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POLYNOMIAL RECURRENCE FOR
LÉVY PROCESSES∗∗∗
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Abstract

In this paper, the authors study the w-transience and w-recurrence for Lévy pro-
cesses with any weight function w, give a relation between w-recurrence and the last
exit times. As a special case, the polynomial recurrence and polynomial transience are
also studied.
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§ 1 . Introduction

Let X = {Ω,F ,Ft, Xt, θt, P} be a Lévy process on Rn starting at 0 with convolution
semigroup {πt} and Lévy exponent φ, that is, π̂t = e−tφ. Without loss of generality, we
assume that X is genuinely n-dimensional, that is, the linear space generated by supp π1 is
Rn itself. For any Borel set A, let LA be the last exit time from A, that is,

LA = sup{t > 0 : Xt ∈ A},

where sup ∅ = 0. Then LA is F-measurable. Let ℵ be the set of all bounded open sets N
with 0 ∈ N . Lévy processes are divided into two classes: recurrence and transience. The
Lévy process X is transient if and only if P (LN < ∞) = 1 for all N ∈ ℵ, and recurrent if
and only if P (LN = ∞) = 1 for all N ∈ ℵ (see e.g., [4]). If n ≥ 3, then X is transient. The
Lévy process X is recurrent if and only if for some N ∈ ℵ (and also for all N ∈ ℵ),

∫

N

Re
( 1

φ(x)

)
dx = ∞.

Port and Stone [3] contributed a lot to the study of the recurrence and transience for
Lévy processes. They also discuss the concepts of weak transience and strong transience.
A transient Lévy process is called weakly transient if E(LN ) = ∞ for all N ∈ ℵ; strongly
transient if E(LN ) < ∞ for all N ∈ ℵ. A transient Lévy process is either weakly transient
or strongly transient. If n ≥ 5, then X is strongly transient.

We have discussed α-transience and α-recurrence for Lévy processes with α ≤ 0 in [6].
The 0-transient and 0-recurrent are the usual transient and recurrent respectively. When
α < 0, X is α-recurrent if and only if E(e−αLN ) = ∞ for all N ∈ ℵ; while X is α-transient
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if and only if E(e−αLN ) < ∞ for all N ∈ ℵ. Thus the classification of α-transient and
α-recurrent is determined by the exponential moments of the last exit times.

We call X quasi-symmetric if it satisfies

Condition 1. There exists a compact subset K such that lim sup
t→∞

πt(K)
1
t = 1.

Condition 1 was introduced by S. C. Port and C. J. Stone [3] to give a ratio limit
theorem. In [6], we prove that X is quasi-symmetric if and only if X is α-recurrent for all
α < 0, that is to say, the speed at which X escapes from any bounded open set N can not be
any exponential. This gives a probabilistic explanation of quasi-symmetry. It actually says
that X is quasi-symmetric if and only if it is (0-)-recurrent. Particularly, any recurrent Lévy
process is quasi-symmetric. Since any symmetric Lévy process is quasi-symmetric while X
is transient when n ≥ 3, the class of quasi-symmetric Lévy processes is much bigger than
that of recurrent Lévy processes.

To classify the quasi-symmetric Lévy processes more finely, we introduce the concept
of polynomial recurrence and polynomial transience. They are studied in §2. In general,
given a weight function w, we may define w-recurrence and w-transience. In §3, we shall
discuss w-transience and w-recurrence.

§ 2 . Polynomial Recurrence

Given any α ∈ R, for any Borel subset A on Rn, define

V α(A) =
∫ ∞

0

e−αtπt(A) dt.

The support of V α is independent of α and we denote it by Σ. It is a closed semigroup
containing 0. The closed group generated by Σ is denoted by G which is Σ− Σ. If α > 0,
then V α(Rn) = 1

α < ∞. Considering α ≤ 0, if V α is a Radon measure, then X is said to be
α-transient; if V α(x+N) = ∞ for all x ∈ Σ and all N ∈ ℵ, then X is said to be α-recurrent.

We say X is degenerate if there is u 6= 0 and a 6= 0, such that supp π1 ⊆ {x : (u, x) = a}.
We say X is not one-sided if for all u 6= 0, π1{x : (u, x) > 0} > 0. The semigroup Σ is a
group if and only if X is not one-sided. If X is quasi-symmetric, then X is not one-sided.
If X is not one-sided, then X is non-degenerate.

Given any x, y ∈ Rn, we say that y can be reached from x, and write x y y, if for any
N ∈ ℵ, πt(y + N − x) > 0 for some t > 0. We say that x and y communicate, and write
x ↔ y, if x and y can be reached from each other. If x y y and y y z, then x y z. The
relation ↔ is an equivalence relation on Rn. For any x ∈ Rn, the set that can be reached
by x is x + Σ while the set that can be communicated by x is x + Σ ∩ (−Σ).

Given β > −1, for any Borel set A on Rn, we define

Hβ(A) :=
∫ ∞

0

tβπt(A) dt.

Then Hβ is a measure with support Σ. Clearly, Hβ(A) = ∞ if and only if
∫ ∞

s

tβπt(A) dt = ∞

for some finite s > 0 (and hence for all finite s > 0).
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Definition 2.1. A state x ∈ G is β-polynomially recurrent if Hβ(x + N) = ∞ for all
N ∈ ℵ, and β-polynomially transient if Hβ(x + N) < ∞ for some N ∈ ℵ.

For any x ∈ G, x is either β-polynomially recurrent or β-polynomially transient. If
x 6∈ Σ, then x is β-polynomially transient.

Proposition 2.1. Suppose that x y y. If x is β-polynomially recurrent, then y is
β-polynomially recurrent. If y is β-polynomially transient, then so is x.

Proof. For any N ∈ ℵ, there is N1 ∈ ℵ such that N1 + N1 ⊂ N . Since x y y, there
is s > 0 such that πs(y + N1 − x) > 0. Then

πt+s(y + N) ≥
∫

z∈N1

πs(y + N − x− dz)πt(x + dz) ≥ πs(y − x + N1)πt(x + N1)

for all t > 0. If β ≥ 0, then (t+ s)β ≥ tβ for all t > 0. If β < 0, then (t+ s)β ≥ (2t)β = 2βtβ

for all t > s. Thus the result holds.

Definition 2.2. The Lévy process {Xt} is said to be β-polynomially transient if Hβ is
a Radon measure. It is said to be β-polynomially recurrent if Hβ(N + x) = ∞ for all x ∈ Σ
and N ∈ ℵ.

For simplicity, we write β-p-transient for β-polynomially transient, and β-p-recurrent
for β-polynomially recurrent. Then 0-p-recurrent and 0-p-transient are the usual recurrent
and transient respectively. As β increases, the set of β-p-transient Lévy processes decreases,
while the set of β-p-recurrent ones increases.

Proposition 2.2. (1) The Lévy process X is β-p-recurrent (resp. β-p-transient) if
and only if all states x ∈ G are β-p-recurrent (resp. β-p-transient).

(2) The Lévy process X is either β-p-recurrent or β-p-transient.
(3) The Lévy process X is β-p-transient if and only if Hβ(N) < ∞ for some N ∈ ℵ.
(4) The Lévy process X is β-p-recurrent if and only if Hβ(N) = ∞ for some N ∈ ℵ.
Proof. If X is α-transient for some α < 0, then for any β > −1, X is β-p-transient and

all states x ∈ G are β-p-transient. Therefore we need only consider the case that X is quasi-
symmetric. Then G = Σ that is a communicating class. By Proposition 2.1, either all states
x ∈ G are β-p-transient or all states are β-p-recurrent. If all x ∈ G are β-p-transient, then
for any compact set K, by the finite covering theorem, there exist finite points x1, · · · , xm

and open sets N1, · · · , Nm ∈ ℵ such that K ⊂
m⋃
1
(xi + Ni) and Hβ(xi + Ni) < ∞ for

1 ≤ i ≤ m. So

Hβ(K) ≤
m∑
1

Hβ(xi + Ni) < ∞.

Therefore Hβ is a Radon measure or X is β-p-transient. Thus X is β-p-recurrent (resp. β-p-
transient) if and only if x is β-p-recurrent (resp. β-p-transient) for some x ∈ G. Particularly,
it is equivalent to that 0 is β-p-recurrent (resp. β-p-transient). Therefore our result holds.

For any a > 0 and x ∈ R, let

fa(x) =
sin2 ax

(ax)2
,

ga(x) =
1
2a

(
1− |x|

2a

)
1[−2a,2a](x).
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Then
f̂a(z) = 2πga(z), ĝa(z) = fa(z) for any z ∈ R.

Theorem 2.1. Fix a set N ∈ ℵ. Then (1) implies (2). If X is symmetric, then they
are equivalent to each other. Here we let 1

0 = ∞.
(1) The Lévy process X is β-p-recurrent.
(2) That ∫

N

1
[Re φ(x)]β+1

dx = ∞.

Proof. At first, we shall prove that (1) implies (2). Suppose that X is β-p-recurrent.
There is b > 0 such that

N ⊇ {(x1, x2, · · · , xn) : |xi| ≤ 2b, i = 1, · · · , n}.

Let
f((x1, · · · , xn)) = fb(x1) · · · fb(xn).

Then f is bounded, continuous, nonnegative, integrable and

f̂((y1, · · · , yn)) = (2π)ngb(y1) · · · gb(yn).

Thus f̂ is nonnegative and vanishes outside N . When x ∈ N ,

f̂(x) ≤ πn

bn
.

We have

(Hβ , f) =
∫ ∞

0

tβ(πt, f) dt = (2π)−n

∫ ∞

0

tβ(π̂t, f̂) dt

= (2π)−n

∫ ∞

0

tβ dt

∫

N

f̂(x)e−tφ(x) dx

= (2π)−n

∫

N

f̂(x) dx

∫ ∞

0

e−tφ(x)tβ dt.

Since
|e−tφ(x)| = e−tRe φ(x) and Re φ(x) ≥ 0,

we have

(Hβ , f) ≤ (2π)−n

∫

N

πn

bn
dx

∫ ∞

0

e−tRe φ(x)tβ dt = (2b)−n

∫

N

Γ(β + 1)
[Re φ(x)]β+1

dx.

Since f ≥ 0 and f(0) > 0,
(Hβ , f) = ∞.

Hence (2) holds.
Next, suppose that X is symmetric. Then φ = Re φ that is nonnegative. We shall

show that (2) implies (1). Let

g((x1, · · · , xn)) = ga(x1) · · · ga(xn).

Then
ĝ((y1, · · · , yn)) = fa(y1) · · · fa(yn).
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Choose a > 0 such that
c := inf

x∈N
ĝ(x) > 0.

Since g is nonnegative, bounded and vanishes outside a compact set and ĝ ≥ 0,

(Hβ , g) = (2π)−n

∫

Rn

ĝ(x) dx

∫ ∞

0

e−tφ(x)tβ dt ≥ (2π)−n

∫

N

cΓ(β + 1)
[Re φ(x)]β+1

dx.

By (2), (Hβ , g) = ∞ which implies that X is β-p-recurrent.

Use X] to denote the Lévy process with Lévy exponent Re φ, which is the symmetric
part of X. Suppose its convolution semigroup is {bt}. Then

bt = πt/2 ∗ π̃t/2,

where π̃t/2 is the dual of πt/2 defined by

π̃t/2(A) = πt/2(−A) for any Borel set A.

Corollary 2.1. If X is β-p-recurrent, then X] is β-p-recurrent.

Proposition 2.3. If n > 2(1 + β), then X is β-p-transient.

Proof. We need only consider that X is quasi-symmetric. Then X is non-degenerate.
By the proof of Theorem 37.8 of [4], there are constants c > 0 and a > 0 such that
Re φ(x) ≥ c‖x‖2 on Ba, where Ba = {x : ‖x‖ ≤ a}. Let cn be the surface measure of
the unit sphere. We get

∫

Ba

[Re φ(x)]−(β+1) dx ≤ 1
cβ+1

∫

Ba

‖x‖−2(β+1) dx =
cn

cβ+1

∫ a

0

rn−1−2(β+1) dr.

Hence if n− 2β − 3 > −1, that is if n > 2(1 + β), then
∫

Ba

[Reφ(x)]−(β+1) < ∞

and hence X is β-p-transient.

Corollary 2.2. If n ≥ 1, then X is β-p-transient for any β < − 1
2 . If n ≥ 2, then X

is β-p-transient for any β < 0.

When n = 0, πt = δ0, Xt = 0 and the process X is trivial. The corollary above tell us
that we need only to consider β ≥ − 1

2 when π1 6= δ0. If X is β-p-recurrent for some β < 0,
then the genuinely dimension n = 1 or π1 = δ0.

Theorem 2.2. For any bounded open set A with A ∩G 6= ∅, let

β0 := lim sup
t→∞

ln πt(A)
ln t

and β1 := lim inf
t→∞

ln πt(A)
ln t

.

Then X is β-p-transient provided β < −(β0 + 1), and is β-p-recurrent provided that β >
−(β1 + 1).
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Proof. If β < −(β0 +1), then there is γ > β0 such that β +γ < −1. Thus there exists
t0 > 0 such that whenever t > t0,

ln πt(A)
ln t < γ, that is, πt(A) < tγ . Then

∫ ∞

t0

tβπt(A) dt <

∫ ∞

t0

tβ+γdt < ∞.

Hence X is β-p-transient.
If β > −(β1 + 1), then there is γ < β1 such that β + γ > −1. Thus there exists t0 > 0

such that whenever t > t0,
ln πt(A)

ln t > γ, that is, πt(A) > tγ . Then
∫ ∞

t0

tβπt(A) dt >

∫ ∞

t0

tβ+γdt = ∞.

It follows that X is β-p-recurrent.

By this theorem, if there is a N ∈ ℵ such that

β0 := lim
t→∞

ln πt(N)
ln t

exists, then X is β-p-transient provided β < −(β0 + 1), and is β-p-recurrent provided that
β > −(β0 + 1). In other words, −(β0 + 1) is the critical point.

Example 2.1. Let X be an α-semi-stable Lévy process with 0 < α ≤ 2. Then there
is a constant c > 0 such that Re φ(x) ≥ c‖x‖α for all x ∈ Rn (see [4, Proposition 24.20]).
For any β > −1, ∫

B1

dx

‖x‖α(β+1)
= cn

∫ 1

0

rn−1−α(β+1) dr,

where B1 is the open unit ball and cn is the surface measure of the unit sphere. Thus X is
β-p-transient if n− 1− α(β + 1) > −1, that is, if β < n

α − 1.

Example 2.2. Let 0 < α ≤ 2. Let X be a symmetric α-stable Lévy process. If α = 2,
then X is a Gaussian process with mean 0 and hence φ(x) = (x,Ax) for some symmetric
positive-definite n× n matrix. Thus there are k1, k2 > 0 such that

k1‖x‖2 ≤ φ(x) ≤ k2‖x‖2 for all x ∈ Rn.

If α < 2, then

φ(x) =
∫

S

|(x, y)|αλ( dy)

with a symmetric finite measure λ on S, where S is the unit sphere (see [4, Theorem 14.13]).
Thus λ(S) < ∞ and

φ(x) =
∫

S

|(x, y)|αλ( dy) ≤
∫

S

‖x‖α‖y‖αλ( dy) = λ(S)‖x‖α.

Consequently, X is β-p-recurrent if and only if β ≥ n
α − 1.

Example 2.3. Let X be the cauchy process on R with a drift x0 ∈ R. Let

ft(x) =
t

π(t2 + (x− tx0)2)
.

Then
πt(dx) = ft(x)dx,
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where dx is the Lebesgue measure on R. Clearly, for all x ∈ R,

ft(x) ≤ (πt)−1.

For any compact set K, there is t0 and c > 0 such that for any x ∈ K and any t > t0,

ft(x) ≥ ct−1.

Thus X is η-recurrent if η ≥ 0 and is η-transient if η < 0. When x0 = 0, X is a symmetric
1-stable Lévy process and our result is consistent with that in Example 2.2.

§ 3 . Recurrent and Transient with a Weight Function

In the last section, we have discussed polynomial recurrence and polynomial transience.
In this section, we shall discuss w-recurrent and w-transient with any function w, which
serves as a weight for recurrence and transience to describe roughly the asymptotic behavior
of πt as t −→∞. We have used exponential function and polynomial function as weights to
discuss recurrence and transience. If necessary, we may also use logarithmic weight ln t to
classify the 1-p-recurrent Lévy processes more finely.

Suppose that w is a real-valued monotone function on [0,∞), absolutely continuous on
every closed interval [0, a] and w(t) > 0 for all t > 0. When w is increasing, we suppose that
w(0) = 0. When w is decreasing, we suppose that for any s > 0, there is t0 ≥ 0 and c > 0
such that when t > t0, w(t + s) ≥ cw(t). Clearly

∫ s

0

w(t) dt ≤ s[w(s) ∨ w(0)] < ∞

for all finite s > 0.
For any Borel set A on Rn, define

Gw(A) =
∫ ∞

0

w(t)πt(A) dt.

Then Gw is a measure with support Σ. Clearly, Gw(A) = ∞ if and only if
∫ ∞

s

w(t)πt(A) dt = ∞

for some finite s > 0 (and hence for all finite s > 0).

Definition 3.1. A state x ∈ G is w-recurrent if Gw(x + N) = ∞ for all N ∈ ℵ, and
w-transient if Gw(x + N) < ∞ for some N ∈ ℵ.

For any x ∈ G, x is either w-recurrent or w-transient. If x 6∈ Σ, then x is w-transient.

Proposition 3.1. Suppose that x y y. If x is w-recurrent, then y is w-recurrent. If
y is w-transient, then so is x.

Proof. For any N ∈ ℵ, there is N1 ∈ ℵ such that N1 + N1 ⊂ N . Since x y y, there
is s > 0 such that πs(y + N1 − x) > 0. Then

πt+s(y + N) ≥ πs(y − x + N1)πt(x + N1) for all t > 0.

If w is increasing, then
w(t + s) ≥ w(t) for all t > 0.

If w is decreasing, there is c > 0 and t0 ≥ 0 such that w(t + s) ≥ cw(t) provided t > t0.
Thus our result holds.



172 ZHAO, M. Z. & YING, J. G.

Definition 3.2. The Lévy process {Xt} is said to be w-transient if Gw is a Radon
measure. It is said to be w-recurrent if Gw(N + x) = ∞ for all x ∈ Σ and N ∈ ℵ.

If w1 ≤ w2, then any w2-transient Lévy process is w1-transient while any w1-recurrent
Lévy process is w2-recurrent. In fact it is also true when there exist t0 > 0 and k > 0 such
that w2(t) ≥ kw1(t) for all t > t0. We shall say w2 < w1 if such condition holds. If w1 < w2

and w2 < w1, then we say w1 ∼ w2. That is to say, w1 ∼ w2 if and only if there exist t0
and k1, k2 > 0 such that k1w1(t) ≤ w2(t) ≤ k2w1(t) for all t > t0. When w1 ∼ w2, the
class of w1-recurrent (resp. w1-transient) Lévy processes coincides to that of w2-recurrent
(resp. w2-transient) Lévy processes. If w is increasing, then w < 1 and any w-transient Lévy
process is transient. If w is decreasing, then 1 < w and any w-recurrent Lévy process is
recurrent. Thus the w-recurrence and w-transience is a finer classification for transient Lévy
processes when w is increasing, and is for recurrent Lévy processes when w is decreasing.

Clearly, X is w-recurrent (resp. w-transient) if and only if all states x ∈ Σ are w-
recurrent (resp. w-transient). By Proposition 3.1, X is w-recurrent if and only if the state
0 is w-recurrent. If X is not one-sided, then X is w-transient if and only if 0 is w-transient.
Thus we get the following properties.

Proposition 3.2. Suppose that X is not one-sided.
(1) The Lévy process X is either w-recurrent or w-transient.
(2) The Lévy process X is w-transient if and only if Gw(N) < ∞ for some N ∈ ℵ.
(3) The Lévy process X is w-recurrent if and only if Gw(N) = ∞ for some N ∈ ℵ.

Theorem 3.1. Fix N ∈ ℵ. Then (1) implies (2). If X is symmetric, then (1) is
equivalent to (2).

(1) That X is w-recurrent.

(2) That ∫

N

dx

∫ ∞

0

e−tRe φ(x)w(t) dt = ∞.

Proof. The proof is similar as that of Theorem 2.1. Choose f and g as in the proof
of Theorem 2.1. Suppose that X is w-recurrent. We have

(Gw, f) =
∫ ∞

0

w(t)(πt, f) dt = (2π)−n

∫ ∞

0

w(t)(π̂t, f̂) dt

= (2π)−n

∫ ∞

0

w(t) dt

∫

N

f̂(x)e−tφ(x) dx

= (2π)−n

∫

N

f̂(x) dx

∫ ∞

0

e−tφ(x)w(t) dt

≤ (2b)−n

∫

N

dx

∫ ∞

0

e−tRe φ(x)w(t) dt.

Since f is nonnegative continuous and f(0) > 0,

(Gw, f) = ∞.

It follows (2).
Next, suppose that X is symmetric. Then φ = Re φ that is nonnegative. Suppose that
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(2) holds. Since ĝ ≥ c1N ,

(Gw, g) = (2π)−n

∫

Rn

ĝ(x) dx

∫ ∞

0

e−tφ(x)w(t) dt

≥ c(2π)−n

∫

N

dx

∫ ∞

0

e−tRe φ(x)w(t) dt = ∞.

Consequently, (Gw, g) = ∞. Since X is symmetric, X is not one-sided. That g is continuous,
g(0) > 0 and g vanishes outside a bounded open set M implies that Gw(M) = ∞. By
Proposition 3.2, X is w-recurrent.

Corollary 3.1. (1) If X is w-recurrent, then X] is w-recurrent.
(2) If X is degenerate, then X is w-transient.

(3) If
∫

N

dx

∫ ∞

0

e−t‖x‖2w(t) dt < ∞ for some N ∈ ℵ, then {Xbt} is w-transient for

some b > 0.
(4) If all Gaussian processes with mean 0 are w-transient, then X is w-transient.

Proof. By Theorem 3.1, (1) holds. If X is degenerate, since X is genuinely n-
dimensional, there is u 6= 0 such that

supp πt ⊆ {x : (u, x) = t}, t > 0.

For any compact set K, let
τ = sup

x∈K
|(u, x)|.

Then τ < ∞. Thus πt(K) = 0 whenever t > τ . It follows that Gw(K) < ∞. Therefore X
is w-transient.

To prove (3) and (4), by (2), we need only consider the case that X is non-degenerate.
Then there are constants c > 0 and a > 0 such that

Re φ(x) ≥ c‖x‖2 on Ba,

where Ba = {x : ‖x‖ < a}. If
∫

N

dx

∫ ∞

0

e−t‖x‖2w(t) dt < ∞ for some N ∈ ℵ,

then ∫

N∩Ba

dx

∫ ∞

0

e−t
Re φ(x)

c w(t) dt < ∞.

Thus {Xt/c} is w-transient. Hence (3) holds. If all Gaussian processes with mean 0 are
w-transient, then the Gaussian process with Lévy exponent c‖x‖2 is w-transient and hence
X is w-transient. Thus (4) holds.

Now we consider the case that w is increasing. Let

w(∞) := lim
t→∞

w(t).

If w(∞) < ∞, then w ∼ 1, w-recurrent is equivalent to recurrent and w-transient is equiva-
lent to transient.
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Theorem 3.2. Suppose w(∞) = ∞. Then
(1) X is w-transient if and only if E(w(LN )) < ∞ for all N ∈ ℵ.
(2) X is w-recurrent if and only if E(w(Lx+N )) = ∞ for all x ∈ Σ and N ∈ ℵ.
Proof. If X is recurrent, then P (Lx+N = ∞) = 1 and hence E(w(Lx+N )) = ∞ for

all x ∈ Σ and N ∈ ℵ. Thus we need only to prove the case that X is transient. Since w is
absolutely continuous on every interval [0, a] and w is increasing, w′ exists a.e. and w′ ≥ 0
a.e. with respect to the Lebesgue measure on [0,∞). By Fubini Theorem, for any Borel set
A,

Gw(A) =
∫ ∞

0

w(t)πt(A) dt =
∫ ∞

0

πt(A) dt

∫ t

0

w′(s) ds =
∫ ∞

0

w′(s) ds

∫ ∞

s

πt(A) dt,

E(w(LA)) = E

∫ ∞

0

w′(s)1{LA>s} ds =
∫ ∞

0

w′(s)P (LA > s) ds.

For any N ∈ ℵ, there is N1 ∈ ℵ such that N1 + N1 ⊆ N . By Corollary 3.3 of [6], for any
x ∈ Rn and any s > 0, we have

V 0(N1)P (Lx+N1 > s) ≤
∫ ∞

s

πt(x + N) dt ≤ V 0(N −N)P (Lx+N > s).

Thus
V 0(N1)E(w(Lx+N1)) ≤ Gw(x + N) ≤ V 0(N −N)E(w(Lx+N )).

Since X is transient, 0 < V 0(N1) < ∞ and 0 < V 0(N −N) < ∞. It implies our result.

Applying this theorem to w(t) = tη with η > 0, we get

Corollary 3.2. Suppose η > 0. Then X is η-p-transient if and only if E(Lη
N ) < ∞

for all N ∈ ℵ; is η-p-recurrent if and only if E(Lη
x+N ) = ∞ for all x ∈ Σ and N ∈ ℵ.

Thus X is strongly transient if and only if X is 1-p-transient.
Remark 3.1. This paper is based on a part of the first author’s Ph.D. dissertation.

Around the period of her final defense (December 2002), she received a manuscript from
Professor K. Sato, which shows that he (jointly with T. Watanabe) did a very similar work
as in §2.
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processes, submitted, 2003.

[ 7 ] Zhao, M. Z. & Ying, J. G., Moment generating functions: quasi-symmetry of frobability measures,
Chinese Journal of Contemporary Mathematics, 24:1(2003), 1–12.

[ 8 ] Zhao, M. Z., Some Potential Analysis on Right Processes and Lévy Processes, Ph.D. Thesis, Zhejiang
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