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Abstract

This paper characterizes ideal structure of the uniform Roe algebra B∗(X) over
simple cores X. A necessary and sufficient condition for a principal ideal of B∗(X) to
be spatial is given and an example of non-spatial ideal of B∗(X) is constructed. By
establishing an one-one correspondence between the ideals of B∗(X) and the ω-filters
on X, the maximal ideals of B∗(X) are completely described by the corona of the
Stone-Čech compactification of X.
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§ 1 . Introduction and Preliminaries

Let X be a proper metric space with bounded geometry. Associated to X is a
C∗-algebra C∗(X), called the Roe algebra (see [8]), which has proved very useful in C∗-
approaches to the Novikov conjecture in manifold theory (see [4, 9]). While the operator K-
theory of the Roe algebras has been studied in the way of attacking the coarse Baum-Connes
conjecture, the algebraic structure of Roe algebras is still far from being well understood
so far. In a recent paper [1], the authors investigated some properties of ideal structure of
the Roe algebras. We show that countably generated ideals of C∗(X) cannot be associated
to a subspace of X, and that there exists ideals in which finite propagation operators are
not dense in the ideals. These facts, however, depend heavily on the local infinite dimen-
sionality of the X-module. Therefore, it seems that Roe algebras cannot faithfully reflect
the geometric nature of the underlying spaces. In order to be more geometric, one drops
the local infinite dimensionality of the X-modules and define a uniform Roe algebra B∗(X)
over a discrete metric space X. Recently, uniform Roe algebras have also been studied in
relation with exact C∗-algebras and amenable group actions (see [5]). Again, it is natural
and interesting to describe the ideal structure of B∗(X).

In this paper we shall characterize the ideal structure of the uniform Roe algebra
B∗(X) over simple cores, which are discrete, extremely coarsely disconnected metric spaces
X with bounded geometry. We give a necessary and sufficient condition for a principal
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ideal of B∗(X) to be spatial and construct an example of non-spatial ideal of B∗(X). This
answers our early question (see [1]) on the ideal structure of uniform Roe algebras. On the
other hand, we establish an one-one correspondence between the ideals of B∗(X) and the
ω-filters on X, and consequently we completely determine the maximal ideals of B∗(X) by
the corona of the Stone-Čech compactification βX.

Throughout this note, by an ideal we mean a closed two-sided proper ideal of a C∗-
algebra.

Let X be a discrete, bounded geometry metric space. Recall that bounded geometry
means that for any R > 0 the quantity sup

x∈X
#{y ∈ X : d(x, y) ≤ R} is finite.

Definition 1.1. Denote by B(X) the algebra of X × X complex matrices T = [txy]
such that

( i ) sup
x,y

|tx,y| < ∞; and

(ii) Prg(T ) := sup{d(x, y) : tx,y 6= 0} < ∞.

The algebra B(X) is represented in an obvious way on `2(X) and we denote by B∗(X)
the C∗-algebra completion in this representation. This is the uniform Roe algebra associated
to the metric space X. And Prg(T ) is called the propagation of the operator T .

Let Y ⊆ X be a subspace of a discrete, bounded geometry metric space X. For any
R > 0, denote

Pen(Y ;R) := {x ∈ X : d(x, Y ) ≤ R}.
For an operator T ∈ B∗(X), the support Supp(T ) of T is defined by

Supp(T ) = {(x, y) ∈ X ×X : tx,y 6= 0}.

Definition 1.2. Denote by B∗(Y ;X) the C∗-subalgebra of B∗(X) generated by all
operators T ∈ B(X) with Supp(T ) ⊆ Pen(Y ;R)×Pen(Y ;R) for some R > 0 (depending on
T ).

It is not difficult to see that B∗(Y ; X) is a two-sided closed ideal of B∗(X). We call
such ideals spatial ideals because they are supported around a subspace Y . The spatial
ideals play an important role in the computation of the K-theory of the Roe algebras (see
[2, 6, 8]). Similarly to our early concerns on the ideal structure of the Roe algebras in [1],
we naturally ask the following question for the uniform Roe algebras:

Question 1. Are all the ideals of B∗(X) spatial?

And in the same spirit, we ask the following questions:

Question 2. Are the finite propagation operators in any ideal of B∗(X) dense in the
ideal?

Question 3. How about the maximal ideals of B∗(X)?

We are going to answer these questions in the case of simple cores.

§ 2 . Spatial Ideals over Simple Cores

A simple core is a discrete, extremely coarsely disconnected metric spaces X with
bounded geometry. Or precisely, we give the following definition:
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Definition 2.1. A discrete, bounded geometry metric space X is called a simple core
if for any R > 0, there is a compact subset K ⊂ X such that d(x, y) > R whenever
(x, y) ∈ X ×X −K ×K.

For a general notion of core, see [9]. Denote by `2(X) the Hilbert space on which the
uniform algebra B∗(X) acts. Let `∞(X) be the algebra of all bounded functions on X, and
let c0(X) be the subalgebra of bounded functions vanishing at infinity of X. Denote by
K(`2(X)) or just K the algebra of all compact operators on `2(X). Note that the functions
of `∞(X) can be viewed as multiplication operators on `2(X). The uniform Roe algebras
over simple cores are transparent in the following sense:

Proposition 2.1. B∗(X) ∼= `∞(X) +K(`2(X)).

Proposition 2.2. K(`2(X)) ⊆ J for any ideal J of B∗(X).

Proposition 2.3. If I is an ideal of `∞(X), then I +K(`2(X)) is an ideal of B∗(X).
And any ideal of B∗(X) is of this form.

Proof. The first statement is obvious. For the second, let J be an ideal of B∗(X).
For any T ∈ B∗(X), let diag(T ) := (t(x,x)) denote the diagonal of the matrix representation
[tx,y] of T . Set

I := Diag(J) := {diag(T ) : T ∈ J}.
Then I ⊆ `∞(X). Since B∗(X) = `∞(X) + K and K ⊆ J , there is a compact operator K
such that T = diag(T ) + K. Hence, diag(T ) ∈ J . This shows that

I ⊆ J and J = I +K.

To complete the proof, it suffices to show that I is an ideal of `∞(X).
For any f ∈ I and g ∈ `∞(X), we have fg = gf ∈ J since f ∈ I ⊆ J and g ∈ `∞(X) ⊆

B∗(X). Then
fg = gf = diag(fg) ∈ I.

Hence, I is an ideal of `∞(X).

It follows from Proposition 2.3 that the correspondence

Φ : I 7→ I +K

gives a well-defined order preserving surjective map from the collection of ideals of `∞(X) to
the collection of ideals of the uniform Roe algebra B∗(X). The following result is obvious.

Corollary 2.1. For any two ideals I1 and I2 in `∞(X), Φ(I1) = Φ(I2) in B∗(X) if
and only if I1 + c0(X) = I2 + c0(X) in `∞(X).

Now we first give an affirmative answer to the Question 2 as follows:

Theorem 2.1. For any ideal J of B∗(X), the finite propagation operators in J are
dense in J .

Proof. It follows from Proposition 2.3 that any ideal J of B∗(X) takes the form
J = I + K(`2(X)) for some ideal I of `∞(X). So the finite propagation operators in J are
precisely those operators which are sums of an element of `∞(X) and a finite matrix. Hence,
they are dense in J .
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We proceed to study the relation of principal ideals of B∗(X) and the spatial ideals
of the form B∗(Y ; X), where Y is a subspace of X. We aim to construct an example of
principal ideal which cannot be of the form B∗(Y ; X) and in this way we give a negative
answer to the Question 1.

Let Y be a subspace of X and denote by χY c the characteristic function of the com-
plement Y c = X − Y . As in the proof of Proposition 2.3, for any T ∈ B∗(X), the following
correspondence

diag(T )(x) = t(x,x)

(for all x ∈ X) defines a conditional expectation

diag : B∗(X) → `∞(X).

Lemma 2.1. diag(T ) · χY c ∈ c0(X) for any T ∈ B∗(Y ; X).

Let f ∈ `∞(X). Note that f is considered as a multiplication operator on `2(X) with
Prg(f) = 0, so f ∈ B∗(X). Denote by 〈f〉`∞(X) and 〈f〉B∗(X), respectively, the principal
ideals generated by f in `∞(X) and B∗(X), respectively. Then it is clear that

〈f〉`∞(X) = {fg : g ∈ `∞(X)}.

We also have the following relation:

Proposition 2.4. For any f ∈ B∗(X), we have

〈f〉B∗(X) = 〈f〉`∞(X) +K.

In [1] we proved that all countably generated ideals of Roe algebra C∗(X) cannot be of
the form C∗(Y ; X) for a subspace Y . In contrast with this phenomenon, all ideals B∗(Y ; X)
of B∗(X) associated to a subspace Y are principal ideals.

Proposition 2.5. Let Y ⊆ X be a subspace and let χY be the characteristic function
of Y . Then B∗(Y ; X) = 〈χY 〉B∗(X).

Moreover, we have the following necessary and sufficient condition characterizing the
relation of principal ideals and the spatial ideals.

Theorem 2.2. Let Y ⊆ X be a subspace and let f ∈ `∞(X). Then the following
statements are equivalent:

(1) 〈f〉B∗(X) = B∗(Y ; X).
(2) f is exactly bounded below on Y . Or precisely, the following two conditions hold:

( i ) fχY c ∈ c0; and
(ii) sup

K⊂X: compact
inf{|f(y)| : y ∈ Y −K} ≥ b > 0 for some b > 0 (depending on f).

Proof. (1)⇒(2). Suppose

〈f〉B∗(X) = B∗(Y ; X).

Since f ∈ B∗(Y ; X), it follows from Lemma 2.1 that fχY c ∈ c0(X). On the other hand,
since χY ∈ B∗(Y ; X), it follows from Proposition 2.5 that there exist g ∈ `∞(X) and
g0 ∈ c0(X) such that

χY = fg + g0.
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Set b = 1
2‖g‖∞ . Then b > 0, fg = χY − g0 and there exists a compact subset M0 such that,

whenever y ∈ Y −M0, we have

|f(y)| · ‖g‖∞ ≥ |f(y)g(y)| = |1− g0(y)| > 1
2
.

It follows that for all y ∈ Y −M0,

|f(y)| ≥ 1
2‖g‖∞ = b,

which implies (ii).
(2)⇒(1). Suppose f is exactly bounded below on Y . Note that

B∗(Y ; X) = 〈χY 〉B∗(X) and f = fχY + fχY c .

It is also clear that

fχY ∈ B∗(Y ; X) and fχY c ∈ c0(X) ⊆ K.

Thus, we have f ∈ B∗(Y ; X) and consequently

〈f〉B∗(X) ⊆ B∗(Y ; X).

On the other hand, it follows from (ii) that there exist a compact subset M and b > 0 such
that

|f(y)| ≥ b for all y ∈ Y −M.

Then
χY = fgχMc + χM for some g ∈ `∞(X)

with
g(y) =

1
f(y)

for all y ∈ Y −M.

Hence
χY ∈ 〈f〉`∞(X) +K = 〈f〉B∗(X).

This implies that
B∗(Y ; X) ⊆ 〈f〉B∗(X).

The proof is complete.

Now we are ready to construct a counterexample to the Question 1.

Example 2.1. Let X = |N | be the natural numbers equipped with a metric such that

d(i, j) > i + j.

The |N | is a model of simple core. Let f ∈ `∞(X) be defined as follows:

f(2m(2n + 1)) =





0, if m = 0,
1
m

, if m 6= 0,

where m,n run over all non-negative integers. (Note that any natural number has unique
expression 2m(2n + 1).) Then there is no subspace Y ⊆ X satisfying

〈f〉B∗(X) = B∗(Y ; X).
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Indeed, suppose on the contrary Y ⊆ X meets the need. It follows from Theorem 2.2
that there exist natural numbers m0 and k0 such that

|f(y)| ≥ 1
m0

for all y ∈ Y with y > k0.

Set

W = {2m(2n + 1) : m = 1, 2, · · · ,m0; n = 0, 1, 2, 3, · · · },
F = {y ∈ Y : 1 ≤ y ≤ k0}.

Then
Y − F ⊆ W and χW c ≤ χ(Y−F )c .

Since fχY c ∈ c0, we should have that fχW c ∈ c0. But this is impossible because, for any
given m ≥ m0 + 1, we have 2m(2n + 1) ∈ W c for all n ∈ Z+ and

(fχW c)(2m(2n + 1)) = f(2m(2n + 1)) =
1
m

> 0.

The contradiction shows that 〈f〉B∗(X) cannot be associated to any subspace of X.

§ 3 . ω-Filters and Maximal Ideals

Let X be a simple core. It is well known that `∞(X) = C(βX), the algebra of
continuous functions on the Stone-Čech compactification βX, and the algebraic structure of
a ring of continuous functions on a completely regular Hausdorff space can be characterized
by certain filters on the space (see [3]). Therefore, it is natural to relate ideals of B∗(X)
with filters on X. We shall do this in this section. We introduce a notion of ω-filter on X,
which can be corresponded to ideals of B∗(X). We show that ω-ultrafilters are precisely
free ultrafilters on X. Consequently, the maximal ideals of B∗(X) are in one-one onto
correspondence with the points of the corona βX −X.

To begin with, recall that a nonempty family F of subsets of X is called a filter on X
provided that

( i ) ∅ 6∈ F ;
(ii) if A,B ∈ F , then A ∩B ∈ F ; and
(iii) if A ∈ F , B ⊆ X and A ⊆ B, then B ∈ F .
A filter is said to be free or fixed according to that the intersection of all its members

is empty or nonempty. And by a ultrafilter on X is meant a maximal filter. The readers are
referred to [3] for notions of filters and ultrafilters. We make the following definition:

Definition 3.1. A filter F on X is called an ω-filter provided that
(iv) F contains all cofinite subsets of X.

Here, a subset D ⊆ X is called cofinite if X − D is a finite set. For any f ∈ `∞(X)
and ε > 0, we define

Eε(f) = f−1([−ε, ε]) = {x ∈ X : |f(x)| ≤ ε}.

For J ⊆ B∗(X), we define

Ω(J) = {Eε(diag(T )) : T ∈ J, ε > 0}
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and for a family F of subsets of X, we define

Ω−1(F) = {T ∈ B∗(X) : Eε(diag(T )) ∈ F , ∀ε > 0}.

Proposition 3.1. If J is an ideal of B∗(X), then Ω(J) is an ω-filter on X.

Proposition 3.2. If F is an ω-filter on X, then Ω−1(F) is a closed two-sided proper
ideal of B∗(X).

Theorem 3.1. Let J be an ideal of B∗(X) and let F be an ω-filter on X. Then

Ω−1(Ω(J)) = J and Ω(Ω−1(F)) = F .

Proof. Firstly, note that an operator T ∈ Ω−1(Ω(J)) if and only if for any ε > 0,
there exist S ∈ J and δ > 0 such that

Eε(diag(T )) = Eδ(diag(S)).

Thus, it is ready that J ⊆ Ω−1(Ω(J)). To prove the converse inclusion, let T ∈ Ω−1(Ω(J)).
It suffices to show that f := diag(T ) ∈ J . Since f ∈ Ω−1(Ω(J)), for any ε > 0, there exist
g ∈ J ∩ `∞(X) and δ > 0 such that Eε(f) = Eδ(g). Denote W = Eε(f) = Eδ(g) and define
h ∈ `∞(X) by

h(x) =





0, if x ∈ W ;
1

g(x)
, if x ∈ W c.

Then χW c = gh ∈ J and fχW c ∈ J . But clearly we have

‖f − fχW c‖ < ε.

This shows that f ∈ J since J is closed. Therefore, J ⊇ Ω−1(Ω(J)).
Secondly, note that a subset A ∈ Ω(Ω−1(F)) if and only if there exist ε > 0, and

an operator T ∈ B∗(X) with Eδ(diag(T )) ∈ F for all δ > 0, such that A = Eε(diag(T )).
Thus, it is clear that Ω(Ω−1(F)) ⊆ F . On the other hand, let A ∈ F and consider the
characteristic function χA of A. Then χA ∈ B∗(X) and

Eδ(χA) =

{
A, if 0 < δ < 1;
X, if δ ≥ 1.

This implies that A ∈ Ω(Ω−1(F)). Hence

Ω(Ω−1(F)) = F .

The proof is complete.

The following two corollaries are immediate from Theorem 3.1.

Corollary 3.1. Let J, J ′ be ideals of B∗(X) and let F ,F ′ be ω-filters on X. Then

J ⊆ J ′ ⇐⇒ Ω(J) ⊆ Ω(J ′),

F ⊆ F ′ ⇐⇒ Ω−1(F) ⊆ Ω−1(F ′).

Corollary 3.2. The correspondence M 7→ Ω(M) is one-one from the set of all maximal
ideals of B∗(X) onto the set of all ω-ultrafiltes on X.
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Of cause, an ω-filter is a free filter. The converse is not true in general. However, we
have the following

Theorem 3.2. ω-ultrafilters on X are precisely free ultrafilters on X.

Proof. Note that if A ∪ B = X, then either A or B belongs to a given ultrafilter. It
follows that any free ultrafilter contains all cofinite subsets of X. That is, all free ultrafilters
on X are ω-ultrafilters. Conversely, if A is an ω-ultrafilter on X, it is contained in a
ultrafilter, say F , by Zorn’s Lemma. Then F must be free, and coincide with A.

Since the Stone-Čech compactification βX can be constructed by ultrafilters on X in
which X coincides with the fixed ultrafilters and the corona βX −X coincides with the free
ultrafilters (see [3]), we have the following result by Theorem 3.2 and Corollary 3.2.

Theorem 3.3. The set of all maximal ideals of X is in one-one onto correspondence
with the corona βX −X.
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