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Abstract

The general finite difference schemes with intrinsic parallelism for the boundary
value problem of the semilinear parabolic system of divergence type with bounded
measurable coefficients is studied. By the approach of the discrete functional analysis,
the existence and uniqueness of the discrete vector solutions of the nonlinear difference
system with intrinsic parallelism are proved. Moreover the unconditional stability of
the general difference schemes with intrinsic parallelism justified in the sense of the
continuous dependence of the discrete vector solution of the difference schemes on
the discrete initial data of the original problems in the discrete W

(2,1)
2 (Q∆) norms.

Finally the convergence of the discrete vector solutions of the certain difference schemes
with intrinsic parallelism to the unique generalized solution of the original semilinear
parabolic problem is proved.
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§ 1 . Introduction

1.1. In [1–10] the finite difference methods with intrinsic parallelism for the bound-
ary value problems of the linear and quasilinear parabolic system of non-divergence type
with smooth coefficients are studied, and these general difference schemes having the in-
trinsic character of parallelism are proved to be stable and convergent unconditionally. In
this paper, we shall consider the finite difference methods with intrinsic parallelism for
the boundary value problems of the semilinear parabolic system of divergence type with
bounded measurable coefficients, and various fundamental behavior of these schemes will be
discussed.

This paper is presented as follows. In Section 2 we at first construct general finite dif-
ference scheme with intrinsic parallelism for the boundary value problems of the semilinear
parabolic systems of divergence type with bounded measurable coefficients. In Section 3 we
prove a priori estimates of the discrete vector solution of the general difference scheme with
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intrinsic parallelism, so that the existence theorem follows from the fixed point theorem.
Then in Section 4 we prove the uniqueness of the discrete vector solution of the general
difference scheme with intrinsic parallelism. Moreover, in Section 5 the unconditional sta-
bility of the general difference scheme with intrinsic parallelism is justified in the sense of
the continuous dependence of the discrete vector solutions on the discrete initial data of the
original problems for the semilinear parabolic systems in the discrete H1 norms. Further, in
Section 6 the convergence of the discrete vector solutions to the unique generalized vector
solution of the original problem of the semilinear parabolic systems is proved under certain
conditions.

§ 2 . Difference Schemes with Intrinsic Parallelism

2.1. Consider the boundary value problems for the semilinear parabolic systems of
second order of the form

ut = (A(x, t)ux)x + f(x, t, u), (2.1)

where u(x, t) = (u1(x, t), · · · , um(x, t)) is the m-dimensional vector unknown function (m ≥
1), ut = ∂u

∂t and ux = ∂u
∂x are the corresponding vector derivatives. The matrix A(x, t)

is an m ×m positive definite coefficient matrix, and f(x, t, u) is the m-dimensional vector
function. Let us consider in the rectangular domain QT = {0 ≤ x ≤ l, 0 ≤ t ≤ T} with l > 0
and T > 0, the problem for the systems (2.1) with the boundary value condition

u(0, t) = u(l, t) = 0, (2.2)

and the initial value condition

u(x, 0) = ϕ(x), (2.3)

where ϕ(x) is a given m-dimensional vector function of variable x ∈ [0, l].
Suppose that the following conditions are satisfied.
( I ) A(x, t) is bounded measurable with respect to (x, t) ∈ QT and Lipschitz continuous

with respect to t ∈ [0, T ]. There is a constant σ0 > 0, such that, for any vector ξ ∈ Rm, and
for (x, t) ∈ QT ,

(ξ, A(x, t)ξ) ≥ σ0|ξ|2.

(II) f(x, t, u) is bounded measurable with respect to (x, t) ∈ QT and Lipschitz con-
tinuous with respect to u ∈ Rm. Then there is a constant C > 0 such that |f(x, t, u)| ≤
|f̄(x, t)|+ C|u| for (x, t) ∈ QT and u ∈ Rm, where f̄(x, t) = f(x, t, 0).

(III) The initial value m-dimensional vector function ϕ(x) ∈ H1[0, l] and ϕ(0) = ϕ(l) =
0.

2.2. Let us divide the rectangular domain QT into small grids by the parallel lines
x = xj (j = 0, 1, · · · , J) and t = tn (n = 0, 1, · · · , N) with xj = jh and tn = nτ , where
Jh = l and Nτ = T , J and N are integers, and h and τ are steplengths of the grids. Denote
Qn

j = {xj < x ≤ xj+1, t
n < t ≤ tn+1}, where j = 0, 1, · · · , J−1; n = 0, 1, · · · , N−1. Denote

v∆ = vτ
h = {vn

j |j = 0, 1, · · · , J ; n = 0, 1, · · · , N} the m-dimensional discrete vector function
defined on the discrete rectangular domain Q∆ = {(xj , t

n)|j = 0, 1, · · · , J ; n = 0, 1, · · · , N}
of the grid points.
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In the following the symbol C is a generic positive constant which is independent of h, τ and
vτ

h, and maybe different from line to line.
Let us now construct the finite difference scheme with intrinsic parallelism for the

mentioned semilinear parabolic system (2.1)–(2.3) as follows:

vn+1
j − vn

j

τ
=
∗
δ 2

Avn+1
j + fn+1

j (j = 1, 2, · · · , J − 1; n = 0, 1, · · · , N − 1); (2.4)

vn
0 = vn

J = 0 (n = 0, 1, · · · , N), (2.5)

v0
j = ϕj (j = 0, 1, · · · , J), (2.6)

where ϕj = ϕ(xj) (j = 0, 1, · · · , J), and there are ϕ0 = ϕJ = 0; and

An
j+ 1

2
=

1
hτ

∫∫

Qn
j

A(x, t)ω
(x− xj+ 1

2

h
,
t− tn+ 1

2

τ

)
dxdt,

fn+1
j =

1
hτ

∫∫

Qn
j

f(x, t, δ0vn+1
j )ω

(x− xj+ 1
2

h
,
t− tn+ 1

2

τ

)
dxdt,

where ω(x, t) ∈ C∞0 (R2), ω(x, t) ≥ 0, supp ω ⊂ B 1
2
≡ {|x| < 1

2 , |t| < 1
2} and

∫∫

R2
ω(x, t)dxdt = 1,

and xj+ 1
2

= (j + 1
2 )h, tn+ 1

2 = (n + 1
2 )τ . If ω(x, t) = χB 1

2
, which is the character function of

B 1
2
, the results in this paper also hold.

Define the approximations δ0vn+1
j in the following form

δ0vn+1
j = λn

j αn
1jv

n+1
j+1 + αn

2jv
n+1
j + µn

j αn
3jv

n+1
j−1 + αn

4jv
n
j+1 + αn

5jv
n
j + αn

6jv
n
j−1.

We assume
(IV) τ

h2 ≤ Λ with Λ being any fixed positive constant as τ, h → 0; moreover, for all
1 ≤ j ≤ J − 1 and 0 ≤ n ≤ N − 1, there hold 0 ≤ λn

j , νn
j ≤ 1, and

λn
j αn

1j + αn
2j + µn

j αn
3j + αn

4j + αn
5j + αn

6j = 1,

|λn
j αn

1j |+ |αn
2j |+ |µn

j αn
3j |+ |αn

4j |+ |αn
5j |+ |αn

6j | ≤ C.
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2.3. For a discrete function u∆ = uτ
h = {un

j |j = 0, 1, · · · , J ;n = 0, 1, · · · , N} with
un

0 = un
J = 0, define the discrete norms as follows:

‖un
h‖∞ = max

0≤j≤J
|un

j |, ‖un
h‖22 =

J−1∑

j=1

|un
j |2h,

‖δun
h‖22 =

J−1∑

j=0

|δun
j |2h, ‖δun
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2
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j |2h,

‖ ∗δ 2
Avn+1
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j |2h,
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2
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j − vn
j

τ

∣∣∣
2

h.

The following lemmas will be useful later (see [10, Chapter 1]).

Lemma 2.1. (Discrete Green Formula) Let uj and vj be discrete functions on {xj |j =
0, 1, · · · , J}. Then

J−1∑

j=0

uj(vj+1 − vj) = −
J−1∑

j=1

(uj − uj−1)vj − u0v0 + uJ−1vJ .

Lemma 2.2. (Discrete Gronwall Inequality) Let wn ≥ 0 be a discrete function on
{tn|n = 0, 1, · · · , N} satisfying

wn+1 − wn ≤ Bτ(wn+1 + wn) + Cnτ, n = 0, 1, · · · , N − 1,

where B and Cn are nonnegative constants. Then

wn ≤
(
w0 +

N∑

k=1

Ckτ
)
e4BT , n = 0, 1, · · · , N,

where τ is small such that 4Bτ ≤ N−1
N .

Lemma 2.3. (Interpolation Formulas) For any discrete function

uh = {uj |j = 0, 1, · · · , J}
with Jh = l and u0 = uJ = 0, we have

‖uh‖2 ≤ l‖δuh‖2, ‖uh‖∞ ≤ ‖δuh‖
1
2
2 ‖uh‖

1
2
2 .

§ 3 . A Priori Estimate and Existence

3.1. We are going now to prove the existence of the discrete vector solutions for the
finite difference system (2.4)–(2.6). Let us now at first turn to the a priori estimates of these
solutions.

Making the scalar product of the vector (vn+1
j − vn

j )h with the vector finite difference
equation (2.4) and summing up the resulting products for j = 1, 2, · · · , J − 1, we have

τ
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j=1

∣∣∣
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j

τ

∣∣∣
2

h = τ

J−1∑

j=1
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)
h. (3.1)
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For the first term at the right hand side of (3.2), we apply the Cauchy inequality to obtaining
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By the assumption (II) and the definition of fn+1
j , we have

J−1∑

j=1

|fn+1
j |2h ≤ C

(
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By combining (3.2)–(3.5) we obtain
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By using Lemma 2.3, and taking CτΛ ≤ 1
2 , we get
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From the above inequality and Lemma 2.2, we have the estimates
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It follows that, by using the estimates (3.7) and Lemma 2.3,

max
n=0,1,··· ,N−1

‖vn+1
h ‖∞ ≤ C. (3.9)

3.2. By the Brouwer’s fixed point theorem and the estimate above, we can obtain the
existence of the discrete solution v∆ = vτ

h = {vn
j |j = 0, 1, · · · , J ; n = 0, 1, · · · , N} for the

difference scheme (2.4)–(2.6).

Theorem 3.1. Assume that the conditions (I)–(IV) hold, and there is a positive con-
stant τ0 depending only on the given data and Λ such that τ ≤ τ0. Then the general finite
difference scheme (2.4)–(2.6) with intrinsic parallelism corresponding to the original problem
(2.1)–(2.3) has at least one discrete solution v∆ = vτ

h = {vn
j |j = 0, 1, · · · , J ;n = 0, 1, · · · , N}.

§ 4 . Uniqueness

4.1. Given the values {vn
j |j = 0, 1, · · · , J} of the difference scheme (2.4)–(2.6) on the

n-th layer. Let {vn+1
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j |j = 0, 1, · · · , J} be the two solutions of
the difference scheme (2.4)–(2.6) on the (n + 1)-th layer, i.e.,
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where f̄n+1
j (j = 1, 2, · · · , J − 1) are obtained from fn+1

j (j = 1, 2, · · · , J − 1) respectively
by replacing vn+1

j (j = 0, 1, · · · , J) with the corresponding v̄n+1
j (j = 0, 1, · · · , J). Then the

difference wj ≡ vn+1
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j .

4.2. Now making the scalar product of the vectors wjh with the vector equation (4.1)
and summing up the resulting products for j = 1, 2, · · · , J − 1, and proceeding the similar
calculation as that in Section 3, we have

τ‖δwh‖2A + 2
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It follows that

τ‖δwh‖2A + ‖wh‖22 ≤ Cτ2
J−1∑

j=1

|Rn
j |2h. (4.3)

By the assumption (II) and the definitions of fn+1
j and f̄n+1

h , we can conclude that

‖fn+1
h − f̄n+1

h ‖22 ≤ C‖wh‖22.

So we have
J−1∑

j=1

|Rn
j |2h ≤ C‖wh‖22. (4.4)

By combining (4.3) with (4.4) we get

τ‖δwh‖22 + ‖wh‖22 ≤ Cτ2‖wh‖22.

Choosing Cτ2 < 1, we obtain wh ≡ 0, i.e., vn+1
h = v̄n+1

h . The uniqueness of the discrete
vector solution for the difference scheme (2.4)–(2.6) is proved.

Theorem 4.1. Suppose that the conditions (I)–(IV) are satisfied. As the meshstep
τ ≤ τ0, where τ0 is a constant depending only on the given data and Λ, the discrete solution
v∆ = vτ

h = {vn
j |j = 0, 1, · · · , J ; n = 0, 1, · · · , N} of the difference scheme (2.4)–(2.6) is

unique.
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§ 5 . Stability

5.1. Now we turn to consider the theorem of unconditional stability of the general
finite difference scheme (2.4)–(2.6) with intrinsic parallelism.

Suppose that the discrete vector function ṽ∆ = {ṽn
j |j = 0, 1, · · · , J ;n = 0, 1, · · · , N}

satisfies the finite difference system
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The m-dimensional vector function ϕ̃(x) is different from ϕ(x) by some errors. The
m-dimensional vector function ϕ̃(x) also satisfies the condition (III).

Then the difference discrete vector function

w∆ = v∆ − ṽ∆ = {wn
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j − ṽn
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5.2. Making the scalar product of the vector
wn+1

j −wn
j

τ hτ and the vector equation (5.7),
and then summing up the resulting products for j = 1, 2, · · · , J − 1, we have
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j δ0wn+1
j

)
h.
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By the same argument as that in Section 3, we have the following inequality

‖δwn+1
h ‖2A − ‖δwn

h‖2A + 2τ

J−1∑

j=1

∣∣∣
wn+1

j − wn
j

τ

∣∣∣
2

h

≤ 2τ
∣∣∣

J−1∑

j=1

(wn+1
j − wn

j

τ
, (fu)n+1

j δ0wn+1
j

)
h
∣∣∣.

The above inequality can be reduced to the following inequality

‖δwn+1
h ‖2A − ‖δwn

h‖2A + τ
∥∥∥wn+1

h − wn
h

τ

∥∥∥
2

2
≤ τ

J−1∑

j=1

|(fu)n+1
j δ0wn+1

j |2h ≤ Cτ‖δwn+1
h ‖2A.

Then, by Lemma 2.2(ii) we obtain, for n = 0, 1, · · · , N − 1,

‖δwn+1
h ‖2A +

n∑

k=0

∥∥∥wk+1
h − wk

h

τ

∥∥∥
2

2
τ ≤ C‖δw0

h‖2A, (5.8)

which gives

‖δwn+1
h ‖22 +

n∑

k=0

‖ ∗δ 2
Awk+1

h ‖22τ ≤ C‖δw0
h‖22. (5.9)

5.3. This shows that the discrete solution v∆ of the finite difference scheme (2.4)–(2.6)
in the discrete functional space W

(2,1)
2 (Q∆) is continuously dependent on the discrete initial

vector function ϕ(x) in the discrete functional space of the form H1. We have proved the
following stability theorem.

Theorem 5.1. Under the conditions of Theorem 3.1, the following estimates hold
for the difference vector function w∆ = v∆ − ṽ∆ = {wn

j = vn
j − ṽn

j |j = 0, 1, · · · , J ;n =
0, 1, · · · , N},

‖v∆ − ṽ∆‖2W (2,1)
2 (Q∆)

≤ C‖ϕh − ϕ̃h‖2H1
h
,

where C is a constant independent of steplengths h and τ ; and

‖ϕh‖2H1
h

= ‖ϕh‖22 + ‖δϕh‖22,

‖w∆‖2W (2,1)
2 (Q∆)

≡ max
n=0,1,··· ,N

‖wn
h‖2H1

h
+

N−1∑
n=0

‖ ∗δ 2
Awn+1

h ‖22τ +
N−1∑
n=0

∥∥∥wn+1
h − wn

h

τ

∥∥∥
2

2
τ.

§ 6 . Convergence

6.1. In this section we will discuss the unconditional convergence of the finite difference
scheme (2.4)–(2.6) with intrinsic parallelism on the basis of the obtained estimates and
the convergence properties of the discrete solutions v∆ = vτ

h = {vn
j |j = 0, 1, · · · , J ;n =

0, 1, · · · , N}.
Lemma 6.1. For the discrete solution of the difference scheme (2.4)–(2.6), there are

estimates

max
n=0,1,··· ,N

|vn
j − vn

j′ | ≤ C|xj − xj′ | 12 , 0 ≤ j, j′ ≤ J ; (6.1)

max
j=0,1,··· ,J

|vn
j − vn′

j | ≤ C|tn − tn
′ | 14 , 0 ≤ n, n′ ≤ N, (6.2)
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where m and s are integers satisfying 0 ≤ m ≤ J − 1, 0 ≤ s ≤ N ; and the constants C are
independent of h, τ, m, s and vτ

h.

Proof. It is easy to see that

|vn
j − vn

j′ | ≤ ‖δvn
h‖2|xj − xj′ | 12 ,

and then (6.1) follows from the estimate (3.7). By Lemma 2.3 and (3.7)–(3.8), there hold

‖vn
h − vn′

h ‖∞ ≤ ‖δ(vn
h − vn′

h )‖
1
2
2 ‖vn

h − vn′
h ‖

1
2
2 ≤ C‖vn

h − vn′
h ‖

1
2
2 ,

‖vn
h − vn′

h ‖2 ≤
( N−1∑

k=0

∥∥∥vk+1
h − vk

h

τ

∥∥∥
2

2
τ
) 1

2 |tn − tn
′ | 12 ≤ C|tn − tn

′ | 12 ,

so the above two inequalities yield (6.2). The proof of Lemma 6.1 is completed.

6.2. Let us define the piecewise constant functions

vτ
h(x, t) = vn+1

j , vτ
xh(x, t) = δvn+1

j , vτ
th(x, t) =

vn+1
j − vn

j

τ

for (x, t) ∈ Qn
j (j = 0, 1, · · · , J − 1; n = 0, 1, · · · , N − 1).

Lemma 6.2. Assume that the conditions (I)–(IV) hold and τ
h2 ≤ Λ for any given

constant Λ > 0. When h → 0, τ → 0 (for some subsequence), there is a function u(x, t) ∈
W

(2,1)
2 (QT ) such that

( i ) vτ
h(x, t) → u (x, t) uniformly in QT ;

(ii) vτ
xh(x, t) → ux(x, t) weakly in L2(QT );

(iii) vτ
th(x, t) → ut(x, t) weakly in L2(QT ).

Proof. Using Lemma 6.1 and the discrete compactness method in [10], we can prove
(i). (ii) and (iii) follow from the estimate (3.8). Lemma 6.2 is proved.

6.3. Define the piecewise constant functions, for (x, t) ∈ Qn
j (j = 0, 1, · · · , J − 1; n =

0, 1, · · · , N − 1),

v̄τ
h(x, t) = δ0vn+1

j , Aτ
h(x, t) = An

j+ 1
2
, fτ

h (x, t) = fn+1
j .

Lemma 6.3. Assume that the same conditions as those in Lemma 6.2 hold. When
h → 0, τ → 0 (for some subsequence), there are

( i ) v̄τ
h(x, t) → u(x, t) strongly in L2(QT ) and a.e. in QT ;

(ii) Aτ
h(x, t) → A(x, t) strongly in L2(QT ) and a.e. in QT ; fτ

h (x, t) → f(x, t, u(x, t))
strongly in L2(QT ) and a.e. in QT .

Proof. Note that, by the definition of δ0vn+1
j and the estimates (3.7)–(3.8),

‖v̄τ
h(x, t)− vτ

h(x, t)‖2L2(QT )

≤ Ch2
N∑

n=0

‖δvn
h‖22τ + Cτ2

N−1∑
n=0

∥∥∥vn+1
h − vn

h

τ

∥∥∥
2

2
τ ≤ C(h2 + τ2).

It follows that (i) can be proved easily by using Lemma 6.2. Now we prove (ii). Note that
by (II) we have f(·, ·, u) ∈ C(Rm), and by (3.9) max

0≤n≤N−1
‖δ0vn+1

h ‖∞ ≤ C. There holds

‖fτ
h (x, t)− f(x, t, u(x, t))‖2L2(QT ) → 0 as h → 0, τ → 0.
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Lemma 6.3 is obtained.

6.4. Denote by Jn
0 the number of j satisfying λn

j 6= 1 or µn
j 6= 1, and let J0 =

max
0≤n≤N−1

Jn
0 . We introduce the following assumption.

(V) J0 is any fixed constant for all h > 0 and τ > 0.
Define

vτ
xxh(x, t) =

∗
δ 2

Avn+1
j , (x, t) ∈ Qn

j (j = 1, 2, · · · , J − 1; n = 0, 1, · · · , N − 1),

vτ
xxh(x, t) =

∗
δ 2

Avn+1
1 , (x, t) ∈ Qn

0 (n = 0, 1, · · · , N − 1).

Let Φ(x, t) ∈ C∞(QT ) and Φ(x, t) = 0 near x = 0 and x = l. Denote Φn
j = Φ(xj , t

n).
Define the piecewise constant functions Φτ

h(x, t) = Φn+1
j , for (x, t) ∈ Qn

j . When h and τ are
small, there hold

∫∫

QT

vτ
xxh(x, t)Φτ

h(x, t)dxdt

=
N−1∑
n=0

J−1∑

j=1

∗
δ 2

Avn+1
j Φn+1

j hτ

=
N−1∑
n=0

J−1∑

j=1

δ2
Avn+1

j Φn+1
j hτ

−
N−1∑
n=0

J−1∑

j=1

(1− λn
j )An

j+ 1
2
(vn+1

j+1 − vn
j+1) + (1− µn

j )An
j− 1

2
(vn+1

j−1 − vn
j−1)

h
Φn+1

j τ

≡ I + II.

It is easy to see that

I →
∫∫

QT

A(x, t)ux(x, t)Φx(x, t)dxdt for h → 0, τ → 0;

and

|II| ≤ 2A0Λ max
0≤n≤N−1

‖Φn+1
h ‖∞

( N−1∑
n=0

∥∥∥vn+1
h − vn

h

τ

∥∥∥
2

2
τ
) 1

2
(TJ0τ)

1
2 ,

so
II → 0 for h → 0, τ → 0.

There holds
∫∫

QT

[vτ
th(x, t)− vτ

xxh − fτ
h (x, t)]Φτ

h(x, t)dxdt

=
N−1∑
n=0

J−1∑

j=1

[vn+1
j − vn

j

τ
− ∗

δ 2
Avn+1

j − fn+1
j

]
Φn+1

j hτ = 0.

By letting h → 0, τ → 0 (for some subsequences), we have
∫∫

QT

((ut(x, t)− f(x, t, u))Φ(x, t)−A(x, t)uxΦx(x, t))dxdt = 0.
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Moreover, since the subsequence vτ
h(x, t) is uniformly convergent to u(x, t) in the rect-

angular domain QT , the limiting m-dimensional vector function u(x, t) satisfies the homo-
geneous boundary conditions (2.2) and the initial condition (2.3) in classical sense. This
means that the m-dimensional vector function u(x, t) ∈ H1(0, T, L2(Ω)) ∩ L∞(0, T, H1(Ω))
is just the generalized solution of the boundary problem with the homogeneous boundary
conditions (2.2) and the initial condition (2.3) for the semilinear parabolic system (2.1) of
partial differential equations. The uniqueness of the generalized solution for the problem
(2.1)–(2.3) can be justified in usual way. By means of the uniqueness of the generalized solu-
tion of the homogeneous boundary problem (2.1)–(2.3), we then can obtain the convergence
theorem for the finite difference scheme (2.4)–(2.6) with intrinsic parallelism as follows:

Theorem 6.1. Assume the conditions (I)–(V) hold. As the meshsteps h and τ tend
to zero, the m-dimensional discrete vector solution v∆ = vτ

h = {vn
j |j = 0, 1, · · · , J ;n =

0, 1, · · · , N} of the finite difference scheme (2.4)–(2.6) with intrinsic parallelism converges
to the unique generalized solution u(x, t) ∈ H1(0, T, L2(Ω))∩L∞(0, T,H1(Ω)) of the bound-
ary problem (2.2) and (2.3) for the semilinear parabolic system (2.1) of partial differential
equations.
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