) ≤ C,

(iii) ‖P εuε‖L2(0,T,H1
0 (Ω)) ≤ C.

(4.6)

Then, there exists a subsequence (still denoted by ε) and u ∈ L2(0, T ;H1
0 (Ω))∩L∞(0, T,

L2(Ω)) such that (4.4)(i) holds. Convergence (4.4)(ii) follows from (4.4)(i) and convergence
(2.3) (see Lemma 3.2 of [14] for a detailed proof). Finally, to prove (4.4)(iii), it suffices to
observe that, thanks to (4.4)(ii) and (4.2)(iii), Lemma 2.1 can be applied to {uε}.

To prove (4.5), we observe that from (4.4)(iii) one has

ũε(0) → θu(0) strongly in H−1(Ω).

On the other hand, from (3.3) and the initial condition in Problem (3.1), we can deduce
that

ũε(0) = ũ0
ε ⇀ θu0 weakly in L2(Ω).

The uniqueness of the weak limit gives the claimed result.

4.2. The Auxiliary Problem and Some Convergence Results

We introduce here the solution vε ∈ L2(0, T ; Vε) ∩ C0([0, T ]; L2(Ωε)) of the following
problem





v′ε − div(Aε∇vε) = P ∗ε (θu′ − div(A0∇u)) + (gε − g
/Ωε

) in Ωε × (0, T ),

vε = 0 on ∂Ω× (0, T ),
Aε∇vε · ν = 0 on ∂Sε × (0, T ),
vε(x, 0) = u0

ε in Ωε,

(4.7)

where P ∗ε denotes the adjoint of Pε, g
/Ωε

is the restriction of the function g to the domain
Ωε and u is given by Corollary 4.1.

Thanks to the assumption (3.2) and convergence (2.3), Theorem 2.1, written for hε =
gε − g

/Ωε
and σ = θu′ − div(A0∇u), applies to Problem (4.7).
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Then, P εvε weakly converges to the solution v of




θv′ − div(A0∇v) = θu′ − div(A0∇u) in Ω× (0, T ),
v = 0 on ∂Ω× (0, T ),
v(x, 0) = u0 in Ω.

(4.8)

The uniqueness of this problem, together with (4.5), implies that v = u. Hence

( i ) P εvε ⇀ u weakly in L2(0, T ; H1
0 (Ω)),

(ii) ṽε ⇀ θu weakly in L∞(0, T ; L2(Ω)),

(iii) ṽε → θu strongly in C([0, T ],H−1(Ω)),

(iv) lim
ε→0

‖vε − u‖C0([0,T ]; L2(Ωε)) = 0,

( v ) lim
ε→0

‖∇vε − Cε∇u‖L2((0,T ); [L1(Ωε)]n) = 0.

(4.9)

The following proposition is the main tool for proving Theorem 3.1.

Proposition 4.2. Under the assumption (3.2), we have

lim
ε→0

‖uε − vε‖L2(0,T ; L2(Ωε)) = 0, (4.10)

where uε and vε are respectively solutions of (3.1) and (4.7).

Proof. Set wε = uε − vε. One has




w′ε − div(Aε∇wε) = f(uε)− P ∗ε (θu′ − div(A0∇u)) + g
/Ωε

in Ωε × (0, T ),

wε = 0 on ∂Ω× (0, T ),
Aε∇wε · ν = 0 on ∂Sε × (0, T ),
wε(x, 0) = 0 in Ωε.

Choosing wε as test function in the variational formulation of this problem and integrating
in time between 0 and t, we obtain

1
2
‖wε(t)‖2L2(Ωε) +

∫ t

0

∫

Ωε

Aε∇wε∇wεdxds

=
∫ t

0

∫

Ωε

f(uε)wεdxds−
∫ t

0

〈θu′, P εwε〉H−1(Ω),H1
0 (Ω) ds

+
∫ t

0

〈
div(A0∇u), P εwε

〉
H−1(Ω),H1

0 (Ω)
ds +

∫ t

0

∫

Ω

χ
Ωε

gw̃εdxds. (4.11)

We want now to pass to the limit, as ε → 0, in this equation. From convergencies (4.4) and
(4.9), it is easy to see that

lim
ε→0

∫ t

0

∫

Ω

χ
Ωε

gw̃εdxds = 0,

lim
ε→0

∫ t

0

〈θu′, P εwε〉H−1(Ω),H1
0 (Ω) ds = 0,

lim
ε→0

∫ t

0

〈
div(A0∇u), P εwε

〉
H−1(Ω),H1

0 (Ω)
ds = 0.

(4.12)
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The main difficulty is to prove that

lim
ε→0

∫ t

0

∫

Ωε

f(uε)wεdxds = 0. (4.13)

Indeed, due to the lack of compactness of P εuε in L2(0, T, L2(Ω)), both terms f̃(uε) and w̃ε

only weakly converge in L2(0, T, L2(Ω)). Hence, we use the strong convergence to zero of
w̃ε in C0([0, T ]; H−1(Ω)), as follows.

From convergencies (4.4)(ii) and (4.9)(ii), one has

lim
ε→0

∫ t

0

∫

Ωε

f(0)wεdxds = 0.

Hence, to prove (4.13) it suffices to show that

lim
ε→0

∫ t

0

∫

Ωε

f1(uε)wεdxds = 0, (4.14)

where f1(s) = f(s)− f(0).
Obviously, f1(0) = 0 and in view of (3.2)(iii), also f1 is globally Lipschitz continuous.

Then, f1 is derivable a.e. and f ′1 is in L∞(R).
Then, from known results (see [15, p.54] as well as the more general proof of A. Ancona

given in [3]), one has that f1(P εuε) is in L2(0, T, H1
0 (Ω)) and

∇(f1(P εuε)) = f ′1(P
εuε)∇(P εuε).

Since

‖f(P εuε)‖2L2(0,T,H1
0 (Ω)) ≤

∫ T

0

(‖f(P εuε)‖2L2(Ω) + ‖f ′(P εuε)‖2L∞(Ω)‖∇(f(P εuε))‖2L2(Ω)),

this, together with the assumption (3.2)(iii) and the estimate (4.6)(iii) implies that

f1(P εuε) is bounded in L2(0, T,H1
0 (Ω)). (4.15)

On the other hand, from (4.4)(iii) and (4.9)(iii), we have (up to a subsequence, still denoted
by ε)

w̃ε → 0 strongly in C([0, T ], H−1(Ω)). (4.16)

From (4.16) and (4.15), one has

lim
ε→0

∫ t

0

∫

Ωε

f(uε)wεdxds = lim
ε→0

∫ t

0

∫

Ω

f(P εuε)w̃εdxds

= lim
ε→0

∫ t

0

〈w̃ε, f(P εuε)〉H−1(Ω),H1
0 (Ω)

= 0,

which proves (4.14) and then (4.13). We can now pass to the limit in (4.11) and we deduce
that

lim sup
ε→0

‖w̃ε(t)‖2L2(Ω) = 0, ∀ t ∈ (0, T ).

Finally, by using the Lebesgue dominated convergence theorem, we conclude the proof.
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Corollary 4.2. Under the assumptions of Proposition 4.2, we have

lim
ε→0

‖f(uε)− f(u)‖L2(Ωε×(0,T )) = 0, (4.17)

where u is given by Corollary 4.1.

Proof. Observe that, since f is Lipschitz continuous,

‖f(uε)− f(u)‖L2(Ωε×(0,T ))

≤ C‖uε − u‖L2(Ωε×(0,T ))

≤ ‖uε − vε‖L2(Ωε×(0,T )) + ‖vε − u‖L2(Ωε×(0,T )).

Hence, from convergencies (4.9)(iv) and (4.10), we deduce the desired convergence.

4.3. End of the Proof

To conclude the proof, it only remains to prove that the function u given in (4.4) is
the unique solution of Problem (2.14). To do that, since (3.2)(i) holds, it suffices to check
that hε = f(uε) + gε satisfies (2.15)(ii) of Theorem 2.1. This follows straightforward from
Remark 3.1, the assumption (3.2)(ii) and Corollary 4.2.

Hence, by applying Theorem 2.1 with σ = 0 and hε = gε + f(uε), we deduce that uε

verifies
( i ) P εuε ⇀ u weakly in L2(0, T ; H1

0 (Ω)),
(ii) Ãε∇uε ⇀ A0∇u weakly in [L2(Ω× (0, T ))]n,

(iii) lim
ε→0

‖uε − u‖C0([0,T ]; L2(Ωε)) = 0,

(iv) lim
ε→0

‖∇uε − Cε∇u‖L2((0,T ); [L1(Ωε)]n) = 0,

where u is the solution of the homogenized equation




θu′ − div(A0∇u) = θf(u) + θg in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),
u(x, 0) = u0 in Ω.

This concludes the proof of Theorem 3.1, since this problem has a unique solution.
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[11] Dautray, R. & Lions, J. L., Analyse Mathématique et Calcul Numérique pour les Sciences et Techniques,
Masson, Tome 3, Paris, 1985.

[12] Donato, P., Gaudiello, A. & Sgambati, L., Homogenization of bounded solutions of elliptic equations
with quadratic growth in periodically perforated domains, Asymptotic Analysis, 16(1998), 223–243.
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