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THE LAW OF THE ITERATED LOGARITHM
OF THE KAPLAN-MEIER INTEGRAL

AND ITS APPLICATION∗∗∗

HE Shuyuan∗ WANG Yanhua∗∗

Abstract

For right censored data, the law of the iterated logarithm of the Kaplan-Meier
integral is established. As an application, the authors prove the law of the iterated
logarithm for weighted least square estimates of randomly censored linear regression
model.
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§ 1 . Introduction

Let Y be a random variable and Z′ = (Z1, Z2, · · · , Zr) a random vector of covariables.
Assume that (Yi,Z′i), i = 1, 2, · · · , n, are independent sample of the (r + 1)-variate vector
(Y,Z′) and Fn(y, z) is the empirical distribution of F (y, z) = P (Y ≤ y,Z ≤ z). For any
F (dx, dz) integrable function g(x, z), the law of the iterated logarithm (LIL) states that
with probability one, the random sequence

LLn
( ∫

g(y, z)Fn(dy, dz)−
∫

g(y, z)F (dy, dz)
)
, n = 3, 4, · · · , (1.1)

is relatively compact and the set of its limit points coincides with

[−
√

Var(g(Y,Z)),
√

Var(g(Y,Z)) ],

where LLn =
√

n/2 log log n. The objective of the present paper is to prove the LIL result
under random censorship. Under random censorship, rather than (Yi,Zi), i = 1, · · · , n, the
variable of interest, we observe

Ui = min(Yi, Ci), Zi, δi = I[Yi ≤ Ci], i = 1, · · · ., n, (1.2)

where I[A] is the indicator function of A and {Ci} is another independent and identically
distributed (iid.) sequence independent of the {Yi} sequence. Let

U(1) ≤ U(2) ≤ · · · ≤ U(n)
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be the ordered statistics of (U1, U2, · · · , Un). Define δ(k) = δi when U(k) = Ui. The nonpara-
metric maximum likelihood estimator for G(x) = P (C1 ≤ x) is the well-known Kaplan-Meier
estimate given by

Gn(x) = 1−
n∏

i=1

(
1− 1− δ(i)

n− i + 1

)I[U(i)≤x]

, (1.3)

where an empty product is set equal to one. Let F ∗n(y, z) be the empirical distribution
defined by

F ∗n(y, z) =
1
n

n∑

j=1

I[Uj ≤ y,Zj ≤ z].

Here for any two vectors a = (a1, · · · , ar)′, b = (b1, · · · , br)′, the inequality a ≤ b means
that ai ≤ bi, i = 1, · · · , r. The joint distribution F (y, z) is estimated by

Fn(y, z) =
∫

u≤y

∫

w≤z

1
1−Gn(u−)

F ∗n(du, dw). (1.4)

Random censorship typically comes up in the analysis of lifetime data. The consistency
and the central limit theorem of (1.4) was established by [1] and [2], respectively. But the
LIL result has not been established. In Theorems 2.1, 2.2 and 2.3 of the present paper, we
prove the LIL for (1.4). As an application, in Theorem 3.1, we prove the LIL for weighted
least square estimates (WLSE) of randomly censored linear regression model.

§ 2 . Main Results

Let (aF , bF ) be the range of F defined by

aF = inf{x : F (x) > 0} and bF = sup{x : F (x) < 1}.
Let aG and bG be similarly defined for the distribution G. Under random censorship, only

F (x ∧ bG, z), G(x ∧ bF )

can be estimated, where x ∧ v = min(x, v). We shall assume throughout the paper that
bF ≤ bG. Under this condition F (x ∧ bG, z) = F (x, z).

Condition A. Let F and G be continuous. Assume that for some a ∈ [0, 1), (1 −
G(x))a = O(1 − F (x)) as x → bF in the case of bF = bG, and in the case of bF < bG,
assume that ∫ bF

−∞
dG(x)/(1− F (x)) < ∞.

Condition B. Assume that (Yi,Zi, Ci), i = 1, 2, · · · , are iid. copies of the random
vector (Y,Z, C) and P (Y ≤ C|Y,Z) = P (Y ≤ C|Y ).

Condition A was used by [3] to prove the LIL for Kaplan-Meier estimate Gn. Condition
B was used by [1] and makes the censored model flexible enough to allow for a dependence
between Z and C.

For any measurable function g(x, z), define

Mn(g) =
∫

g(x, z)Fn(dx, dz)−
∫

g(x, z)F (dx, dz). (2.1)

Here and after we use
∫

for
∫ ∞

−∞
.
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Theorem 2.1. Assume Conditions A and B hold. Let g(x, z) be a measurable function
satisfying ∫

gk(x, z)
1−G(x)

F (dx, dz) < ∞, k = 1, 2. (2.2)

Then as n →∞, with probability one

lim sup
n→∞

LLnMn(g) = σ, lim inf
n→∞

LLnMn(g) = −σ, (2.3)

where

σ2 = E
g2(Y,Z)
G(Y )

− (Eg(Y,Z))2 − E
ψ2(C)

F (C)G
2
(C)

, (2.4)

F = 1− F, G = 1−G, ψ(s) = E{g(Y,Z)I[Y ≥ s]}. (2.5)

Remark 2.1. If P (C ≥ Y ) = 1, then (2.2) reduces to Eg2(Y,Z) < ∞ and σ2 reduces
to Var(g(Y,Z)).

Theorem 2.2. Under the conditions of Theorem 2.1, with probability one, the sequence
{LLnMn(g)} is relatively compact and the set of its limit points coincides with [−σ, σ].

For i = 1, 2, · · · , r, suppose that gi = gi(x,x) satisfies (2.2). Define g = (g1, g2, · · · , gr)′
and

Mn = (Mn(g1),Mn(g1), · · · , Mn(gr))′. (2.6)

Let Σ = (σij) be an r × r nonnegative definite matrix with its (i, j) elements defined by

σi,j = E
gi(Y,Z)gj(Y,Z)

G(Y )
− Egi(Y,Z)Egj(Y,Z)− E

ψi(C)ψj(C)

F (C)G
2
(C)

,

ψj(s) = E{gj(Y,Z)I[Y ≥ s]}.
(2.7)

Let Rr be the r-dimentional Euclidian space equipped with Euclidian norm ‖ · ‖. We
have the following Hartman-Wintner- Strassen’s law of the iterated logarithm.

Theorem 2.3. For each gi(x, z), suppose the conditions of Theorem 2.1 hold. If the
matrix Σ = AA′ is positively definite, then with probability one the sequence {LLnMn} is
relatively compact and the set of its limit points coincides with

K = {Ax ; ‖ x ‖≤ 1, x ∈ Rr}. (2.8)

To prove the theorems we need some preliminaries. Let

F ∗(x, z) = P (U1 ≤ x,Z1 ≤ z, δ1 = 1) (2.9)

be the joint distribution of the censored random vector (Ui,Zi, δi = 1). Then it can be
derived that (see [2])

F ∗(x, z) =
∫

y≤x

∫

w≤z

G(y−)F (dy, dw). (2.10)

It follows immediately from (2.10) that the joint distribution of (Y,Z) is given by

F (x, z) =
∫

y≤x

∫

w≤z

1
G(y−)

F ∗(dy, dw). (2.11)
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For any bm < bF , let gm(x, z) be the restriction of g(x, z) on (−∞, bm] defined by
gm(x, z) = g(x, z)I[x ≤ bm]. Define H(x) = P (U1 ≤ x), H = 1−H,

µm =
∫

gm(x, z)F (dx, dz), ψm(s) =
∫

x≥s

gm(x, z)F (dx, dz). (2.12)

Introduce

βn = (log n/n)3/4, H0(s) = P (U1 ≤ s, δ1 = 0),

Tk(u) =
(1− δk)I[Uk ≤ u]

H(Uk)
−

∫ u

−∞

I[s ≤ Uk]

H
2
(s)

dH0(s),

ξk(bm) =
gm(Uk,Zk)δk

G(Uk)
, Sk(bm) = E[ξk(bm)Tj(Uk)

∣∣Yj , Cj ,Zj ].

Lemma 2.1. Suppose the conditions of Theorem 2.1 hold. Then with probability one

lim sup
n→∞

LLnMn(gm) = σm, lim inf
n→∞

LLnMn(gm) = −σm, (2.13)

where

σ2
m = E

g2
m(Y,Z)
G(Y )

− (Egm(Y,Z))2 − E
ψ2

m(C)

F (C)G
2
(C)

→ σ2 as bm → bF . (2.14)

Proof. By Lemma 3.2, (3.11) and the proof of Theorem 3.4 in [2], we have

Mn(gm) =
1
n

n∑

k=1

[ξk(bm)− Eξk(bm) + Sk(bm)] + O(βn), a.s., (2.15)

where the random variables ξk(bm) − Eξk(bm) + Sk(bm), i = 1, 2, · · · , are iid. with mean
zero and variance σ2

m given in (2.14). By dominated convergence theorem we get σ2
m → σ2

as bm → bF . The result (2.13) follows from LIL of iid. random variables.

Lemma 2.2. Under Condition A,

lim sup
n→∞

LLn sup
x≤U(n)

|G(x)−Gn(x)| = M, a.s., (2.16)

where Gn is the Kaplan-Meier estimator defined by (1.3) and M is defined by

M = sup
x≤ bF

{
G(x)

∫ x

−∞

dG

G
2
F

}
< ∞. (2.17)

Proof. See Theorem 1 and Corollary 3 of [3].

Lemma 2.3. (cf. [1]) Under the conditions of Theorem 2.1, for any nonnegative and
measurable g(x, z), as n →∞,

lim
n→∞

∫
g(x, z)Fn(dx, dz) →

∫
g(x, z)F (dx, dz), a.s.
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Proof of Theorem 2.1. Let bm < bF and g′m(x, z) = gm(x, z)I[x > bm]. Using (1.4)
and (2.11) we get

|Mn(g)−Mn(gm)| =
∣∣∣
∫

g′m(x, z)Fn(dx, dz)−
∫

g′m(x, z)F (dx, dz)
∣∣∣

≤
∣∣∣
∫

g′m(x, z)
F ∗n(dx, dz)

Gn(x)
−

∫
g′m(x, z)

F ∗n(dx, dz)
G(x)

∣∣∣

+
∣∣∣
∫

g′m(x, z)
G(x)

(F ∗n(dx, dz)− F ∗(dx, dz))
∣∣∣

≤ sup
x≤Un

|G(x)−Gn(x)|
∫ |g′m(x, z)|

G(x)
Fn(dx, dz)

+
∣∣∣
∫

g′m(x, z)
G(x)

(
F ∗n(dx, dz)− F ∗(dx, dz)

)∣∣∣

≡ η1(n, m) + η2(n,m). (2.18)

Now by Lemmas 2.2 and 2.3, we get almost surely,

Am ≡ lim sup
n→∞

LLnη1(n,m) = M

∫ |g′m(x, z)|
G(x)

F (dx, dz). (2.19)

Note that η2(n,m) is the sample mean of the iid random variables

g′m(Ui,Wi)
G(Ui)

− E
(g′m(Ui,Wi)

G(Ui)

)
, i = 1, · · · , n,

each with variance less than

B2
m ≡ E

(g′m(U,W )
G(U)

)2

=
∫ (g′m(x, z)

G(x)

)2

F ∗(dx, dz) =
∫

(g′m(x, z))2

G(x)
F (dx, dz), a.s.

By LIL for sample mean of iid. random variables, we get

lim sup
n→∞

LLn|η2(n,m)| = Bm, a.s. (2.20)

Combining (2.18), (2.19) and (2.20), we get

lim sup
n→∞

LLn|Mn(g)−Mn(gm)| = lim sup
n→∞

LLn|Mn(g′m)| ≤ Am + Bm, a.s. (2.21)

It is seen from the definition of g′(x, z) that lim
m→∞

(Am + Bm) = 0.
Now, Theorem 2.1 follows from Lemma 2.1, bm → bF and

Mn(gm)− |Mn(g)−Mn(gm)| ≤ Mn(g) ≤ Mn(gm) + |Mn(g)−Mn(gm)|. (2.22)

Proof of Theorem 2.2. The result will follow from Theorem 2.1 and

lim sup
n→∞

|LLnMn(g)− LLn−1Mn−1(g)| = 0, a.s. (2.23)

But using (2.15), (2.18) and the fact that for any random variable X and positive ε,

E|X2|/ε2 =
∫ ∞

0

P (|X| ≥
√

tε)dt ≥
∞∑

k=0

P (|X| ≥
√

kε),
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we get

lim sup
n→∞

|LLnMn(g)− LLn−1Mn−1(g)|

≤ lim sup
n→∞

|LLn[Mn(g)−Mn−1(g)]|

≤ lim sup
n→∞

|LLn[(Mn(gm)−Mn−1(gm)] + LLn[Mn(g′m)−Mn−1(g′m)]|

≤ lim sup
n→∞

∣∣∣LLn

n
[ξn(bm)− Eξn(bm) + Sn(bm)]

∣∣∣ + 2Am + 2Bm

→ 0 as m →∞.

To prove Theorem 2.3, we need another lemma.

Lemma 2.4. Let {ξn} be an iid. sequence with Eξ1 = 0, Eξ2
1 = 1, and independent

of {Mn}. Under the conditions of Theorem 2.1, for any constants a and b, with probability
one, the sequence {LLn(aMn(g) + bξn)} is relatively compact and the set of its limit points
coincides with

[−
√

a2σ2 + b2,
√

a2σ2 + b2 ].

Proof. The result follows from (2.22), (2.15) and LIL of iid. random sequence.

Proof of Theorem 2.3. For convenience, suppose all the random variables are defined
on a complete probability space (Ω,F , P ). By Theorem 2.2, there is a full event Ω0 with
P (Ω0) = 1, such that on Ω0 each {Mn(gj)} is relatively compact and the set of its limit
points coincides with [−√σjj ,

√
σjj ]. In the following, all the proofs will be based on Ω0. It

is easy to check that

K = {Ax ; ‖ x ‖≤ 1, x ∈ Rr} = {x ∈ Rr ; a′x ≤
√

a′Σa for all a ∈ Rr}.
Let C(LLnMn) be the set of limit points of the random sequence {LLnMn}. Firstly,

we prove C(LLnMn(g)) ⊂ K. From Theorem 2.1, we see for any a ∈ Rr and ω ∈ Ω0,

lim sup
n→∞

LLna′Mn = lim sup
n→∞

LLnMn(a′g) =
√

a′Σa. (2.24)

For any x ∈ Kc, the complement of K, there is a vector a ∈ Rr such that a′x >
√

a′Σa+ ε,
for some positive ε. If x is a limit point of {LLnMn}, then there is a subsequence of
{LLnMn} which converges to x. Along this subsequence, LLna′Mn(g) → a′x. But that is
in contradiction with (2.24).

Now we prove K ⊂ C(LLnMn). For any y = Ax ∈ K, we have ‖ x ‖≤ 1. Suppose
‖ x ‖= 1, firstly. For ω ∈ Ω0 and ε > 0, from C(LLnMn) ⊂ K, we see that for n large
enough,

‖ LLnA−1Mn ‖≤ sup
y∈K

‖ A−1y ‖ +ε = sup
‖x‖≤1

‖ A−1Ax ‖ +ε = 1 + ε.

And from Theorem 2.1, we get

lim sup
n→∞

LLny′Σ−1Mn = lim sup
n→∞

LLnMn(y′Σ−1g) = [y′Σ−1Σ(Σ)−1y]1/2 =‖ A−1y ‖= 1.

Hence, along a subsequence of {LLny′Σ−1Mn} and for n large enough, LLny′Σ−1Mn

≥ 1− ε, and in this case we get

‖ LLnA−1Mn −A−1y ‖2 =‖ LLnA−1Mn ‖2 + ‖ A−1y ‖2 −2LLny′Σ−1Mn

≤ 1 + ε + 1− 2− 2ε ≤ 3ε.



THE LAW OF THE ITERATED LOGARITHM OF THE KAPLAN-MEIER INTEGRAL 205

That means lim inf
n→∞

‖ LLnMn − y ‖→ 0.

For the case of ‖ y ‖= θ < 1, define

Wn = (LLn(A−1Mn)′, LLnξn)′, n = 3, 4, · · · ,

where the iid. random sequence {ξn} satisfies the conditions of Lemma 2.4. Let ỹ =
((A−1y)′, (1− θ2)1/2), then ‖ ỹ ‖= 1. By the preceding step and using Lemma 2.4, we can
prove

lim inf
n→∞

‖ Wn − ỹ ‖= 0, a.s.

It follows that lim inf
n→∞

‖ LLnMn − y ‖→ 0. This completes the proof of Theorem 2.3.

§ 3 . Application of Linear Regression Model

Assume that (Y,Z) satisfies a linear regression model

Y = b′Z + ε, (3.1)

where b = (b1, · · · , br)′ is the vector of parameters of interest and the error ε is uncorrelated
with Z with mean 0 and variance σ2

ε . Let (Yi,Z′i) = (Yi, Z1i, · · · , Zir) be iid. observations
of (Y,Z′).

Under random censorship, only the censored data (1.2) is observed. The WLSE of b
is any vector b̂ = (b̂1, b̂2, · · · , b̂r)′ which minimizes the quadratic form

Q(b) =
n∑

k=1

δk

Gn(Uk−)
(Uk − b1Zk1 − · · · − brZkr)

2
. (3.2)

The WLSE of the variance σ2
ε is defined by

σ̂2
ε =

1
n

Q(b̂). (3.3)

The censored regression problem has been used and studied by [4–6]. But the LIL
result has not been established.

For k = 0, 1, · · · , r, define Zk0 = Uk,

µ̂ij =
∫

zizjFn(dz0, dz) =
1
n

n∑

k=1

ZkiZkjδk

1−Gn(Uk−)
, 0 ≤ i, j ≤ r. (3.4)

and r̂ = (µ̂01, · · · , µ̂0r)′, Γ̂ = (µ̂ij)i,j=1,··· ,r. Write Q(b) in the form of

Q(b) =
n∑

k=1

(
Ukδk√

Gn(Uk−)
− b1

Zk1δk√
Gn(Uk−)

− · · · − br
Zkrδk√
Gn(Uk−)

)2

.

It is seen that the WLSE is such vector b̂ satisfying

r̂ = Γ̂b̂ and σ̂2 = µ00 − b̂′r̂. (3.5)

Now define

gj(y, z) = zj(y − b′z), h(y, z) = (y − b′z)2,

ψj(s) =
∫

y≥s

gj(y, z)dF (y, z), h̃(s) =
∫

y≥s

h(y, z)dF (y, z).

σi,j = E
ZiZjε

2

G(Y )
− E

ψi(C)ψj(C)

F (C)G
2
(C)

, σ2
G = E

ε4

G(Y )
− σ4

ε − E
h̃2(C)

F (C)G
2
(C)

. (3.6)
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Let Z = (Z1, · · · , Zr)′, Γ = E(ZZ′) and Σ = (σij)r×r.

Theorem 3.1. In the model of (3.1), suppose Σ = AA′ and Γ are positively definite,
and assume the conditions A and B for F and G.

( I ) If E[Zk
j ε2/G(Y )] < ∞, j = 1, 2, · · · , r, k = 1, 2, then with probability one, the

sequence {LLn(b̂− b)} is relatively compact and the set of its limit points coincides with

KG = {Γ−1Ax ; ‖ x ‖≤ 1,x ∈ Rr}.
(II) If E[ε2k/G(Y )] < ∞, k = 1, 2, then with probability one, the sequence {LLn(σ̂2 −

σ2)} is relatively compact and the set of its limit points coincides with [−σG, σG].

Proof. The conditions entail that for all i, j = 1, · · · , r,
∫ |gi(y, z)gj(y, z)|

1−G(y)
F (dy, dz) =E

( |ZiZj |ε2

1−G(Y )

)
< ∞,

∫
hk(y, z)
1−G(y)

F (dy, dz) =E
( ε2k

1−G(Y )

)
< ∞, k = 1, 2.

Define
g(y, z) = (g1(y, z), · · · , gr(y, z))′. (3.7)

Applying Theorem 2.3 and for n large enough, we obtain

b̂− b = Γ̂−1r̂− Γ−1r

= Γ̂−1(Γ− Γ̂)Γ−1r̂ + Γ−1(r̂− r)

= Γ−1[(Γ− Γ̂)b + r̂− r] + o(LLn)

= Γ−1
( ∫

g(y, z)(Fn(dy, dz)− F (dy, dz))
)

+ o(LLn), a.s.

and similarly

σ̂2 − σ2
ε = µ̂00 − µ00 + b′r− b̂′r̂ =

∫
h(y, z)(Fn(dy, dz)− F (dy, dz)) + o(LLn), a.s.

Now the results follow from Theorem 2.3 and
∫

gj(y, z)F (dy, dz) = E[Zj(Y − b′Z)] = E[Zjε] = 0.

References

[ 1 ] Stute, W., Consistent estimation under random censorship when covariables are present, J. of Multi-
variate Anal., 45:1(1993), 89–103.

[ 2 ] He, S. & Wong, H., Central limit theorem of linear regression model under right censorship, Science
in China, Series A., 46:5(2003), 600–610.

[ 3 ] Gu, M. & Lai, L., Functional laws of the iterated logarithm for the product-limit estimator of a
distribution under random censorship or truncation, Ann. Probab., 18(1990) 160–189.

[ 4 ] Ritov, Y., Estimation in a linear regression model with censored data, Ann. Statist, 18:1(1990), 303–
328.

[ 5 ] James, I. R. & Smith, P. J., Consistency results for linear regression with censored data, Ann. Statist,
12:2(1984), 590–600.

[ 6 ] Miller, R. G., Least squares regression with censored data, Biometrika, 63:2(1976), 449–464.


