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Abstract

The authors study the singular diffusion equation

∂u

∂t
= div(ρα|∇u|p−2∇u), (x, t) ∈ QT = Ω× (0, T ),

where Ω ⊂ Rn is a bounded domain with appropriately smooth boundary ∂Ω, ρ(x) =
dist(x, ∂Ω), and prove that if α ≥ p− 1, the equation admits a unique solution subject
only to a given initial datum without any boundary value condition, while if 0 < α <
p − 1, for a given initial datum, the equation admits different solutions for different
boundary value conditions.
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§ 1 . Introduction

In this paper, we are concerned with a special model of heat transfer process governed
by the following singular diffusion equation

∂u

∂t
= div(ρα|∇u|p−2∇u), (x, t) ∈ QT = Ω× (0, T ), (1.1)

where Ω ⊂ Rn is a bounded domain with appropriately smooth boundary ∂Ω, occupied
by some object, p > 1, α > 0, and ρ(x) = dist(x, ∂Ω). If α = 0, then the equation (1.1)
becomes the evolutionary p-Laplacian equation

∂u

∂t
= div(|∇u|p−2∇u).

In particular, if p = 2, then the equation is just the classical heat conduction equation. For
p 6= 2, it is more natural to use the equation to describe the heat conduction, since it reflects
even more exactly the physical reality, for example, if p > 2, the solutions of such equation
may possess the properties of finite speed of propagation of perturbations (see for example
[1, 2]). There are a tremendous amount of related works for such equations, see for example
[1–8].
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For the equation (1.1), the diffusion coefficient depends on the distance to the boundary
and vanishes on the boundary. Thus the equation degenerates on the boundary. The
memoir by F. Tricomi [9], as well as subsequent investigations of equations of mixed type,
elicited interest in the general study of elliptic equations degenerating on the boundary of the
domain. The 1951 paper of M. V. Keldys̆ [10] played a significant role in the development
of the theory. It was this paper that first brought to light the fact that in the case of
elliptic equations degenerating on the boundary, under definite assumptions a portion of
the boundary may be free from the prescription of boundary conditions. Later, G. Fichera
[11, 12] and O. A. Olĕinik [13, 14] developed and perfected the general theory of second
order equations with nonnegative characteristic form, which, in particular, contains those
degenerating on the boundary.

The equation considered by Fichera and Olĕinik is linear, and the second order deriva-
tives of coefficients of principal part are bounded. They obtained the existence and unique-
ness of solution for the Dirichlet problem, and investigated the properties of solutions too.
Their results can be applied to the equation (1.1) with p = 2 and α ≥ 2, revealing that there
is no flux on the boundary no matter how the outer temperature varies.

In this paper, we study the singular diffusion equation (1.1) with p > 1 and α > 0. We
are more interested in the behavior of the heat transfer process governed by (1.1) near the
boundary. Since the diffusion coefficient vanishes on the boundary, it seems that there is no
heat flux across the boundary. However, the fact might not coincide with what we image.
The purpose of this paper will exhibit the fact, which is different from the usual imagination,
that α, the exponent characterizing the vanishing ratio of the diffusion coefficient near the
boundary, does determine the behavior of the heat transfer near the boundary. We will show
that if the ratio is relatively small, the outer temperature may affect the diffusion process of
the inner temperature of the object, while if the ratio is relatively large, there is no flux on
the boundary no matter how the outer temperature varies. Exactly, we will prove that p−1
is the critical value for the exponent α. If 0 < α < p− 1, then for a given initial datum, the
equation (1.1) admits different solutions for different boundary values. While if α ≥ p − 1,
then only the initial value will completely determine the unique solution.

Since the equation we consider is degenerate on the boundary and may be degenerate
or singular at points where |∇u| = 0, we should consider weak solutions instead of classical
solutions. Now we present the following

Definition 1.1. A function u(x, t) is said to be a weak solution of the equation (1.1), if

u ∈ C(0, T ; L2(Ω)) ∩ L∞(QT ),
∂u

∂t
∈ L2(QT ), ρα|∇u|p ∈ L1(QT ), and for any test function

ϕ ∈ C∞0 (QT ), the following integral equality holds
∫∫

QT

(∂u

∂t
ϕ + ρα|∇u|p−2∇u · ∇ϕ

)
dxdt = 0.

Although we consider the equation in a bounded domain, as mentioned above, we could
not supplement the initial and boundary value conditions as usual. In fact, only in the case
that 0 < α < p− 1, can we impose the Dirichlet boundary value condition

u(x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, T ). (1.2)

We always assume that g(x, t) is a function which can be extended to be defined on QT and
is appropriately smooth. However, the initial value condition is always required

u(x, 0) = u0(x), x ∈ Ω. (1.3)
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In any cases, the solution u is said to satisfy the initial boundary value conditions (1.2) and
(1.3), if (1.2) and (1.3) hold in the trace sense. The main results of this paper are as follows.

Theorem 1.1. Let 0 < α < p − 1. Then for any u0 satisfying u0 ∈ L∞(Ω) and
ρα|∇u0|p ∈ L1(Ω), there exists at least one weak solution of the first initial-boundary problem
(1.1)–(1.3). Moreover, the solution of the problem is unique.

Theorem 1.2. Let α ≥ p − 1. Then the equation (1.1) admits at most one weak
solution with initial value u0, no matter what the boundary value is. Moreover, for any u0

as in Theorem 1.1, there exists at least one weak solution of the equation (1.1) with initial
value (1.3).

§ 2 . Proof of the Main Results

To study the equation (1.1), we first consider the regularizing problem

∂uε

∂t
− div(ρα

ε |∇uε|p−2∇uε) = 0, (x, t) ∈ QT , (2.1)

uε(x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, T ), (2.2)
uε(x, 0) = uε,0(x), x ∈ Ω, (2.3)

where ρε = ρ+ε, ε > 0. Similar to the theory for evolutionary p-Laplacian equation, for any
uε,0 satisfying uε,0 ∈ L∞(Ω) and ρα

ε |∇uε,0|p ∈ L1(Ω), the above problem admits a unique
weak solution uε ∈ C(0, T ; L2(Ω))∩Lp(0, T ;W 1,p(Ω)) with ∂uε

∂t ∈ L2(QT ), in the sense that,
for any test function ϕ ∈ C∞0 (QT ), uε satisfies the following integral equality

∫∫

QT

(∂uε

∂t
ϕ + ρα

ε |∇uε|p−2∇uε · ∇ϕ
)
dxdt = 0,

and (2.2), (2.3) hold in the trace sense.

Lemma 2.1. Assume

u0 ∈ L∞(Ω), ρα|∇u0|p ∈ L1(Ω),

‖uε,0‖L∞(Ω) and ‖ρα
ε |∇uε,0|p‖L1(Ω) are uniformly bounded, and uε,0 converges to u0 in

W 1,p
loc (Ω). Then the weak solution of the first initial-boundary problem (2.1)–(2.3) uε is

convergent in L2(QT ) and the limit function is the weak solution of the equation (1.1) with
initial value condition (1.3).

Proof. Using the maximum principle and a rather standard technique, we may easily
show that there exists a constant C depending on ‖uε,0‖L∞(Ω), ‖ρα

ε |∇uε,0|p‖L1(Ω), g and
independent of ε such that

‖uε‖L∞(QT ) ≤ C,

∫∫

QT

ρα
ε |∇uε|pdxdt ≤ C,

∫∫

QT

(∂uε

∂t

)2

dxdt ≤ C.

So there exist a function u and an n-dimensional vector function
→
ζ = (ζ1, · · · , ζn) such that

u ∈ C(0, T ; L2(Ω)) ∩ L∞(QT ),
∂u

∂t
∈ L2(QT ), |

→
ζ | ∈ Lp/(p−1)(QT )
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and

uε → u in L2(QT ), ∇uε ⇀ ∇u in Lp
loc(QT ),

∂uε

∂t
⇀

∂u

∂t
in L2(QT ), ρα

ε |∇uε|p−2∇uε ⇀
→
ζ in Lp/(p−1)(QT ;Rn).

In addition, u satisfies (1.3) in the trace sense. To prove that u satisfies the equation (1.1),
we note that for any test function ϕ ∈ C∞0 (QT ), the integral equality

∫∫

QT

(∂uε

∂t
ϕ + ρα

ε |∇uε|p−2∇uε · ∇ϕ
)
dxdt = 0 (2.4)

holds, which implies, by letting ε → 0, that
∫∫

QT

(∂u

∂t
ϕ+

→
ζ ·∇ϕ

)
dxdt = 0. (2.5)

It remains to show that for any ϕ ∈ C∞0 (QT ),
∫∫

QT

ρα|∇u|p−2∇u · ∇ϕdxdt =
∫∫

QT

→
ζ ·∇ϕdxdt. (2.6)

Let 0 ≤ ψ ∈ C∞0 (QT ) and ψ = 1 on suppϕ. Choosing ϕ = ψuε in (2.4), we see that
∫∫

QT

ψρα
ε |∇uε|pdxdt =

1
2

∫∫

QT

u2
ε

∂ψ

∂t
dxdt−

∫∫

QT

ρα
ε uε|∇uε|p−2∇uε · ∇ψdxdt.

Let v ∈ C(0, T ; L2(Ω)) ∩ L∞(QT ) and ρα|∇v|p ∈ L1(QT ). It is obvious that
∫∫

QT

ψρα
ε (|∇uε|p−2∇uε − |∇v|p−2∇v) · (∇uε −∇v)dxdt ≥ 0.

Therefore
1
2

∫∫

QT

u2
ε

∂ψ

∂t
dxdt−

∫∫

QT

ρα
ε uε|∇uε|p−2∇uε · ∇ψdxdt

−
∫∫

QT

ψρα
ε |∇uε|p−2∇uε · ∇vdxdt

−
∫∫

QT

ψρα|∇v|p−2∇v · (∇uε −∇v)dxdt

+
∫∫

QT

ψ(ρα − ρα
ε )|∇v|p−2∇v · (∇uε −∇v)dxdt ≥ 0.

Letting ε → 0 and noticing that
∣∣∣
∫∫

QT

ψ(ρα − ρα
ε )|∇v|p−2∇v · (∇uε −∇v)dxdt

∣∣∣

≤ sup
(x,t)∈QT

ψ|ρα − ρα
ε |

ρα

∫∫

QT

ρα|∇v|p−1|∇uε −∇v|dxdt,

we obtain
1
2

∫∫

QT

u2 ∂ψ

∂t
dxdt−

∫∫

QT

u
→
ζ ·∇ψdxdt

−
∫∫

QT

ψ
→
ζ ·∇vdxdt−

∫∫

QT

ψρα|∇v|p−2∇v · (∇u−∇v)dxdt ≥ 0.
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By the choice that ϕ = ψu in (2.5), we see that
∫∫

QT

ψ
→
ζ ·∇udxdt =

1
2

∫∫

QT

u2 ∂ψ

∂t
dxdt−

∫∫

QT

u
→
ζ ·∇ψdxdt.

Therefore ∫∫

QT

ψ(
→
ζ −ρα|∇v|p−2∇v) · (∇u−∇v)dxdt ≥ 0. (2.7)

Choosing v = u− λϕ with λ > 0 in (2.7), we get
∫∫

QT

ψ(
→
ζ −ρα|∇(u− λϕ)|p−2∇(u− λϕ)) · ∇ϕdxdt ≥ 0,

which implies, by letting λ → 0, that
∫∫

QT

ψ(
→
ζ −ρα|∇u|p−2∇u) · ∇ϕdxdt ≥ 0.

If we choose λ < 0, we get the inequality with opposite sign. Thus
∫∫

QT

ψ(
→
ζ −ρα|∇u|p−2∇u) · ∇ϕdxdt = 0.

Noticing that ψ = 1 on suppϕ, we see that (2.6) holds. The proof is complete.

Proof of Theorem 1.1. We first prove the existence. For all ε > 0, choose uε,0 such
that ‖uε,0‖L∞(Ω) and ‖ρα

ε |∇uε,0|p‖L1(Ω) are uniformly bounded, and uε,0 converges to u0 in
W 1,p

loc (Ω). Let uε be the weak solution of the first initial-boundary problem (2.1)–(2.3). From
Lemma 2.1, we see that uε is convergent in L2(QT ) and the limit function u satisfies the
equation (1.1) with the initial condition (1.3). Now we prove u also satisfies the boundary
condition (1.2), thus u is the weak solution of the first initial-boundary problem (1.1)–(1.3).

Since α
p−1 < 1 and p−α > 1, there exists a constant β ∈ ( α

p−1 , 1) such that p− α
β > 1.

Since β < 1 and p− α
β > 1, there exists a constant γ ∈ (1, p− α

β ) such that βγ < 1. Therefore

∫∫

QT

|∇uε|γdxdt =
∫∫

{(x,t)∈QT ;ρβ
ε |∇uε|≤1}

|∇uε|γdxdt

+
∫∫

{(x,t)∈QT ;ρβ
ε |∇uε|>1}

|∇uε|γdxdt

≤
∫∫

QT

ρ−βγ
ε dxdt +

∫∫

QT

ρα
ε |∇uε|α/β+γdxdt

≤
∫∫

QT

ρ−βγ
ε dxdt +

∫∫

QT

ρα
ε (1 + |∇uε|p)dxdt

≤ C,

where C is a positive constant independent of ε. Thus ∇uε is uniformly bounded in Lγ(QT ).
So u satisfies the boundary condition (1.2).

Now, we prove the uniqueness. Let u and v be two weak solutions of the first initial-
boundary problem (1.1)–(1.3). From the definition of solutions, we see that

∫∫

QT

ϕ
∂(u− v)

∂t
dxdt = −

∫∫

QT

ρα(|∇u|p−2∇u− |∇v|p−2∇v) · ∇ϕdxdt
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holds for any ϕ ∈ C∞0 (QT ). For any fixed s ∈ [0, T ], after an approximate procedure, we may
choose χ[0,s](u− v) as a test function in the above equality, where χ[0,s] is the characteristic
function on [0, s]. Thus

∫∫

Qs

(u− v)
∂(u− v)

∂t
dxdt

= −
∫∫

Qs

ρα(|∇u|p−2∇u− |∇v|p−2∇v) · ∇(u− v)dxdt ≤ 0,

and hence

∫

Ω

(u(x, s)− v(x, s))2dx =
∫

Ω

(u(x, 0)− v(x, 0))2dx +
∫∫

Qs

∂

∂t
(u− v)2dxdt

= 2
∫∫

Qs

(u− v)
∂(u− v)

∂t
dxdt

≤ 0,

which implies that

u(x, s) = v(x, s), a.e. (x, s) ∈ QT .

The proof is complete.

Proof of Theorem 1.2. The existence has already been done in Lemma 2.1. We
need only to show the uniqueness. Denote

Ωε = {x ∈ Ω | dist(x, ∂Ω) > ε}.

Let ξε ∈ C∞0 (Ωε) such that ξε = 1 on Ω2ε, 0 ≤ ξε ≤ 1 and

|∇ξε| ≤ C

ε
,

where C is a constant independent of ε. Let u and v be two weak solutions of the equation
(1.1) with initial value (1.3). From the definition of solutions, we get

∫∫

QT

ϕ
∂(u− v)

∂t
dxdt = −

∫∫

QT

ρα(|∇u|p−2∇u− |∇v|p−2∇v) · ∇ϕdxdt

for any ϕ ∈ C∞0 (QT ). For any fixed s ∈ [0, T ], after an approximate procedure, we may
choose χ[0,s](u−v)ξε as a test function in the above equality, where χ[0,s] is the characteristic
function on [0, s]. Thus

∫∫

Qs

(u− v)ξε
∂(u− v)

∂t
dxdt

= −
∫∫

Qs

ρα(|∇u|p−2∇u− |∇v|p−2∇v) · ∇((u− v)ξε)dxdt.
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Therefore
∫

Ω

(u(x, s)− v(x, s))2ξεdx

=
∫

Ω

(u(x, 0)− v(x, 0))2ξεdxdt

− 2
∫∫

Qs

ξερ
α(|∇u|p−2∇u− |∇v|p−2∇v) · ∇(u− v)dxdt

− 2
∫∫

Qs

(u− v)ρα(|∇u|p−2∇u− |∇v|p−2∇v) · ∇ξεdxdt

≤ 2
∫∫

Qs

|u− v|ρα(|∇u|p−1 + |∇v|p−1)|∇ξε|dxdt

≤ C
( ∫ T

0

∫

Ωε\Ω2ε

ρα(|∇u|p + |∇v|p)dxdt
)(p−1)/p

·
( ∫ T

0

∫

Ωε\Ω2ε

ρα|∇ξε|pdxdt
)1/p

≤ C
( ∫ T

0

∫

Ωε\Ω2ε

ρα(|∇u|p + |∇v|p)dxdt
)(p−1)/p

·
( ∫ T

0

∫

Ωε\Ω2ε

εα−pdxdt
)1/p

≤ Cε(α+1−p)/p
( ∫ T

0

∫

Ωε\Ω2ε

ρα(|∇u|p + |∇v|p)dxdt
)(p−1)/p

≤ C
( ∫ T

0

∫

Ωε\Ω2ε

ρα(|∇u|p + |∇v|p)dxdt
)(p−1)/p

,

where C is a constant independent of ε. Since ρα|∇u|p, ρα|∇v|p ∈ L1(QT ), letting ε → 0,
we see that ∫

Ω

(u(x, s)− v(x, s))2dx ≤ 0,

which implies that
u(x, s) = v(x, s), a.e. (x, s) ∈ QT .

The proof is complete.
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[14] Olĕinik, O. A., Linear equations of second order with nonnegative characteristic form, Mat. Sb.,
69:111(1966), 111–140; English transl.: Amer. Math. Soc. Transl., 65:2(1967), 167–199. MR 33 #
1603.


