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Abstract

The effect of an applied magnetic field on an inhomogeneous superconductor is stud-
ied and the value of the upper critical magnetic field Hc3 at which superconductivity
can nucleate is estimated. In addition, the authors locate the concentration of the order
parameter, which depends on the inhomogeneous term a(x). Unlikely to the homoge-
neous case, the order parameter may concentrate in the interior of the superconducting
material, due to the influence of the inhomogeneous term a(x).
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§ 1 . Introduction

Consider the following functional

J(ψ, A) =
1
2

∫

Ω

|∇κAψ|2 +
1
2
κ2(a(x)− |ψ|2)2 + κ2|h− hex|2, (1.1)

which corresponds to the free energy of a superconductor in a prescribed constant magnetic
field hex. Here, Ω ⊂ R2 is the smooth, bounded, simply connected section of the supercon-
ductor and a(x) : Ω → R2 is a given function satisfying 0 < min

Ω
a(x) ≤ a(x) in Ω. The

unknowns are the complex-valued order parameter ψ ∈ H1(Ω,C) and the U(1) connection
A ∈ H1(Ω,R2). h = curlA is the induced magnetic field, ∇κAψ = ∇ψ − iκψA. We denote

∂j =
∂

∂xj
, curlA = ∂1A2 − ∂2A1, curl2A = (∂2(curlA),−∂1(curlA)),

∇2
Aψ = (∇− iA)2ψ = 4ψ − i(A · ∇ψ + ψdivA)− |A|2ψ.

The order parameter ψ indicates the local state of the material, viz., |ψ| is the density of
superconducting electron pairs so that, when |ψ| ' 1, the material is in its superconducting
state, whereas when |ψ| ' 0, it is in its normal state. κ > 0 is the Ginzburg-Landau
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parameter depending on the material. The modified Ginzburg-Landau functional (1.1) was
first written down by Likharev [14]. Then, this model has been used and developed by
Aftalion, Sandier, Serfaty, Chapman and Richardson [2, 8]. The minima of a(x) corresponds
to the impurities in the material.

It is well known that a superconductor placed in an applied magnetic field may change
its phase when the field varies. If the field is sufficiently strong, it penetrates through the
entire sample and the superconductor is in a normal state. As the field is gradually reduced
to a certain value Hc3 , called upper critical field, the nucleation of superconductivity occurs.
It is important both in theory and in applications to estimate the values of the critical fields
for superconductors, especially for type II superconductors with large value of κ.

Recently, there have been extensive works on the Ginzburg-Landau system with or
without the applied magnetic field (see [1–23]). We do not attempt to give an exhaustive
list of references, but briefly summarize the advances concerning this problem. In the case
a(x) ≡ 1 in Ω, the physicists Saint-James and De Gennes [19] were the first to study the
nucleation phenomenon for semi-infinite superconductor occupying the half space. They
found that the nucleation of superconductivity occurs first on the surface. Chapman [6]
made a study of the half-plane problem on Hc3 by using formal mathematical analysis.
Bauman, Phillips and Tang [3] rigorously estimated Hc3 and found the location of nucleation
for a disk occupying a 2-dimensional cross section of a cylinder. Bernoff and Sternberg [5]
considered an arbitrary simply connected smooth bounded region in R2 occupying an infinite
cylinder with 2-dimensional cross section. They estimated Hc3 and found the location of
nucleation by using formal asymptotic expansions. In [11, 17], Helffer, Pan and Lu, Pan
rigorously obtained the estimates for Hc3 and the locations of nucleation for a cylindrical
sample which is placed in an applied magnetic field.

In this paper, assuming a(x) 6= 1, we want to address the question how the term a(x)
will modify the properties of the superconductor in the presence of an applied magnetic field.
We obtain rigorously the estimates for Hc3 and the location of nucleation for a cylinder which
is placed in an applied magnetic field. We found a new phenomenon that if the applied field
reduced to Hc3 , the nucleation of superconductivity may occur in the interior of the domain
since the term a(x) happens. Before starting our main results, we recall that the minimizers
of J(ψ, A) in H1(Ω,C)×H1(Ω,R2) satisfy the following Euler equations

− (∇− iκA)2ψ = κ2(a− |ψ|2)ψ in Ω, (1.2)

curl2A = − i

2κ
(ψ ∇ψ − ψ∇ψ)− |ψ|2A in Ω, (1.3)

(∇κAψ) · ν = 0 and curlA = hex on ∂Ω, (1.4)

where ν is the unit out-normal vector on the boundary of Ω.
In order to make our discussion clear, we replace hex by σ and A by σA respectively,

then the Ginzburg-Landau functional (1.1) can be rewritten as

G(ψ, A) =
1
2

∫

Ω

|∇σκAψ|2 + (σκ)2|curlA− 1|2 +
κ2

2
(a(x)− |ψ|2)2. (1.5)

It is well known that there exists a unique smooth vector field F on Ω such that

curlF = 1, divF = 0 in Ω and F · ν = 0 on ∂Ω. (1.6)

Note that (0, F ) is a trivial critical point of the functional G. Moreover, (0, F ) is the only
minimizer if σ is large enough, which means that a sufficiently strong magnetic field pene-
trates the entire superconductor and completely destroys superconductivity. Now, we define
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σ∗(κ) as

σ∗(κ) = inf{σ > 0 : (0, F ) is the only minimizer of G in H1(Ω,C)×H1(Ω,R2)}. (1.7)

Then, it naturally leads to the definition of the upper critical applied magnetic field Hc3(κ) =
σ∗(κ). Denote

γ0 = min
{

min
x∈Ω

1
a(x)

, β0 min
x∈∂Ω

1
a(x)

}
, (1.8)

where β0 is defined as β0 = inf
ψ∈H1(R2

+,C)

R
R2+
|∇ωψ|2R
R2+
|ψ|2 . Then we have the following theorem

which estimates the upper critical field Hc3(κ).

Theorem 1.1. Let Ω ⊂ R2 be a bounded, smooth and simply connected domain. As-
sume that a(x) ∈ C2(Ω) and 0 < a0 = min

Ω
a(x) ≤ a(x) in Ω. Then, we have

lim
κ→∞

σ∗

κ
=

1
γ0

. (1.9)

In particular,
Hc3(κ) = σ∗(κ) =

κ

γ0
(1 + o(1)) as κ → +∞. (1.10)

The nucleation phenomenon can be described by the concentration behavior of the
order parameter ψ when σ is close to Hc3 . Denote

Ωm =
{

x ∈ Ω :
1

a(x0)
= min

x∈Ω

1
a(x)

}
, (1.11)

(∂Ω)m =
{

x ∈ ∂Ω :
1

a(x0)
= min

x∈∂Ω

1
a(x)

}
. (1.12)

Then we have the following theorem which locates the concentration of the order parameter
ψ.

Theorem 1.2. Under the assumptions of Theorem 1.1, let κn → +∞, σn < σ∗(κn)
and σn

κn
→ 1

γ0
. Let (ψn, An) be a non-trivial minimizer of the functional G with κ = κn and

σ = σn. Then curlAn → 1 in Cα(Ω), ‖ ψn ‖L∞(Ω)→ 0 and ψn(x)
‖ψn‖L∞(Ω)

→ 0 on Ω \ (Ωm ∪
(∂Ω)m) as n → +∞.

Corollary 1.1. Assume that a(x) ∈ C2(Ω), 0 < a0 ≤ a(x) ≤ 1 in Ω and a(x) has a
unique maximum point x0 ∈ Ω and 1

a(x0)
< β0 min

x∈∂Ω

1
a(x) . Then

Hc3 = κa(x0)(1 + o(1)) as κ → +∞. (1.13)

Moreover, let (ψn, An) be a sequence of minimizers as in Theorem 1.2. Then, as n → +∞,

|ψn(x)|
‖ ψn ‖L∞(Ω)

→ 0 if x ∈ Ω \ {x0},

|ψn(x)|
‖ ψn ‖L∞(Ω)

→ 1 if x = x0.

(1.14)

Corollary 1.1 indicates that the order parameter may concentrate in the interior of Ω
and have a spike-layer.

We organize this paper as follows: In Section 2, we collect some basic results needed
in this paper. In Section 3, we derive an asymptotic estimate for a variational problem. In
Section 4, we give a proof of Theorem 1.1. In Section 5, Theorem 1.2 is proven.
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§ 2 . Preliminary Lemmas and Notations

In this section, some preliminary results which will be used in this paper are given.
Throughout this paper, we denote

ω(x) =
1
2
(−x2, x1). (2.1)

Consider the following functional

α(h) = inf
ψ∈H1(R2,C)

∫
R2 |∇hωψ|2∫
R2 |ψ|2

. (2.2)

Then the minimizers of (2.2) satisfy

−∇2
hωψ = αψ in R2. (2.3)

Let

β(h) = inf
ψ∈H1(R2

+,C)

∫
R2

+
|∇hωψ|2

∫
R2

+
|ψ|2 . (2.4)

Then the associated eigenvalue problem can be defined as

−∇2
hωψ = βψ in R2

+, (2.5)

(∇hωψ) · ν = 0 on ∂R2
+, (2.6)

where ν = (0,−1) is the outward normal vector to ∂R2
+.

Lemma 2.1. (cf. [18, Lemma 2.1])
( i ) For every h 6= 0, α(h) = |h|. The associated eigenfunctions are given by

ψ(x) =





f(x) exp
(
− |h|r2

4

)
if h > 0,

f(x) exp
(
− |h|r2

4

)
if h < 0,

where r = |x| and f(x) is any function analytic in R2 such that

f(x) exp
(
− |h|r2

4

)
∈ L2(R2).

Moreover, let α < α(h). Then (2.3) has no nontrivial bounded solution.

(ii) There exists a constant β0 with 0 < β0 < 1− 1√
2eπ

such that β(h) = β0|h|. More-

over, (2.5)–(2.6) has no nontrivial bounded solution for all β < β(h).

Lemma 2.2. (cf. [17, Proposition 2.5]) Let ψ satisfy the following equations respec-
tively:

−∇2
hωψ = λ(1− |ψ|2)ψ in R2, (2.7)

−∇2
hωψ = λ(1− |ψ|2)ψ in R2

+, (∇hωψ) · ν = 0 on ∂R2
+. (2.8)

Then the only bounded solution of (2.7) is ψ ≡ 0 for 0 ≤ λ ≤ |h|. Similarly, the only bounded
solution of (2.8) is ψ ≡ 0 for 0 ≤ λ ≤ β0|h|.
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In later sections, the gauge transformation will be used frequently and thus a decom-
position of vector field into gradient and curl parts is needed. Let A(x) = (A1(x), A2(x)) ∈
C2(BR). Here BR is the closed ball with radius R. Denote ai

j = ∂Ai

∂xj
(0), ai

jk = ∂2Ai

∂xj∂xk
(0),

a1 = A1(0) and a2(0) = A2(0) respectively. Let H(x) = curl A(x). Then curl 2A(x) =
(∂2H,−∂1H) and we have the following lemma.

Lemma 2.3. (cf. [18, Lemma 3.1]) A vector field A(x) = (A1(x), A2(x)) ∈ C2(BR)
can be decomposed as

A(x) = A(0) +∇ξ(x) +∇ζ(x) + curl A(0) ω(x)− 1
2
|x|2curl2A(0) + D(x), (2.9)

where
ξ(x) =

1
2
[a1

1x1
2 + (a1

2 + a2
1)x1x2 + a2

2x2
2],

ζ(x) =
1
6
[c1x1

3 + 3c2x1
2x2 + 3c3x1x2

2 + c4x2
3]

(2.10)

with c1 = a2
11 + ∂2H(0), c2 = a1

12, c3 = a2
12 and c4 = a2

22 − ∂1H(0) respectively. Moreover,
|D(x)| = o(|x|2) as x → 0 and if A ∈ C3(BR), then |D(x)| ≤ C(R)|x|3 in BR. Here C(R)
is a constant which depends on a given radius R.

In the following we assume that Ω is a smooth, bounded, simply connected domain in R2

and 0 ∈ ∂Ω. The boundary ∂Ω of Ω can be represented as z = z(s), where s is the arclength
of ∂Ω. Let τ(s) = (τ1, τ2) = z′(s) be the unit tangent vector and ν(s) = (ν1, ν2) be the unit
outer normal. We choose the positive direction of ∂Ω in such a way that the orientation of
(ν, τ) is coincident with the orientation of the x1x2 coordinates. Then, τ1 = −ν2, τ2 = ν1.
We denote the relative curvature of ∂Ω under the given orientation by kr. The mapping

x = F(s, t) = z(s)− tν(s) (2.11)

determines a C1-transformation of coordinates, and g(s, t) = | detDF| = 1− tkr(s). In the
following, we change the variables y1 = s and y2 = t with y = (y1, y2). Denote e1 = τ ,
e2 = −ν. Then, for a given vector field A(x), a new vector field A associated with A can be
defined by

A(y) = A
1
(y)e1 + A

2
e2, (2.12)

where
A

1
(y) = g(y)A(F(y)) · e1(y) and A

2
(y) = A(F(y)) · e2(y). (2.13)

One can easily verify that

curlA(x) =
1
g
(∂1A

2 − ∂2A
1
),

divA(x) =
1
g

[
∂1

(A
1

g

)
+ ∂2(gA

2
)
]
,

curl2A(x) = ∂2H̃(y) · e1 − 1
g
∂1H̃(y) · e2,

where H̃(y) = (∂1A
2 − ∂2A

1
). Now, define D(g)W = 1

g ∂1We1 + ∂2We2 and D(g)AW =

[D(g)
A

1W ]e1 +[D(g)
A

2W ]e2 with D(g)
A

1W = 1
g (∂1− iA

1
)W and D(g)

A
2W = (∂2− iA

2
)W

respectively. Then, we can define

D(g)∗
A

1W =
1
g
(∂1 − iA

1
)W, D(g)∗

A
2W =

1
g
[∂2(gW )− iA

2
gW ]
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and

∆(g)AW = D(g)∗
A

1D(g)
A

1W + D(g)∗
A

2D(g)
A

2W ]

=
1
g

{
∂1

[1
g
(∂1W − iA

1
W )

]
− i

g
A

1
(∂1W − iA

1
W )

}

+
1
g
{∂2[g(∂2W − iA

2
W )]− iA

2
g(∂2W − iA

2
W )}.

If ψ̃(y) = ψ(F(y)), then ∇Aψ = D(g)Aψ̃, ∇2
Aψ = ∆(g)Aψ̃ and ∆ψ = ∆(g)ψ̃. Now, let

∇χ = (∂1χ)e1 + (∂2χ)e2. (2.14)

Then operators D(g)A and ∆(g)A have the following gauge invariant properties:

D(g)A+∇χ(eiχϕ) = eiχD(g)Aϕ, ∆(g)A+∇χ(eiχϕ) = eiχ∆(g)Aϕ. (2.15)

Lemma 2.4. (cf. [18, Lemma 3.2]) Let Ω be a smooth domain in R2 with 0 ∈
∂Ω. Assume that A ∈ C2(Ω ∩ F(BR)). Then, in the new coordinates y straightening the
boundary, the vector field A(y) associated with A(x) has the following decomposition for
y ∈ BR:

(A
1
, A

2
) = A(0) +∇ξ̃(y) +∇ζ̃(y) + curl A(0) ω(y)

− |y|2
2

[ curl2A(0)− kr(0) curl A(0)τ(0)] + D̃(y), (2.16)

where

ξ̃(y) =
1
2
[(a1

1 + kr(0)a2)y1
2 + (a1

2 + a2
1 − 2kr(0)a1)y1y2 + a2

2y2
2],

ζ̃(y) =
1
6
[c̃1y1

3 + 3c̃2y1
2y2 + 3c̃3y1y2

2 + c̃4y2
3]

with

c̃1 = a1
11 − a1

22 + a2
12 + kr(0)(a2

1 + a1
2)− kr

2(0)a1 + k′r(0)a2,

c̃2 = a1
12 + kr(0)(a2

2 − 2a1
1)− kr

2(0)a2 − k′r(0)a1,

c̃3 = a2
12 − kr(0)(a2

1 + a1
2),

c̃4 = a1
12 − a2

11 + a2
22.

Moreover, |D̃(y)| = o(|y|2) as y → 0 and if A ∈ C3(Ω ∩ F(BR)), then |D̃(y)| ≤ C(R)|y|3 in
B+

R . Here C(R) is a constant which depends on the radius R.

Noting ∇ξ̃ = (∂y1 ξ̃, ∂y2 ξ̃) in (2.16), and using (2.12) and (2.14), we can rewrite (2.16)
as

A(y) = A(0) +∇ξ̃(y) +∇ζ̃(y) + curl A(0) ω̃(y)

− |y|2
2

[ curl2A(0)− kr(0) curl A(0) τ(0)] + D̃(y), (2.17)

where ω̃(y) = −y2
2 e1 + y1

2 e2.
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§ 3 . Variational Problem

In this section, the asymptotic behavior of the following variational problem

µ(σA) = inf
ψ∈H1(Ω,C)

∫
Ω
|(∇− iσA)ψ|2∫

Ω
a(x)|ψ|2 (3.1)

is examined in the region σ À 1. Here A is any vector field with curl A equal to 1 and
a(x) ∈ C2(Ω) with 0 < min

Ω
a(x) = a0. Then, the associated eigenvalue problem is

−∇2
σAψ = µa(x)ψ in Ω, (∇σAψ) · ν = 0 on ∂Ω. (3.2)

µ(σA) is the first eigenvalue of this problem.

Theorem 3.1. Let Ω ⊂ R2 be a bounded, open, and simply connected domain with
∂Ω ∈ C2. Assume that a(x) ∈ C2(Ω) with 0 < a0 ≤ a(x) in Ω, A ∈ C2(Ω), and curl A = 1 in
Ω. Then, there exists a universal constant β0, which is given in Lemma 2.1, with 0 < β0 < 1
such that

lim
σ→∞

µ(σA)
|σ| = min

{
min
x∈Ω

1
a(x)

, β0 min
x∈∂Ω

1
a(x)

}
. (3.3)

To prove Theorem 3.1, several lemmas will be given first.

Lemma 3.1. Under the assumptions of Theorem 3.1, we have

lim sup
σ→∞

µ(σA)
|σ| ≤ min

x∈Ω

1
a(x)

. (3.4)

Proof. For any ψ ∈ H1(Ω,C), we have |∇−σAψ| = |∇σAψ| = |∇σAψ|. Thus,
µ(−σA) = µ(σA). Therefore, we may assume σ > 0. We shall show that for any x0 ∈ Ω,
lim sup
σ→+∞

µ(σA)
σ ≤ 1

a(x0)
. Without loss of generality, we may assume x0 = 0. Set δ = 1√

σ
and

let BR ⊂ Ω be a ball with radius R. Now, for any ψ ∈ H1(Ω,C), let ψδ(x) = ψ(δx) and
Aδ(x) = A(δx)/δ. Then

µ(σA)
σ

≤ inf
ψ∈H1

0 (BR,C)

∫
BR
|∇σAψ|2∫

BR
a(x)|ψ|2 = inf

φ∈H1
0 (BR/δ,C)

∫
BR/δ

|∇Aδ
φ|2

∫
BR/δ

a(δx)|φ|2 .

Using Lemma 2.3 and noting that ∇ξ(δx) = δ∇ξ(x) and ω(δx) = δω(x), we have

Aδ(x) = ∇χδ(x) + ω(x) + Bδ(x),

where

χδ(x) =
1
δ
A(0) · x + ξ(x) + δζ(x),

Bδ(x) = −δ

2
|x|2curl2A(0) +

1
δ
D(δx),

|Bδ(x)| ≤ δ

2
|curl2A(0)||x|2[1 + o(R)] in BR/δ.

Therefore, using gauge invariance property, we have

|∇Aδ
eiχδφ|2 ≤ (1 + λ)|∇ωφ|2 +

(1 + λ)δ2

4λ
| curl2A(0)|2(1 + o(R))2|x|4|φ|2,
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where 0 ≤ λ ≤ 1. Hence

µ(σA)
σ

≤ inf
φ∈H1

0 (BR/δ,C)

1∫
BR/δ

a(δx)|φ|2
{

(1 + λ)
∫

BR/δ

|∇ωφ|2

+
(1 + λ)δ2

4λ
(1 + o(R))2|curl2A(0)|2

∫

BR/δ

|x|4|φ|2
}

.

Now, choose φ = φm = uηm with an eigenfunction u(x) = u(|x|) = exp(−|x|2/4) and a
smooth cutoff function ηm whose support is in Bm such that ηm = 1 on Bm/2. Then, for a
fixed R and all small δ,

µ(δA)
σ

≤ 1∫
Bm

a(δx)|φm|2
{

(1 + λ)
∫

Bm

|∇ωφm|2

+
(1 + λ)δ2

4λ
(1 + o(m))2|curl2A(0)|2

∫

Bm

|x|4|φm|2
}

.

First, letting σ tend to +∞ for a fixed m > 1 and λ ∈ (0, 1) in the above inequality, we get

lim sup
σ→+∞

µ(σA)
σ

≤ 1 + λ∫
Bm

a(0)|φm|2
∫

Bm

|∇ωφm|2.

Then, sending λ to 0 for a fixed m and m to +∞ sequentially and using Lemma 2.1, we
obtain

lim sup
σ→+∞

µ(σA)
σ

≤
∫
R2 |∇ωu|2

a(0)
∫
R2 |u|2

=
1

a(0)
α(1) =

1
a(0)

.

This completes the proof of Lemma 3.1.

Lemma 3.2. Under the same assumptions of Theorem 3.1, we have

lim sup
σ→∞

µ(σA)
|σ| ≤ β0 min

x∈∂Ω

1
a(x)

, (3.5)

where β0 is the positive constant given in Lemma 2.1.

Proof. Using the same argument as in the proof of Lemma 3.1, the conclusion of
Lemma 3.2 follows.

Lemma 3.3. Under the assumptions of Theorem 3.1, we have

lim inf
σ→∞

µ(σA)
|σ| ≥ min

{
min
x∈Ω

1
a(x)

, β0 min
x∈∂Ω

1
a(x)

}
. (3.6)

Proof. For σ > 0, denote δ = 1√
σ
. Let ψδ be the minimizer of variational problem

(3.1), then ψδ satisfies (3.2). Without loss of generality, let max
x∈Ω

|ψδ(x)| = 1 and denote

the maximum point of |ψδ| by xδ. Now, assume that {σk} is a given sequence such that
σk → +∞. Then, choose a subsequence σkj such that

xδkj → x0 and
µ(σkj A)

σkj

→ d

for some non-negative number d. For the simplicity of the notation, we denote σkj by σ.
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Case 1. x0 ∈ Ω. We shall show d ≥ min
x∈Ω

1
a(x) . Let Ωδ = (Ω−xδ)/δ, ψδ(x) = ψδ(xδ +δx)

and Aδ(x) = (1/δ)A(xδ + δx). Note that curl Aδ(x) = 1. Then, using (3.2), we verify that
ψδ satisfies

−∇2
Aδ

ψδ =
µ(σA)

σ
a(xδ + δx)ψδ in Ωδ (3.7)

and |ψδ(0)| = 1 = ‖ψδ‖L∞ . We have that {ψδ} converges in H1
loc(R2) up to gauge transfor-

mations. Passing to a subsequence we may assume that |ψδ| converges in L2
loc(R2) as δ → 0.

On the other hand, using the relation from Lemma 2.3 that Aδ(x) = ∇χδ(x)+ωδ(x)+Bδ(x),
where χδ(x) = 1

δ A(xδ)x+ξ(x)+δζ(x) and setting ψδ(x) = exp(iχδ)φδ(x) to (3.7), we obtain

−∇2
ωφδ =

µ(σA)
σ

a(xδ + δx)φδ + fδ(x), (3.8)

where fδ(x) = −[i div Bδ + 2ω ·Bδ + |Bδ|2]φδ − iBδ(x) · ∇φδ. Moreover, since |∇ω+Bδ
φδ| =

|∇Aδ
ψδ| and |∇φδ|2 ≤ |∇ω+Bδ

φδ + i(ω + Bδ)φδ|2 ≤ 2|∇ω+Bδ
φδ|2 + 2|(ω + Bδ)φδ|2, {|∇φδ|}

is also uniformly bounded in L2
loc. Passing to another subsequence we have φδ → φ0 weakly

in H1
loc and strongly in L2

loc. But since div Bδ(x) = ( divA)(xδ + δx)− ( div A)(xδ) → 0 and
|Bδ(x)| ≤ Cδ|x|, we have fδ → 0 in L2

loc. Therefore the limiting function φ0 satisfies

−∇2
ωφ0 = d a(x0)φ0 in R2 (3.9)

with |φ0(x)| ≤ 1. Using the fact that φ0 is smooth, which results from (3.9) via Theorem
4.1 in [18] and denoting φ̂δ(x) = φδ(x)− φ0(x), we get from (3.8) and (3.9) that

−∇2
ωφ̂δ = da(x0)φ̂δ + f̂δ (3.10)

with f̂δ = fδ + [µ(σA)
σ a(xδ + δx) − d a(x0)]φδ → 0 in L2

loc and φ̂δ → 0 in L2
loc. Now,

applying Lemma 4.2 in [18] to (3.10), we have |∇ωφ̂δ| → 0 in L2
loc. But since |∇φ̂δ|2 ≤

2|∇ωφ̂δ|2 + 2|ωφ̂δ|2, we also have |∇φ̂δ| → 0 in L2
loc so that

φ̂δ → 0 in H1
loc. (3.11)

Denote ω = (ω1, ω2) and ∇ωj = ∂j − iωj . Then, applying Theorem 4.1 in [18] again to
(3.10), we get

∇ωj∇ωk φ̂δ → 0 in L2
loc. (3.12)

Therefore, from (3.11) and (3.12), we conclude that ∂j∂kφ̂δ → 0 in L2
loc, which in turn leads

to the result that φ̂δ → 0 in H2
loc. Now, we apply Sobolev embedding Theorem and conclude

that φ̂δ → 0 in Cα
loc, viz., φδ → φ0 in Cα

loc. In particular, we get φ0(0) = lim
δ→0

φδ(0) = 1.

Therefore, φ0 is a nonzero bounded and smooth solution of (3.9) in R2 and thus from Lemma
2.1 we have da(x0) ≥ α(1) = 1. Hence, d ≥ 1

a(x0) ≥ min
x∈Ω

1
a(x) , which is the conclusion of this

case.
Case 2. x0 ∈ ∂Ω. We only have to prove d ≥ β0 min

x∈∂Ω

1
a(x) . Using Lemma 2.4 and the

same argument as in the proof of case 1, we conclude that da(x0) ≥ β(1) = β0 and hence
d ≥ β0

1
a(x0)

≥ β0 min
x∈∂Ω

1
a(x) . This completes the proof of the case 2 and the lemma.

Proof of Theorem 3.1. From Lemmas 3.1 and 3.2, we have

lim sup
σ→∞

µ(σA)
|σ| ≤ min

{
min
x∈Ω

1
a(x)

, β0 min
x∈∂Ω

1
a(x)

}
, (3.13)
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Similarly, from Lemmas 3.3, we have

lim inf
σ→∞

µ(σA)
|σ| ≥ min

{
min
x∈Ω

1
a(x)

, β0 min
x∈∂Ω

1
a(x)

}
, (3.14)

Hence, combining (3.17) and (3.18), the conclusion (3.3) in Theorem 3.1 follows, viz.,

lim
σ→∞

µ(σA)
|σ| = min

{
min
x∈Ω

1
a(x)

, β0 min
x∈∂Ω

1
a(x)

}
.

§ 4 . Estimates of the Upper Critical Field

Recall (1.5) that

G(ψ, A) =
1
2

∫

Ω

|∇σκAψ|2 + (σκ)2| curlA− 1|2 +
κ2

2
(a(x)− |ψ|2)2,

and set
c(κ, σ) = inf

(ψ,A)∈H1(Ω,C)×H1(Ω,R2)
G(ψ,A),

where H1(Ω,C) is the Sobolev space of all complex-valued functions and H1(Ω,R2) is the
Sobolev space of all vector-valued functions. It is known that there exists a unique smooth
vector field F on Ω such that

curlF = 1, divF = 0 in Ω and F · ν = 0 on ∂Ω.

Note that (0, F ) is a trivial critical point of the functional G(ψ, A) with

G(0, F ) =
κ2

4

∫

Ω

a2(x).

If

c(κ, σ) <
κ2

4

∫

Ω

a2(x),

then G(ψ,A) has a non-trivial minimizer and we have the following lemma.

Lemma 4.1. The functional G(ψ, A) defined by (1.5) has a non-trivial minimizer on
H1(Ω,C)×H1(Ω,R2) provided

µ(σκF ) < κ2. (4.1)

On the other hand, if G(ψ, A) has a non-trivial minimizer (ψ, A), then µ(σκA) < κ2.

Proof. Let ψ0(x) satisfy ‖ψ0‖L∞(Ω) = 1 and

µ(σκF ) = inf
ψ∈H1(Ω,C)

∫
Ω
|∇σκF ψ|2∫

Ω
a(x)|ψ|2 =

∫
Ω
|∇σκF ψ0|2∫

Ω
a(x)|ψ0|2 .

Then ∫

Ω

|∇σκF ψ0|2 = µ(σκF )
∫

Ω

a(x)|ψ0|2.

If µ(σκF ) < κ2, we may choose δ0 > 0 such that µ(σκF ) < κ2 − δ0. Define

ψ0 =
κ√

2a0δ0

ψ1,
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then

G(ψ1, F ) ≤ −δ0a0

2

∫

Ω

|ψ1|2 +
κ2

4
‖ψ1‖2L∞

∫

Ω

|ψ1|2 +
κ2

4

∫

Ω

a2 <
κ2

4

∫

Ω

a2.

Hence

c(κ, σ) ≤ G(ψ1, F ) <
κ2

4

∫

Ω

a2,

which implies that G(ψ,A) has a non-trivial minimizer on H1(Ω,C) ×H1(Ω,R2). On the
other hand, if G has a non-trivial minimizer (ψ,A), then

G(ψ, A) ≤ κ2

4

∫

Ω

a2,

which in turn implies that
∫

Ω

|∇σκAψ|2 +
κ2

2
(a− |ψ|2)2 ≤ κ2

2

∫

Ω

a2.

Hence
∫

Ω

|∇σκAψ|2 < κ2

∫

Ω

a|ψ|2,

and thus from the definition of µ(σκA), we have

µ(σκA) ≤
∫
Ω
|∇σκAψ|2∫
Ω

a|ψ|2 < κ2.

The proof of this lemma is complete.

Next, define the quantity σ∗(κ) as

σ∗(κ) = min{σ > 0 : µ(σκF ) = κ2}. (4.2)

Then the following lemma gives an estimate of σ∗(κ) for large κ.

Lemma 4.2. Let σ∗(κ) and σ∗(κ) be defined as in (1.7) and (4.2), respectively. Then
we have

σ∗(κ) ≥ σ∗(κ) =
κ

γ0
+ o(κ) as κ → +∞. (4.3)

Proof. Since we know from (4.1) that G has a non-trivial minimizer when 0 ≤ σ <

σ∗(κ), we have σ∗(κ) ≥ σ∗(κ). On the other hand, since µ(σ∗κF ) = κ2 and lim
σ→∞

µ(σF )
|σ| = γ0,

we get κ
σ∗

= µ(σ∗κF )
σ∗κ → γ0 as κ → +∞ and thus the conclusion of this lemma follows.

Hereafter, we consider two arbitrary sequences {κ} and {σ} such that κ, σ → +∞ and

σ < σ∗(κ), lim
κ→+∞

κ

σ
= γ, where 0 ≤ γ ≤ γ0. (4.4)

For the simplicity of the notation, we set ε = 1/
√

σκ. Then from (4.4) we see that
κ2 ≤ (γ + o(1))/ε2. Now, rewrite the functional G as

Gε(ψ,A) =
1
2

∫

Ω

|∇(1/ε2)Aψ|2 +
1
ε4
|curlA− 1|2 +

κ2

2
(a− |ψ|2)2.
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Denote the minimizers by (ψε, Aε), then, (ψε, Aε) satisfies

−∇2
(1/ε2)Aψ = κ2(a− |ψ|2)ψ in Ω, (4.5)

curl2A = ε2(ψ,∇(1/ε2)Aψ) in Ω, (4.6)
(∇(1/ε2)Aψ) · ν = 0, curl (A− F ) = 0 on ∂Ω. (4.7)

Here (ψε, Aε) is called a minimal solution of (4.5)–(4.7). Due to the gauge invariance of the
Ginzburg-Landau equation (4.5)–(4.7), we may always assume that

div Aε = 0 in Ω, Aε · ν = 0 on ∂Ω. (4.8)

We need the following estimates.

Lemma 4.3. Let (ψε, Aε) be a minimal solution of (4.5)–(4.8). Then

‖ψε‖L∞(Ω) ≤ 1, ‖∇(1/ε2)Aεψε‖L2(Ω) ≤
C

ε
, ‖Aε − F‖H1(Ω) ≤ Cε. (4.9)

Lemma 4.4. Let (ψε, Aε) be a minimal solution of (4.5)–(4.8). Then, we have

‖∇(1/ε2)Aεψε‖H1(Ω) ≤
C

ε2
. (4.10)

Moreover, for any 1 < p < ∞ and 0 < α < 1,

‖Aε‖W 2,p(Ω) ≤ C(p), ‖Aε‖C1,α(Ω) ≤ C(α), (4.11)

where the constants C, C(p), and C(α) are independent of ε.

Proof of Theorem 1.1. By (4.9) and (4.11), we have, passing to a subsequence if
necessary,

Aε → A0 in C1,α(Ω) as ε → 0, (4.12)

curlA0 = curl F = 1. (4.13)

Denote

µ
( 1

ε2
Aε

)
= inf

ψ∈H1(Ω,C)

∫
Ω
|(i∇− 1

ε2 Aε)ψ|2∫
Ω

a(x)|ψ|2 .

Using (4.12) and by the method used to prove Theorem 3.1, we have

lim
ε→0

ε2µ((1/ε2)Aε) = lim
ε→0

ε2µ((1/ε2)A0)

= min
{

min
x∈Ω

1
a(x)

, β0 min
x∈∂Ω

1
a(x)

}
= γ0. (4.14)

On the other hand, from Lemma 4.1 we have µ((1/ε2)Aε) < κ2. Hence

κ

σ
> ε2µ((1/ε2)Aε). (4.15)

Combining (4.4), (4.14) and (4.15), we have

γ0 ≥ γ = lim
κ

σ
≥ lim

ε→0
ε2µ((1/ε2)Aε) = γ0.
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Therefore, γ0 = γ. Now, we show that σ∗ = κ
γ0

+o(κ) as κ → +∞. In fact, if this conclusion
is not true, by Lemma 4.2, there exists a sequence κn → +∞ such that σ∗(κn) > σ∗(κn) as
n →∞. Thus, we may take a sequence {σn} satisfying σ∗(κn) > σn > σ∗(κn) as κn →∞.
Hence

κn

σn
< γ0(1 + o(1)) as n →∞. (4.16)

Passing to a subsequence, we have lim
k→∞

κnk

σnk
= γ, and thus by (4.16), we get γ < γ0. But,

by the above argument, we have γ = γ0. This yields a contradiction. Hence, σ∗ = κ
γ0

+ o(κ)
as κ → +∞, and the proof of Theorem 1.1 is complete.

§ 5 . Nucleations

In this section, we shall prove that the order parameter concentrates at the maximum
points of a(x). More detailed information can be obtained by considering the following two
cases:

( I ) γ0 = min
x∈Ω

1
a(x)

< β0 min
x∈∂Ω

1
a(x)

,

(II) γ0 = β0 min
x∈∂Ω

1
a(x)

< min
x∈Ω

1
a(x)

.

We will show that if (I) holds, then the interior nucleation occurs, and if (II) holds
then the boundary nucleation occurs. This is a new phenomenon that has never been stated
before. Let xε ∈ Ω be a maximum point of |ψε| and denote λε = ‖ψε‖L∞(Ω) = |ψε(xε)|.
Now, passing to a subsequence, we may assume lim

ε→0
xε = x0. Define

ϕε(y) = exp
(
− i

ε
Aε(xε) · y

)
ψε(xε + εy).

Theorem 5.1. Under the assumptions of (4.4), we have

curlAε → 1 in Cα(Ω), (5.1)
‖ψε‖L∞(Ω) → 0. (5.2)

On Ω \ (Ωm ∪ (∂Ω)m), it holds that

ψε(x)
‖ψε‖L∞(Ω)

→ 0 as ε → 0. (5.3)

Moreover, if (I) holds, then x0 ∈ Ωm, 1
a(x0) = min

x∈Ω

1
a(x) , and (5.3) holds on Ω \ Ωm. After

passing to a subsequence, we have

ϕε

‖ψε‖L∞(Ω)
→ φ0 in C2,α

loc ,

where φ0 exp(−iη) is an eigenfunction of (2.3) with h = 1 and η satisfies 4η = 0 in R2.
If (II) holds, then x0 ∈ (∂Ω)m, 1

a(x0) = min
x∈∂Ω

1
a(x) , and (5.3) holds on Ω \ (∂Ω)m. After

straightening a portion of the boundary around x0, ϕε/‖ψε‖L∞(Ω) converges to φ̃0, where
φ̃0 exp(−iη) is an eigenfunction of (2.5)–(2.6) with h = 1 and 4η = 0 in R2

+.
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Several lemmas will be given first and then Theorem 5.1 will be proven. We consider
two cases.

Case 1. lim
ε→0

dist (xε, ∂Ω)/ε = +∞.

Case 2. dist (xε, ∂Ω) ≤ Cε.

In the case 1, we set Ωε = (Ω− xε)/ε and define

Aε(y) =
1
ε
[Aε(xε + εy)−Aε(xε)], Fε(y) =

1
ε
[F (xε + εy)− F (xε)].

Noting curl Aε(y) = ( curl Aε)(xε + εy), we find that (ϕε, Aε) satisfies the following equation

−∇2
Aε

ϕε =
κ

σ
(a(xε + εy)− |ϕε|2)ϕε in Ωε, (5.4)

curl2(Aε − Fε) = ε2(ϕε,∇Aε
ϕε) in Ωε, (5.5)

(∇Aε
ϕε) · ν = 0, curl (Aε − Fε) = 0 on ∂Ωε. (5.6)

First, it is easy to check the following lemma.

Lemma 5.1. If the case 1 holds, then

‖ϕε‖C2,α(BR) ≤ C(R), ‖Aε − Fε‖C2,α(BR) ≤ C(R). (5.7)

Lemma 5.2. If the Case 1 holds, then (5.2) holds.

Proof. In fact, as ε → 0 we have xε → x0 and since

Aε(y) =
1
ε
[Aε(xε + εy)−Aε(xε)] = ∇Aε(xε)y + O(εα|y|1+α),

we have Aε(y) → ∇A0(x0)y in Cα
loc(R2) as ε → 0. Therefore, Aε − Fε → ∇A0(x0)y −

∇F (x0)y in Cα
loc(R2). By (4.12), (4.13) and (5.7), we have that the convergence is actually

in C1,α
loc (R2) and

Aε → ∇A0(x0)y = ω(y) +∇η in C1,α
loc (R2) as ε → 0,

where ω(y) = 1
2 (−y2, y1). Here

η(y) =
1
2
[∂1A

0
1(x

0)y2
1 + (∂2A

0
1(x

0) + ∂1A
0
2(x

0))y1y2 + ∂2A
0
2(x

0)y2
2 ]

and4η = 0 in R2 since divA0(x0) = 0. By (5.7), passing to a subsequence, we have ϕε → ϕ0

in C2,α
loc (R2) as ε → 0. Sending ε → 0 in (5.4) and using (4.4) and the above relation, we

have −∇2
ωϕ0 = γ(a(x0)− |ϕ0|2)ϕ0 in R2. Let ψ0 = ϕ0/

√
a(x0), then

−∇2
ωψ0 = γa(x0)(1− |ψ0|2)ψ0 in R2.

Noting that

a(x0)γ ≤ a(x0)γ0 = a(x0)min
{

min
x∈Ω

1
a(x)

, β0 min
x∈∂Ω

1
a(x)

}

= a(x0)min
x∈Ω

1
a(x)

= a(x0)
1

max
x∈Ω

a(x)
≤ 1,

and Lemma 2.2, we see that ψ0 = 0. Thus, ϕ0 = 0. So, ϕε → 0 in C2,α
loc (R2) as ε → 0.

Hence, we have

λε = ‖ψε‖L∞(Ω) = |ψε(xε)| = |ϕε(0)| → 0 as ε → 0.

This completes the proof of (5.2).
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Lemma 5.3. If the case 1 holds, then x0 ∈ Ωm, γ0 = min
x∈Ω

1
a(x) . Moreover, (5.3) holds

on Ω \ Ωm and ϕε

λε
→ φ0 in C2,α

loc holds for a subsequence, where φ0(y) exp(−iη) satisfies

−∇2
ωφ = φ in R2. (5.8)

Proof. Let φε = ϕε/λε. Then φε satisfies

−∇2
Aε

φε =
κ

σ
(a(xε + εy)− λε

2|φε|2)φε in Ωε, (5.9)

(∇Aε
φε) · ν = 0 on ∂Ωε. (5.10)

By standard Schauder estimates, we have ‖φε‖C2,α(BR) ≤ C(R). Passing to a subsequence,
we have that φε → φ0 in C2,α

loc (R2). Let φ̂0 = φ0 exp(−iη). We let ε → 0 in (5.9), using
(4.4), then

−∇2
ωφ̂0 = γa(x0)φ̂0 in R2. (5.11)

Noting |φ̂0(0)| = lim
ε→0

|φε(0)| = 1, we see that φ̂0 6= 0. Recall that the first eigenvalue of

(5.11) is 1. Hence, γa(x0) ≥ 1. On the other hand,

γa(x0) ≤ γ0a(x0) = a(x0) min
{

min
x∈Ω

1
a(x)

, β0 min
x∈∂Ω

1
a(x)

}
= a(x0)min

x∈Ω

1
a(x)

≤ 1.

So γa(x0) = γ0a(x0) = 1. Therefore, γ = γ0, 1
a(x0) = min

x∈Ω

1
a(x) = γ0, x0 ∈ Ωm and φε → φ0

in C2,α
loc , where φ̂0 = φ0 exp(−iη) is the bounded eigenfunction of (2.3) corresponding to the

first eigenvalue 1 with h = 1. Hence, (5.8) holds. Fix x̄ ∈ Ω \ Ωm. Replacing xε by x̄ and
repeating the above argument we have that (5.3) holds on Ω\Ωm. This completes the proof
of this lemma.

Now we consider the Case 2. In this case, x0 ∈ ∂Ω and dist (xε, ∂Ω) ≤ Cε. Choose x̄ε ∈
∂Ω such that dist(xε, x̄ε) = dist(xε, ∂Ω). Let Fε be the diffeomorphism which straightens
a portion of the boundary around x̄ε as defined in Section 2 with Fε(0) = x̄ε. Denote
yε = Fε

−1(xε) and zε = yε/ε. Note that zε is bounded. Passing to a subsequence, we
may assume zε → z0. Note that Fε depends on ε, but their domains contain a ball BR0

with R0 independent of ε, and both Fε and det DFε are uniformly smooth on this ball.
For the simplicity of the notation, we denote Fε by F , and det DFε by g. Let A

ε
=

[gAε · e1]e1 + [Aε · e2]e2 be the vector field associated with Aε. Note that A
ε
(0) = Aε(x̄ε)

and A
ε
(0) · e2 = 0. Define

ϕ̃ε(y) = exp(−iχε)ψε(εy), (5.12)

where χε = 1
εy1A

ε(x̄ε) · e1. The same argument as in the proof of Lemma 5.3 gives

Lemma 5.4. If the case 2 holds, then (5.2) holds, x0 ∈ (∂Ω)m, γ0 = β0 min
∂Ω

1
a(x) , and

(5.3) holds on Ω \ (∂Ω)m, and

ϕ̃ε

‖ψε‖L∞(Ω)
→ φ̃0 in C2,α

loc (R2
+), (5.13)

where φ̃0 exp(−iη) satisfies

−∇2
ωφ = β0φ in R2

+, (∇ωφ) · ν = 0 on ∂R2
+. (5.14)

Proof of Theorem 5.1. (5.1) follows from (4.12) and (4.13). (5.2) and (5.3) follow
from Lemma 5.2 and Lemma 5.4. Other conclusions of this theorem come also from Lemma
5.3 and Lemma 5.4 and the proof of this theorem is complete.

Proof of Theorem 1.2. This is the consequence of Theorem 5.1.
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