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ON THE TOPOLOGY, VOLUME, DIAMETER AND
GAUSS MAP IMAGE OF SUBMANIFOLDS

IN A SPHERE∗∗

WU Bingye∗

Abstract

In this paper, the author uses Gauss map to study the topology, volume and diam-
eter of submanifolds in a sphere. It is proved that if there exist ε, 1 ≥ ε > 0 and a
fixed unit simple p-vector a such that the Gauss map g of an n-dimensional complete
and connected submanifold M in Sn+p satisfies 〈g, a〉 ≥ ε, then M is diffeomorphic
to Sn, and the volume and diameter of M satisfy εnvol(Sn) ≤vol(M) ≤ vol(Sn)/ε
and επ ≤diam(M) ≤ π/ε, respectively. The author also characterizes the case where
these inequalities become equalities. As an application, a differential sphere theorem
for compact submanifolds in a sphere is obtained.
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§ 1 . The Main Results

The Gauss map of minimal surfaces or submanifolds with parallel mean curvature
vector in spheres has been extensively studied. The basic idea is to obtain the rigidity
results by sufficiently restricting the size of the image of Gauss map (see e.g., [1, 2]).

In this paper we shall use Gauss map to study the topology, volume and diameter of
submanifolds in spheres. As is well known, there are different definitions for Gauss map. In
this paper, the Gauss map is defined by the normal bundle of submanifolds. Our first result
is the following

Theorem 1.1. Let ψ : M → Sn+p ⊂ Rn+p+1 be an isometric immersion of an n-
dimensional complete and connected Riemannian manifold into unit (n + p)-sphere Sn+p.
If there exist ε, 1 ≥ ε > 0 and a fixed unit simple p-vector a in ∧p(Rn+p+1) such that the
Gauss map g of M satisfies 〈g, a〉 ≥ ε, then M is diffeomorphic to Sn, and the volume and
diameter of M satisfy

εnvol(Sn) ≤ vol(M) ≤ vol(Sn)/ε (1.1)

and
επ ≤ diam(M) ≤ π/ε, (1.2)
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respectively. Moreover, vol(M) = εnvol(Sn) or diam(M) = επ holds if and only if ψ(M)
is a totally umbilical n-sphere with radius ε, while vol(M) = vol(Sn)/ε or diam(M) = π/ε
holds if and only if ε = 1, and ψ(M) is a totally geodesic n-sphere.

The second result of this paper is a differential sphere theorem from the viewpoint of
submanifold geometry for compact spherial submanifolds which is established by means of
Gauss map. We note that some topological sphere theorem have been obtained from the
point of view of submanifold geometry (see [3–5]). In order to state our result, let us first
introduce a notation. Let x0 ∈ M be a point in M , and C : M → R a function on M . We
say that Ricmin

x0
> C if the Ricci curvature of M satisfies

Ric(γ′(t)) > C(γ(t))

for any minimal normal geodesic γ : [a, b] → M starting from x0. Our differential sphere
theorem is

Theorem 1.2. Let ψ : M → Sn+p be an isometric immersion of an n-dimensional
compact Riemannian manifold M into Sn+p. Assume that for some x0 ∈ M , the Ricci
curvature of M satisfies

Ricmin
x0

> n− 1 +
nπ|H|

2d
− π2

4d2
(1.3)

and n|H| < π/d, where H is the mean curvature vector of M and d = diam(M). Then M
is diffeomorphic to Sn.

§ 2 . The Gauss Map

Let ψ : M → Sn+p ⊂ Rn+p+1 be an isometric immersion of an n-dimensional Rie-
mannian manifold into unit (n + p)-sphere Sn+p, and e1, · · · , en+p+1 the local frame field
of Rn+p+1 such that, when restricted on M , e1, · · · , en are tangent to M and en+1 = ψ is
the position vector of M . The Gauss map g of M assigns each point x ∈ M the oriented
normal space of M in Sn+p at x, which can be considered as an element of the Grassmannian
manifold G(p, n + p + 1) by moving parallelly to the origin of Rn+p+1. As is well known,
we can regard G(p, n + p + 1) as a compact submanifold of Euclidean space ∧p(Rn+p+1).
Locally the Gauss map

g : M → G(p, n + p + 1) ⊂ ∧p(Rn+p+1)

can be written as g = en+2 ∧ · · · ∧ en+p+1. Since g is a unit simple p-vector, it must lie in

the unit hypersphere SN of ∧p(Rn+p+1), where N =
( n + p + 1

p

)
− 1. It is convenient to

consider the Gauss map g as a map from M to SN :

g = en+2 ∧ · · · ∧ en+p+1 : M → SN .

For simple vectors g = en+2 ∧ · · · ∧ en+p+1, a = an+2 ∧ · · · ∧ an+p+1, the inner product
is defined as usual by 〈g, a〉 = det(〈eα, aβ〉). Here and in the sequel we use the following
convention on the ranges of indies:

1 ≤ i, j, · · · ≤ n + 1; n + 2 ≤ α, β ≤ n + p + 1.

We say that the image of Gauss map g is contained in an open hemisphere if there exists a
fixed p-vector a = an+2 ∧ · · · ∧ an+p+1 such that 〈g, a〉 > 0.
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Let ∗ : ∧p(Rn+p+1) → ∧n+1(Rn+p+1) be the de Rham-Hodge star operator on
∧p(Rn+p+1). It is well known that ∗ is an isometric isomorphism between ∧p(Rn+p+1)
and ∧n+1(Rn+p+1), that is, for any a, b ∈ ∧p(Rn+p+1), we have 〈a, b〉 = 〈∗a, ∗b〉.

§ 3 . The Proof of Theorems

We shall complete the proof of Theorems 1.1 and 1.2 in this section. Let us first
prove Theorem 1.1. Suppose that ψ : M → Sn+p ⊂ Rn+p+1 be an isometric immersion
of an n-dimensional complete and connected Riemannian manifold into Sn+p whose Gauss
map g satisfies 〈g, a〉 ≥ ε for some ε, 1 ≥ ε > 0 and a fixed unit simple p-vector a =
an+2 ∧ · · · ∧ an+p+1 ∈ ∧p(Rn+p+1). We extend an+2, · · · , an+p+1 to an orthonormal basis
a1, · · · , an+p+1 of Rn+p+1, and define the projection Π : M → Sn

a by

Π(p) =
1√∑

i

〈ψ(p), ai〉2
∑

i

〈ψ(p), ai〉ai, ∀p ∈ M, (3.1)

where Sn
a = {x ∈ Sn+p : 〈x, aα〉 = 0, n+2 ≤ α ≤ n+ p+1} is the totally geodesic n-sphere

determined by a. A straightforward computation shows that

dΠ(X) =
1

( ∑
i

〈ψ, ai〉2
)3/2

∑

i,j

(〈ψ, aj〉2〈X, ai〉 − 〈ψ, aj〉〈X, aj〉〈ψ, ai〉)ai

for every tangent vector field X of M , and consequently

|dΠ(X)|2 =
1(∑

i

〈ψ, ai〉2
)2

∑

i,j

(〈ψ, ai〉2〈X, aj〉2 − 〈ψ, ai〉〈X, ai〉〈ψ, aj〉〈X, aj〉)

=
1(∑

i

〈ψ, ai〉2
)2

∑

i<j

〈X ∧ ψ, ai ∧ aj〉2. (3.2)

Since 〈g, a〉 ≥ ε, we have

ε ≤ 〈g, a〉 = 〈∗g, ∗a〉 = 〈e1 ∧ · · · ∧ en ∧ ψ, a1 ∧ · · · ∧ an+1〉
=

∑

i

(−1)n+1+i〈ψ, ai〉〈e1 ∧ · · · ∧ en, a1 ∧ · · · âi ∧ · · · ∧ an+1〉

≤
√∑

i

〈ψ, ai〉2
∑

i

〈e1 ∧ · · · ∧ en, a1 ∧ · · · âi ∧ · · · ∧ an+1〉2

≤
√∑

i

〈ψ, ai〉2,

where âi denotes removing the factor ai. Hence
∑

i

〈ψ, ai〉2 ≥ 〈g, a〉2 ≥ ε2. (3.3)

On the other hand, by the Laplace expansion theorem for determinant, we have
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ε ≤ 〈e1 ∧ · · · ∧ en ∧ ψ, a1 ∧ · · · ∧ an+1〉
=

∑

i<j

(−1)i+j+1〈en ∧ ψ, ai ∧ aj〉〈e1 ∧ · · · ∧ en−1, a1 ∧ · · · âi ∧ · · · ∧ âj ∧ · · · ∧ an+1〉

≤
√∑

i<j

〈en ∧ ψ, ai ∧ aj〉2
∑

i<j

〈e1 ∧ · · · ∧ en−1, a1 ∧ · · · âi ∧ · · · ∧ âj ∧ · · · ∧ an+1〉2

≤
√∑

i<j

〈en ∧ ψ, ai ∧ aj〉2. (3.4)

Now we want to estimate |dΠ(X)|2. Without loss of generality, we can assume that X =
|X|en. Then by (3.4) we have

∑
i<j

〈X ∧ ψ, ai ∧ aj〉2 ≥ ε2|X|2, which together with (3.2) and

(3.3) yields
ε2|X|2 ≤ |dΠ(X)|2 ≤ |X|2/ε2. (3.5)

It follows from (3.5) that Π is a local diffeomorphism. Since 〈 , 〉 is a complete Riemannian
metric on M , the same holds for the homothetic metric 〈̃ , 〉 = ε2〈 , 〉. Then, (3.5) means
that the map Π : (M, 〈̃ , 〉) → (Sn

a , 〈 , 〉) increases the distance. If a map, from a connected
complete Riemannian manifold M1 into another Riemannian manifold M2 of the same di-
mension, increases the distance, then it is a covering map and M2 is complete [6, Chapter
VIII, Lemma 8.1]. Hence Π is a covering map, but Sn

a being simply connected this means
that Π is in fact a global diffeomorphism between M and Sn

a . Hence, M is diffeomorphic to
Sn.

Now we want to prove (1.2). Let x, y ∈ Sn
a be antipodal points such that distSn

a
(x, y) =

diam(Sn
a ) = π, and x′ = Π−1(x) ∈ M, y′ = Π−1(y) ∈ M . Suppose that γ : [a, b] → M is

the minimal geodesic joining x′ and y′. Then from (3.5), we have

π = diam(Sn
a ) ≤ L(Π ◦ γ) =

∫ b

a

|dΠ(γ′(t))|dt

≤ 1
ε

∫ b

a

|γ′(t)|dt =
1
ε
L(γ) ≤ 1

ε
diam(M). (3.6)

Hence, we have diam(M) ≥ επ, and when diam(M) = επ, (3.3) becomes an equality. Then
it follows from the proof of (3.3) that

∑
i

〈e1∧· · ·∧en, a1∧· · · âi∧· · ·∧an+1〉2 = 1, which means

that constant vectors an+2, · · · , an+p+1 are normal to M . It is clear that in this case ψ(M) is
a totally umbilical n-sphere with radius ε. Conversely, if ψ(M) is a totally umbilical n-sphere
with radius ε, we certainly have diam(M) = επ. On the other hand, assume that x0, y0 ∈ M
be two points so that distM (x0, y0)=diamM , and x′0 = Π(x0) ∈ Sn

a , y′0 = Π(y0) ∈ Sn
a . Let

α : [a, b] → Sn
a be the minimal geodesic connecting x′0 and y′0. Then

diam(M) ≤ L(Π−1 ◦ α) =
∫ b

a

|dΠ−1(α′(t))|dt ≤ 1
ε

∫ b

a

|α′(t)|dt =
1
ε
L(α) ≤ π

ε
, (3.7)

and it is easy to see that all inequalities become equalities if and only if ε = 1, and ψ(M) is
the totally geodesic n-sphere. Thus (1.2) is proved.

As for the inequalities (1.1), using the diffeomorphism Π : M → Sn
a we know that

vol(Sn) =
∫

Sn
a

dS =
∫

M

Π∗(dS), (3.8)
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where dS stands for the volume element of Sn
a . Note that (3.1) can also be written as

Π(p) =
1√

1−∑
α
〈ψ(p), aα〉2

(
ψ(p)−

∑
α

〈ψ(p), aα〉aα

)
, ∀ p ∈ M, (3.9)

and consequently

dΠ(X) =
1√

1−∑
α
〈ψ, aα〉2

X +
∑
α

( )αaα + ( )ψ (3.10)

for any tangent vector field X of M . By using (3.9) and (3.10), it follows that

Π∗(dS)(X1, · · · , Xn) = det(dΠ(X1), · · · , dΠ(Xn), an+2, · · · , an+p+1, Π)

=
1

(
1−∑

α
〈ψ, aα〉2

)(n+1)/2
det(X1, · · · , Xn, an+2, · · · , an+p+1, ψ)

=
〈g, a〉

( ∑
i

〈ψ, ai〉2
)(n+1)/2

det(X1, · · · , Xn, en+2, · · · , en+p+1, ψ)

=
〈g, a〉

( ∑
i

〈ψ, ai〉2
)(n+1)/2

dM(X1, · · · , Xn)

for tangent vector fields X1, · · · , Xn of M , where dM is the volume element of M . In other
words,

Π∗(dS) =
〈g, a〉

( ∑
i

〈ψ, ai〉2
)(n+1)/2

dM. (3.11)

From (3.3), (3.8) and (3.11) we see that

vol(Sn) =
∫

M

〈g, a〉
(∑

i

〈ψ, ai〉2
)(n+1)/2

dM ≤
∫

M

1
〈g, a〉n dM ≤

∫

M

1
εn

dM ≤ 1
εn

vol(M),

and so vol(M) ≥ εnvol(Sn). We can argue as above to deduce out that vol(M) = εnvol(Sn)
if and only if ψ(M) is a totally umbilical n-sphere with radius ε. Similarly

vol(Sn) ≥
∫

M

〈g, a〉dM ≥ εvol(M)

and all inequalities become equalities if and only if ε = 1, and ψ(M) is the totally geodesic
n-sphere. Therefore, (1.1) is proved, and we complete the proof of Theorem 1.1.

In the following, let us prove Theorem 1.2. It is easy to know from Theorem 1.1 that if
the Gauss map g of M satisfies 〈g, a〉 > 0, then M is diffeomorphic to Sn. This is equivalent
to say that when the image of the Gauss map g : M → SN is contained in a geodesic ball
of SN with radius ρ < π/2, then M is diffeomorphic to Sn. We will prove Theorem 1.2
by showing that under the assumption of Theorem 1.2, the image of Gauss map must be
contained in a geodesic ball of SN with radius ρ < π/2. Let y ∈ M be an arbitrary point,



212 WU, B. Y.

and γ : [a, b] → M be the minimal normal geodesic joining x0 and y. Then g◦γ : [a, b] → SN

is a curve in SN connecting g(x0) and g(y). The length of g ◦ γ is

L =
∫ b

a

∣∣∣ d

dt
g ◦ γ(t)

∣∣∣dt. (3.12)

We have
d

dt
g ◦ γ(t) =

d

dt
(en+2(γ(t)) ∧ · · · ∧ en+p+1(γ(t)))

= Dγ′(t)en+2 ∧ en+3 ∧ · · · ∧ en+p+1 + · · ·+ en+2 ∧ · · · ∧ en+p ∧Dγ′(t)en+p+1

= −An+2(γ′(t)) ∧ en+3 ∧ · · · ∧ en+p+1 − · · · − en+2 ∧ · · · ∧ en+p ∧An+p+1(γ′(t)),

where D is the standard connection on Rn+p+1 and Aα is the Weingarten transformation
on TM with respect to eα. Therefore we get

∣∣∣ d

dt
g ◦ γ(t)

∣∣∣
2

=
∑
α

|Aα(γ′(t))|2. (3.13)

On the other hand, from the Gauss equation it is clear that

Ric(γ′(t)) = n− 1 +
∑
α

tr(Aα)〈Aα(γ′(t)), γ′(t)〉 −
∑
α

|Aα(γ′(t))|2

≤ n− 1 + n|H|
√∑

α

|Aα(γ′(t))|2 −
∑
α

|Aα(γ′(t))|2,

and so,
∣∣∣ d

dt
g ◦ γ(t)

∣∣∣ =
√∑

α

|Aα(γ′(t))|2 ≤ n|H|+
√

n2|H|2 − 4Ric(γ′(t)) + 4(n− 1)
2

. (3.14)

Combining (1.3), (3.12) and (3.14) together with the assumption that n|H| < π/d, we finally
get

L ≤
∫ b

a

n|H|+
√

n2|H|2 − 4Ric(γ′(t)) + 4(n− 1)
2

dt <

∫ b

a

π

2d
dt ≤ π

2d
· d =

π

2
. (3.15)

Since y ∈ M is arbitrary, (3.15) means that the Gauss map image of M lies in a geodesic
ball of SN centered at g(x0) with radius < π/2, so we are done.
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