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BIFURCATION OF LIMIT CYCLES FROM

A DOUBLE HOMOCLINIC LOOP WITH

A ROUGH SADDLE
∗∗∗

HAN Maoan∗ BI Ping∗∗

Abstract

This paper concerns with the bifurcation of limit cycles from a double homoclinic

loop under multiple parameter perturbations for general planar systems. The exis-

tence conditions of 4 homoclinic bifurcation curves and small and large limit cycles are

especially investigated.
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Consider a plane system of the form

ẋ = f(x, y) + εf0(x, y, ε, δ), ẏ = g(x, y) + εg0(x, y, ε, δ), (1)

where f, g, f0, and g0 are Cr functions, r ≥ 3, ε > 0 small and δ ∈ D ⊂ Rn (n ≥ 1) with D
being compact. Suppose for ε = 0, (1) has a double homoclinic loop L = L1 ∪ L2 ∪ S0 with
homoclinic orbits L1 and L2 being homoclinic to the hyperbolic saddle S0. We will establish
a Poincaré map near L based on some results of [1–3], and investigate the behavior of the
map.

For definiteness we suppose that L is oriented clockwise. Choose points Ai ∈ L near
S0, i = 1, 2, 3, 4 with A1, A4 ∈ L1 and A2, A3 ∈ L2. Let li be a cross section passing
through Ai with the direction as follows

ni =
1

| f(Ai), g(Ai) |
(−g(Ai), f(Ai)), 1 ≤ i ≤ 4.

Then a point B1 on l1 can be denoted as B1 = A1 + an1. Suppose the positive orbit γ(B1)
of (1) starting at B1 meets l1 at a point B for the first time (see Fig. 1). Then B can be
written as B = A1 + P (a, ε, δ)n1.
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We call the function P above a Poincaré map of (1). Denote S(ε, δ) the saddle point of
(1) near S0. Then by [3], there is a point B0 = A1 + a0(ε, δ)n1 ∈ l1 on the stable manifold
of S such that the domain of P in a is a > a0(ε, δ) and that the following limit exists

lim
a→a0

P (a, ε, δ) = P (a0(ε, δ), ε, δ).

Thus, the domain of P can be extended as a ≥ a0(ε, δ). Denote by

G : l1 → l2, G : l3 → l4

the Dulac maps and by

R : l2 → l3, R : l4 → l1

the regular maps. Let B2, B3 and B4 be the intersection points of the orbit γ(B1) with the
cross section l2, l3 and l4 in turn. They can be written as

B2 = A2 +G(a, ε, δ)n2 ≡ A2 + a2n2,

B3 = A3 +R(a2, ε, δ)n3 ≡ A3 + a3n3,

B4 = A4 +G(a3, ε, δ)n4 ≡ A4 + a4n4,

B = A1 +R(a4, ε, δ)n1 ≡ A1 + P (a, ε, δ)n1.

(2)

For the sake of convenience we suppose that the saddle point S is always at the origin. Then
a Cr local coordinate change of the form

Tε,δ :

(

u

v

)

= T (ε, δ)

(

x

y

)

+O(|x, y|2) (3)

exists which carries (1) into the form

u̇ = α1u(1 + h1(u, v, ε, δ)), v̇ = α2v(1 + h2(u, v, ε, δ)), (4)

where hi is C
r−1 with hi(0, 0, ε, δ) = 0 and αi = αi(ε, δ) with α1 > 0 > α2. For p > 0 small,

let

A′
1 = (0, p), A′

2 = (p, 0), A′
3 = (0,−p), A′

4 = (−p, 0),

l′1 = {(u, v)|0 ≤ u ≤ p, v = p}, l′2 = {(u, v)|0 ≤ v ≤ p, u = p},

l′3 = {(u, v)| − p ≤ u ≤ 0, v = −p}, l′4 = {(u, v)| − p ≤ v ≤ 0, u = −p}.

We suppose r0 6= 1. That is, the saddle at the origin is rough. Let

r = r(ε, δ) = −
α2

α1

, r0 = r(0, δ).
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Denote by B′
2(p, q(u, ε, δ)) the intersection point of the positive orbit of (4) starting at

B′
1(u, p) ∈ l′1 with l′2, and by B′

4(−p,−q(u3, ε, δ)) the intersection point of the positive orbit
of (4) starting at B′

3(−u3,−p) ∈ l′3 with l′4. Then similarly to Lemma 2.5 in [2], we have

Lemma 1. The Dulac maps q and q of (4) satisfy

q(u, ε, δ) = p1−rur[K(p) + ϕ0(u, ε, δ)],

q(u, ε, δ) = p1−rur
3[K(p) + ϕ0(u, ε, δ)],

qu(u, ε, δ) = rp1−rur−1[K(p) + ϕ1(u, ε, δ)],

qu3
(u3, ε, δ) = rp1−rur−1

3 [K(p) + ϕ1(u3, ε, δ)],

where K(p),K(p) = O(p), ϕ0, ϕ1, u
∂ϕ0

∂u
= o(uk) for 0 < u¿ 1, and ϕ0, ϕ1, u3

∂ϕ1

∂u3

= o(uk
3)

for 0 < u3 ¿ 1 and any constant 0 < k < 1
2
.

Now we take Ai = O(p) as the pre-image of the A′
i under the transformation (3). Then

the following lemma is immediate from Lemma 1.1 in [1].

Lemma 2. Suppose that the orbit arcs B′
1B

′
2 and B′

3B
′
4 of (4) lie on the image of the

orbit arcs B1B2 and B3B4 of (1) under (3) respectively. Then there exist Cr functions

Wi(u, ε, δ, ) = N0i(ε, δ, p) +N1i(ε, δ, p)u+O(u2), i = 1, 2, 3, 4,

where N0i = O(ε), lim
p→0

N1i(0, δ, p) = βi sin θ with θ the angle of L at S0, and

β1 = β3 = |T−1(0, δ)(0, 1)T |, β2 = β4 = |T−1(0, δ)(0, 1)T |

such that

a = W1(u, ε, δ), G(a, ε, δ) = W2(q(u, ε, δ), ε, δ),

a3 = W3(u3, ε, δ), G(a3, ε, δ) = W4(q(u3, ε, δ), ε, δ). (5)

By the process of deriving (1.1.9) of [1], we have

Lemma 3. The regular maps R and R satisfy

R(a2, ε, δ) = b0(ε, δ, p) + b1(ε, δ, p)a2 +O(a2
2),

R(a4, ε, δ) = b0(ε, δ, p) + b1(ε, δ, p)a4 +O(a2
4),

where b0, b1 = O(ε), b1 = K1(p) +O(ε), b1 = K1(p) +O(ε) with K1 > 0, K1 > 0.

Let

Mi(δ) =

∮

Li

exp
(

−

∫ t

0

(fx + gy)ds
)

(fg0 − gf0)ε=0dt. (6)

The distance of the intersection points of the two separatrices of the origin near L1 with l1
is given by

di(ε, δ, Aj) =
εMi(δ)

|f(Aj), g(Aj)|
+O(ε2), (7)

where j = 1, 4 for i = 1 or j = 2, 3 for i = 2. Define

F (a, ε, δ) = P (a, ε, δ)− a, d(ε, δ) = F (a0(ε, δ), ε, δ).
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The function F is called a succession function of (1). We can prove now

Theorem 1. Suppose r0 6= 1. Then for ε > 0 small,

( I ) M1(δ)d(ε, δ) > 0 if (r0 − 1)M1(δ) < 0;
( II ) M2(δ)d(ε, δ) > 0 if (r0 − 1)M2(δ) < 0;
(III) M2(δ)d(ε, δ) > 0 if (r0 − 1)M1(δ) > 0 and M2(δ) 6= 0;
(IV) M1(δ)d(ε, δ) > 0 if (r0 − 1)M2(δ) > 0 and M1(δ) 6= 0.

Proof. Let Ls,u
i denote the 4 separatrices of (1) near the origin, i = 1, 2, where Ls

1∪L
s
2

and Lu
1 ∪ Lu

2 lie on the stable and unstable manifolds of the origin respectively. There are
13 different distributions of the separatrices and 5, 3 and 5 distributions appear respectively
for d(ε, δ) < 0, = 0 and > 0. First, consider the case of d2 > 0. Let

As,u
3 = Ls,u

2 ∩ l3, As,u
i = Ls,u

1 ∩ li, Bu
i = Lu

2 ∩ li, i = 1, 4.

Then a possible distribution is as shown in Fig. 2.

A 4
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A
1
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A
1
u

B
1
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4
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B
4
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A
4
s

Fig. 2

Let

As,u
i = Ai + as,ui (ε, δ)ni, i = 1, 3, 4,

Bu
i = Ai + bui (ε, δ)ni, i = 1, 4.

The domain of F is a ≥ as1(ε, δ) (= as0(ε, δ) in this case), and

F (a0(ε, δ), ε, δ) = bu1 (ε, δ)− as1(ε, δ) = d(ε, δ).

By the definition of R,
bu1 = R(bu4 , ε, δ), as1 = R(au4 , ε, δ).

Hence it follows from Lemma 3 that

bu1 − as1 = R(bu4 , ε, δ)−R(au4 , ε, δ) = [b1 +O(ε)](bu4 − as4).

Thus
d(ε, δ) = [b1 +O(ε)](bu4 − as4). (8)

From (7), we have

au4 − as4 = d1(ε, δ, A4), au3 − as3 = d2(ε, δ, A3). (9)

The mean value theorem together with (5) and (9) gives

W−1
3 (au3 , ε, δ) = W−1

3 (au3 , ε, δ)−W−1
3 (as3, ε, δ)

=
∂W−1

3

∂u
(O(ε), ε, δ)(au3 − as3)

=
1

N13 +O(ε)
d2(ε, δ, A3) ≡ d∗2.
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By the definition of G,

bu4 = G(au3 , ε, δ), au4 = G(as3, ε, δ).

Lemma 2 implies that

as3 = W3(0, ε, δ) = N03, au4 = W4(0, ε, δ) = N04.

Hence we have from (5),

bu4 − au4 = (W4 ◦ q ◦W
−1
3 )(au3 , ε, δ)− (W4 ◦ q ◦W

−1
3 )(as3, ε, δ)

= W4(q(d
∗
2, ε, δ), ε, δ)−W4(0, ε, δ),

= N14q(d
∗
2, ε, δ) +O(|q(d∗2, ε, δ)|

2).

Thus we obtain by Lemma 1,

bu4 − au4 = N14p
1−r
( d2

N13

)r

(1 + o(εk)). (10)

From (8)–(10), if r0 > 1, we have

d(ε, δ) = [b1 + o(ε)][(bu4 − au4 ) + (au4 − as4)]

=
εb1

|f(A4), g(A4)|

[

M1(δ) +O
((d2

ε

)r

εr−1 + ε
)]

. (11)

If r0 < 1, then

d(ε, δ) =
b1N14p

1−rεr

(N13|f(A3), g(A3)|)r

[(d2

ε

)
1
r

(1 +O(εk)) +O(ε1−r)
]

. (12)

From the above discussion, if d2 = 0, then formula (11) always holds no matter whether
r0 − 1 is positive or not.

If d2 < 0, by using the inverse of G, we know that there exists N = N(p) > 0 such
that for ε > 0 small,

d(ε, δ) =
(

Nε
1
r +O(ε)

)[

−
(−d2

ε

)
1
r

(1 + o(εk)) +O(ε1− 1
r )
]

(13)

if r0 > 1, and
d(ε, δ) = (N(p) +O(ε))ε[M1(δ) +O(ε

1
r
−1 + ε)] (14)

if r0 < 1. From (11)–(14), it yields that

M2(δ)d(ε, δ) > 0 as (r0 − 1)M2(δ) < 0,

M1(δ)d(ε, δ) > 0 as (r0 − 1)M2(δ) > 0. (15)

On the other hand, we can define another Poincaré map from l3 to l3, which gives
another succession function F (a, ε, δ). Let the domain of F be a ≥ a0(ε, δ). It is clear that
d(ε, δ) and d(ε, δ) (≡ F (a0, ε, δ)) have the same sign. Moreover, similarly to (15), we can
prove

M2(δ)d(ε, δ) > 0 as (r0 − 1)M1(δ) > 0,

M1(δ)d(ε, δ) > 0 as (r0 − 1)M1(δ) < 0. (16)
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Then the conclusion follows from (15) and (16).
A limit cycle in a neighborhood of L is called large (resp., small) if it surrounds (resp.,

does not surround) the saddle point S. As was mentioned in [4], if r0 6= 1 then Equation (1)
has at most two limit cycles in a neighborhood of L. In fact, this conclusion can be proved
easily by analyzing the stability of limit cycles and the relative positions of separatrices.
The following theorem gives some sufficient conditions for the existence of small and large
limit cycles.

Theorem 2. Let r0 6= 1 and M1(δ)M2(δ) 6= 0 for all δ ∈ D. Then there exist ε0 > 0
and a neighborhood U of L such that for 0 < ε < ε0 and δ ∈ D,

( I ) Equation (1) has a unique limit cycles in U and it is small as M1(δ)M2(δ) < 0;
( II ) Equation (1) has a unique limit cycles in U and it is large as M1(δ)M2(δ) > 0

and (r0 − 1)M2(δ) > 0;
(III) Equation (1) has a precisely two limit cycles in U and they are small asM1(δ)M2(δ)

> 0 and (r0 − 1)M1(δ) < 0.

Proof. For definiteness we suppose r0 > 1. In this case L is outer stable while L1 and
L2 are inner stable. Moreover, any limit cycle near L is stable if it exists. Note that the
outer stability of L is equivalent to F (a, 0, δ) < 0 for a > 0 small. By F (a0, ε, δ) = d(ε, δ),
for ε > 0 small F has a unique zero in a > a0 if and only if d(ε, δ) > 0. This means that a
large limit cycle is bifurcated from L if and only if d(ε, δ) > 0. In the same way, a unique
small limit cycle is bifurcated from Li if and only if di < 0, i = 1, 2. Then the conclusion
follows from Theorem 1. The proof is completed.

Generally, by the Poincaré-Bendison Theorem, it is easy to prove that if r0 6= 1, then
there are at most two limit cycles near L for ε small.

In the following, we treat the case that M1(δ) or M2(δ) has zeros. This is more
interesting. We will suppose δ ∈ R. If the vector field defined by (1) is central symmetric,
then d1 = d2 and d = 2d1. In this case , the bifurcation diagram of limit cycles is easy to
understand. Hence, we suppose (1) is not symmetric. More precisely, we assume

M1(δ) = δ − c1, M2(δ) = c0δ − c2, c0 6= 0, c0c1 − c2 6= 0. (17)

There are 8 cases to consider as follows:

Case 1. r0 > 1, c0 > 0, c1 >
c2
c0

;

Case 2. r0 < 1, c0 > 0, c1 >
c2
c0

;

Case 3. r0 < 1, c0 < 0, c1 >
c2
c0

;

Case 4. r0 > 1, c0 < 0, c1 <
c2
c0

;

Case 5. r0 > 1, c0 > 0, c1 <
c2
c0

;

Case 6. r0 < 1, c0 > 0, c1 <
c2
c0

;

Case 7. r0 > 1, c0 < 0, c1 >
c2
c0

;

Case 8. r0 < 1, c0 < 0, c1 <
c2
c0

.

Before stating the next theorem we introduce the following definitions.
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Definition 1. Let Lu
i and Ls

i denote the saddle separatrix near Li and belonging to

the unstable and stable manifolds of the origin respectively for ε > 0 small, i = 1, 2. If

Lu
1 = Ls

1 ≡ Ll,

we call Ll a left homoclinic loop. If

Lu
2 = Ls

2 ≡ Lr,

we call Lr a right homoclinic loop. If

Lu
1 = Ls

2 ≡ Lu,

we call Lu an upper homoclinic loop. If

Ls
1 = Lu

2 ≡ Ld,

we call Ld a down homoclinic loop.

Definition 2. We say that the distribution of limit cycles of (1) is m+ (i, j) if it has

m large cycles near L, i small cycles near Ll and j small cycles near Lr.

By (7) and the implicit function theorem, there exist C1 functions

δ∗(ε) = c1 +O(ε) and δ∗r (ε) = c2/c0 +O(ε)

such that
d1(ε, δ

∗
l , A1) = d2(ε, δ

∗
r , A2) = 0

and
(δ − δ∗l )d1 ≥ 0, c0(δ − δ∗r )d2 ≥ 0. (18)

Therefore, for ε > 0 small, Equation (1) has a left (right) homoclinic loop if and only if
δ = δ∗l (ε) (δ = δ∗r (ε)). For the existence of an upper or down homoclinic loop and the
distribution of limit cycles, we have

Theorem 3. Let r0 6= 1 and (17) hold. Then

( I ) There exists a continuous function δ∗d(ε) with

δ∗d(0) = δ∗l (0) for r0 > 1

and

δ∗d(0) = δ∗r (0) for r0 < 1

such that a down homoclinic loop exists near L for δ = δ∗d(ε) if and only if one of the cases

1–4 occurs.

( II ) There exists a continuous function δ∗u(ε) with

δ∗u(0) = δ∗r (0) for r0 > 1

and

δ∗u(0) = δ∗l (0) for r0 < 1

such that an upper homoclinic loop exists near L for δ = δ∗u(ε) if and only if one of the cases

3–6 occurs.

(III) The distributions and bifurcation diagrams of limit cycles for ε > 0 small for all

cases are given by Fig. 3.
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Proof. We only consider the case 1 and case 4. The other cases are similar. For the
case 1, we have

r0 > 1, c0 > 0, c1 > c2/c0.

Hence for ε > 0 small,

δ∗l (ε) > δ∗r (ε).

Note that L is stable in this case. We have

F (a, 0, δ) < 0 for a > 0 small.

Thus it follows from (18) that d2 > 0 as δ = δ∗l and d1 < 0 as δ = δ∗r . Therefore from
(8)–(11), we have

d(ε, δ∗l (ε)) > 0, d(ε, δ∗r (ε)) > 0. (19)

Since d(ε, δ) = F (a0, ε, δ) and F (a, ε, δ∗l ) < 0 for 0 < ε ¿ a ¿ 1, there exists a∗(ε) >
a0(ε, δ

∗
l ) such that

F (a∗, ε, δ∗l ) = 0.

This means that Equation (1) has a unique large cycle for δ = δ∗l . By the Poincaré-Bendison
Theorem, for ε > 0 small and δ > δ∗l (ε), the large cycle exists with no small cycles. By (19)
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and the continuity of d(ε, δ) there exist δ∗d(ε) ∈ (δ∗r (ε), δ
∗
l (ε)) such that d(ε, δ∗d) = 0. Then

by (18) we have
d1(ε, δ

∗
d(ε), A1) < 0, d2(ε, δ

∗
d(ε), A2) > 0. (20)

Hence, by (11), it yields that δ∗d(0) = δ∗l (0) = c1 and δ∗d(ε) = c1 +O(εr0−1 + ε). From (20),
Equation (1) has a down homoclinic loop for δ = δ∗d(ε). Note that Equation (1) has at most
one small cycle near L1 or L2. The bifurcation diagram in this case follows easily.

Now suppose that the conditions in Case 4 hold. Then δ∗l (ε) < δ∗r (ε). By (18), we have
d1 > 0 for δ = δ∗r , and then Equation (1) has a right homoclinic loop and a unique large
cycle. As δ increase from δ∗r , the right homoclinic loop is broken and then generates a small
cycle. Note that d2 < 0 for δ > δ∗r . From (7) and (13) it follows that d(ε, δ) = 0 (> 0) if
and only if

−M2(δ) +O(ε+ εr0−1) + o(εkr0) = 0 (< 0).

The above equation has a unique solution

δ = δ∗u(ε) = c2/c1 + o(ε).

Hence d(ε, δ∗u) = 0. Obviously, δ∗u > δ∗r since d(ε, δ∗r ) > 0. In the same way, there exists a
function

δ∗d(ε) = c1 +O(ε+ εr0−1) < δ∗l (ε)

such that d(ε, δ∗r ) = 0. Then the bifurcation diagram in this case follows. The proof is
completed.

Below we give an application to Theorem 3. From [5] we know that the cubic system

ẋ = y, ẏ = −x(x2 − 1)− (x2 − a)y

has an unstable symmetric double homoclinic loop L = L1 ∪L2 ∪O and a stable large cycle
for some a > 0. Consider a perturbed system of the above in the form

ẋ = y, ẏ = −x(x2 − 1)− (x2 − a)y + ε(bx− 1)y. (21)

From (6), we have Mi = Bib−Ai, i = 1, 2, · · · , where

Ai =

∮

Li

y2 exp

∫ t

0

(x2 − a)dsdt, Bi =

∮

Li

xy2 exp

∫ t

0

(x2 − a)dsdt.

Obviously,
A1 = A2 > 0, B1 = −B2 < 0.

Let δ = B1b. Then we have

r0 < 1, c0 = −1 < 0, c1 − c2/c0 = 2A1 > 0.

Hence the case 3 occurs. Thus, Theorem 3 implies the existence of 4 homoclinic bifurcation
curves δ = δ∗j (ε), j = l, r, u, d, with

δ∗u(ε) > δ∗l (ε) > δ∗r (ε) > δ∗d(ε) for ε > 0 small

and
δ∗u(0) = δ∗l (0) = A1, δ∗r (0) = δ∗d(0) = −A1.

Let

b∗j (ε) =
1

B1

δ∗j (ε), j = l, r, u, d.
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Then for the phase portraits of Equation (21) near L, for ε > 0 small we have Fig. 4.

b < b∗u(ε) b = b∗u(ε) b∗u(ε) < b < b∗l (ε)

b = b∗l (ε) b∗l (ε) < b < b∗r(ε) b = b∗r(ε)

b∗r(ε) < b < b∗d(ε) b = b∗d(ε) b > b∗d(ε)

Fig. 4

Note that Equation (21) is invariant under the change (x, y, b) → (−x,−y,−b). Thus
we have

b∗d(ε) = −b
∗
u(ε) > 0 and b∗r(ε) = −b

∗
l (ε) > 0.
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