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Abstract

Without assuming the boundedness, strict monotonicity and differentiability of the
activation functions, the authors utilize the Lyapunov functional method to analyze
the global convergence of some delayed models. For the Hopfield neural network with
time delays, a new sufficient condition ensuring the existence, uniqueness and global
exponential stability of the equilibrium point is derived. This criterion concerning the
signs of entries in the connection matrix imposes constraints on the feedback matrix
independently of the delay parameters. From a new viewpoint, the bidirectional as-
sociative memory neural network with time delays is investigated and a new global
exponential stability result is given.
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§ 1 . Introduction

In the past years, many applications of the dynamics of artificial neural networks in
different areas have attracted the increasing interest of researchers. Among the most popular
models in the literature of artificial neural networks is the following continuous time system
described by the set of differential equations:

Ci
dui(t)

dt
= −ui(t)

Ri
+

n∑

j=1

Tijgj(uj(t)) + Ii, i = 1, 2, · · · , n, (1.1)

where n is the number of neurons in the network. For neuron i, ui is the neuron voltage, Ci ≥
0 is the neuron amplifier input capacitance, Ri ≥ 0 is the resistance, and Ii is the constant
input electric current from outside the system. The matrix T represents the connection
strengths between neurons, and if the output from neuron j excites (resp., inhibits) neuron
i, then Tij ≥ 0 (resp., ≤ 0). The matrix T is assumed to be irreducible, i.e., the network
is strongly connected. The functions gj are neuron activation functions. This model was
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proposed by [1] with an electrical circuit implementation and is thereafter referred to in the
literature as Hopfield neural network.

Time delays are inevitably present in electronic neural networks due to the finite switch-
ing speed of amplifiers. A single time delay τ ≥ 0 was first introduced into (1.1) by [2]. They
considered the following system of differential equations with time delays:

Ci
dui(t)

dt
= −ui(t)

Ri
+

n∑

j=1

Tijgj(uj(t− τ)) + Ii, i = 1, 2, · · · , n. (1.2)

[3] recently considered a modification of (1.2) by incorporating different delays τij ≥ 0
in different communication channels (from neuron j to neuron i), namely,

dui(t)
dt

= −diui(t) +
n∑

j=1

bijgj(uj(t− τij)) + Ii, i = 1, 2, · · · , n. (1.3)

The initial conditions associated with (1.3) are of the form

ui(s) = φi(s) for s ∈ [−τ0, 0], where τ0 = max
1≤i,j≤n

τij ,

and it is usually assumed that φi ∈ C([−τ0, 0], R), i = 1, 2, · · · , n.
Hopfield-type neural networks (1.1), (1.2) and their various generations have been

deeply investigated due to their promising application either as associative memories (or
pattern recognition) or as optimization solvers. In both applications, the stability analysis
of the networks is prerequisite. Indeed, when they are applied as associative memories, the
equilibrium points of networks represent the stored patterns, and the stability means that
the stored patterns can be retrieved even in the presence of noise. While when applied as
optimization solvers, the equilibrium points of networks characterize all possible optimal
solutions of the optimization problem, and the stability then ensures the convergence to the
optimal solutions. In particular, the global stability ensures the convergence to an optimal
solution starting from any initial guess. On the other hand, the stability is fundamental for
the network design. For these reasons, the stability analysis of the Hopfield-type networks
has received extensive attention and many results have been obtained. For example, [4] has
proved the following global asymptotic stability theorem for system (1.3).

Theorem A. Suppose that the activation functions gj is globally Lipschitz with Lips-
chitz constant Gj, i.e., |gj(uj)− gj(vj)| ≤ Gj |uj − vj | for all uj , vj. If DG−1−|B| is an M -
matrix (A real n×n matrix A = {aij} is said to be an M -matrix if aij ≤ 0, i, j = 1, 2, · · · , n,
i 6= j, and all successive principle minors of A are positive.), then for each I ∈ Rn, system
(1.3) has a unique equilibrium point, which is globally asymptotically stable, independent of
the delays.

For more results on these systems, see, for instance, [5, 6, 10–15]. It should be noted
that most of the results deal with the asymptotic stability. However, in designing a neural
circuit, one is not only interested in questions concerning the stability, but also in perfor-
mance. Particularly, it is often desired that a neural network converges in an exponential
rate to ensure fast response in the network. In this work, we give detailed global exponential
stability analysis of some delayed models.

Conditions in Theorem A and some previous results in the literature are explicit and
easily verified in practice. But they neglect the signs of entries in the connection matrix,
and thus, the differences between excitatory and inhibitory effects might be ignored. In
the case of cellular neural network with time delays, [16, 17] attempted to overcome this
disadvantage with the sigmoidal activation functions.
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In the present paper, without assuming the boundedness, strict monotonicity and differ-
entiability of the activation functions, we consider the following dynamical system described
by differential equations with time delays:

dui(t)
dt

= −diui(t) +
n∑

j=1

bijgj(uj(t− τj)) + Ii, i = 1, 2, · · · , n. (1.4)

Assume that the nonlinear system (1.4) is supplemented with initial values of the type

ui(t) = φi(t), t ∈ [−τ0, 0], τ0 = max
1≤i≤n

τi

in which φi(t), i = 1, 2, · · · , n, are continuous functions.
We also assume that the activation function g belongs to the class G{G1, G2, · · · , Gn} of

functions, defined by the property that g ∈ G{G1, G2, · · · , Gn} if the function g(x) satisfies

0 ≤ gi(x)− gi(y)
x− y

≤ Gi

for each x, y ∈ R, x 6= y and for i = 1, 2, · · · , n.

G = diag(G1, G2, · · · , Gn)

and Gi satisfies 0 < Gi < +∞, i = 1, 2, · · · , n.
The paper is organized as follows. In Section 2, the result concerning the existence and

uniqueness of the equilibrium point for (1.4) is given. By use of the Lyapunov functional
method we obtain a new sufficient condition of the global exponential stability for the delayed
Hopfield neural network. In Section 3, the delayed bidirectional associative memory neural
network is simplified and similar stability result is presented. Some concluding remarks
follow in Section 4.

§ 2 . Global Exponential Stability Result

In this section, we will prove the following main result.

Theorem 2.1. Suppose that g ∈ G{G1, G2, · · · , Gn} and there exist positive diagonal
matrices P and Q such that

2PD − PBQ−1(PB)T −GQG > 0.

Then, for each I ∈ Rn, system (1.4) has a unique equilibrium point which is globally expo-
nentially stable, independent of the delays.

In order to prove Theorem 2.1, we prove the following

Lemma 2.1. Suppose that the conditions in Theorem 2.1 hold. Then, for each I ∈ Rn,
system (1.4) has a unique equilibrium point.

Proof. We define a map associated with system (1.4),

H(u) = −Du + Bg(u) + I,

then it is only needed to prove that H is a homeomorphism of Rn. According to [4], we
prove it with two steps: firstly, we prove that H is injective. Suppose, for purposes of
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contradiction, that there exist u, v ∈ Rn with u 6= v such that H(u) = H(v). Thus, we
have −D(u− v) + B(g(u)− g(v)) = 0. Since g ∈ G{G1, G2, · · · , Gn}, there exists a positive
diagonal matrix K with 0 ≤ K ≤ G such that (−D + BK)(u − v) = 0. Now, we prove
det(−D + BK) 6= 0. For this consider the model

dx(t)
dt

= (−D + BK)x(t).

Let V (x(t)) = xT Px and calculate the derivative of V along the above system. We get

V̇ (x) = xT (−2PD + PBK + K(PB)T )x. (2.1)

From the inequality

(Q− 1
2 (PB)T −Q

1
2 K)T (Q−

1
2 (PB)T −Q

1
2 K) ≥ 0,

we obtain
PBQ−1(PB)T + KQK − PBK −K(PB)T ≥ 0.

Thus
PBK + K(PB)T ≤ PBQ−1(PB)T + GQG. (2.2)

We get
V̇ (x) ≤ xT (−2PD + PBQ−1(PB)T + GQG)x. (2.3)

Consequently, V̇ (x) is negative positive. So the trivial solution of the system is asymptot-
ically stable and det(−D + BK) 6= 0. Therefore u = v, which is a contradiction. So H is
injective.

In the following, we prove that when ‖u‖ → +∞, ‖H(u)‖ → +∞.
Let H(u) = −Du + Bḡ(u), ḡ(u) = g(u)− g(0), then

2uT PH = uT PH + H
T
Pu

= −2uT PDu + uT PBḡ(u) + ḡT (u)(PB)T u

= −uT [2PD − PBQ−1(PB)T −GQG]u− uT PBQ−1(PB)T u

− uT GQGu + uT PBḡ(u) + ḡT (u)(PB)T u

≤ −uT [2PD − PBQ−1(PB)T −GQG]u− uT PBQ−1(PB)T u

− ḡT (u)Qḡ(u) + uT PBḡ(u) + ḡT (u)(PB)T u

= −uT [2PD − PBQ−1(PB)T −GQG]u

− [Q−
1
2 (PB)T u−Q

1
2 ḡ(u)]T [Q− 1

2 (PB)T u−Q
1
2 ḡ(u)]

≤ −uT [2PD − PBQ−1(PB)T −GQG]u.

If 2PD − PBQ−1(PB)T −GQG ≥ µIn > 0, then 2uT PH ≤ −µ||u||2. Therefore

2‖u‖‖P‖‖H‖ ≥ µ‖u‖2,

i.e., ‖H‖ ≥ µ‖u‖
2‖P‖ , so when ‖u‖ → +∞, ‖H(u)‖ → +∞, i.e., ‖H(u)‖ → +∞. From this,

we know that H is a homeomorphism of Rn, which implies that system (1.4) has a unique
equilibrium point. Lemma 2.1 is proved.

Proof of Theorem 2.1. By Lemma 2.1, system (1.4) has a unique equilibrium point,
namely, u∗.
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Let
xi(t) = ui(t)− u∗i .

Thus, (1.4) can be rewritten as

dx(t)
dt

= −Dx(t) + Bϕ(t− τ), (2.4)

where

x(t) = (x1(t), · · · , xn(t))T , τ = (τ1, τ2, · · · , τn)T ,

ϕ(t− τ) = (ϕ1(x1(t− τ1)), · · · , ϕn(xn(t− τn)))T ,

ϕi(xi(·)) = gi(xi(·) + u∗i )− gi(u∗i ), i = 1, 2, · · · , n.

Obviously, system (2.4) has a unique equilibrium at x = 0.
Clearly, u∗ is globally exponentially stable for (1.4) if and only if the trivial solution of

(2.4) is globally exponentially stable.
Define the functional

V (x(t), t) = xT Pxeεt +
n∑

i=1

Qi

∫ t

t−τi

ϕ2
i (xi(s))eε(s+τi)ds, (2.5)

where ε is positive and will be chosen.
We have

dV (x(t), t)
dt

= εxT Pxeεt + 2xT [−PDx + PBϕ(t− τ)]eεt

+ ϕT (t)EετQϕ(t)eεt − ϕT (t− τ)Qϕ(t− τ)eεt

≤ eεt{−xT (2PD − εP −GEετQG)x

+ 2xT PBϕ(t− τ)− ϕT (t− τ)Qϕ(t− τ)}
= eεt{−xT (2PD − εP −GEετQG− PBQ−1(PB)T )x

− [Q
1
2 ϕ(t− τ)−Q−

1
2 BT Px]T [Q

1
2 ϕ(t− τ)−Q− 1

2 BT Px]}
≤ −eεt{xT [2PD − εP −GEετQG− PBQ−1(PB)T ]x},

where Eετ donates diag(eετ1 , · · · , eετn), and Q = diag(Q1, · · ·Qn).
From the assumption that 2PD − PBQ−1(PB)T − GQG > 0, we can choose the

sufficiently small ε such that

2PD − εP − PBQ−1(PB)T −GEετQG ≥ 0. (2.6)

Thus,
dV (x(t), t)

dt
≤ 0. So

V (x(t), t) ≤ V (x(0), 0),
n∑

i=1

x2
i ≤

V (x(0), 0)
min

i
Pi

e−εt.

Therefore, x(t) converges to 0 exponentially. That means the origin of system (2.4) is
globally exponentially stable and so is u∗ for system (1.4). The proof is finished.



260 RONG, L. B., LU, W. L. & CHEN, T. P.

Remark 2.1. The above theorems represent a generalization of the results in some
existing literatures. In [9–11], only the asymptotic stability was investigated. In [8], global
exponential stability of Hopfield neural networks without time delays was discussed. In
[25], the absolute stability was considered for the cellular neural networks. Here, we give
the global exponential stability analysis. One even can obtain the global convergence rate
according to (2.6). On the other hand, the constraints imposed on the activation functions
are less restrictive, for example, see [5–7, 10–13, 25].

Remark 2.2. If some entries in the connection matrices are negative, there are some
examples [4] for which Theorem A in Section 1 fails to be true. However, Theorem 2.1 still
holds. It illustrates that the hypothesis in Theorem A is conservative. This results from the
ignoring differences between excitatory and inhibitory effects.

§ 3 . Stability Analysis of BAM Networks

In the present section, we investigate the existence and exponential stability of unique
equilibria of bidirectional associative memory (BAM) neural network described by the fol-
lowing delayed model

dxi(t)
dt

= −aixi(t) +
n∑

j=1

bijfj(yj(t− σj)) + Ii,

dyi(t)
dt

= −ciyi(t) +
n∑

j=1

dijgj(xj(t− τj)) + Ji

(3.1)

for i = 1, 2, · · · , n.
If we denote x = (x1, x2, · · · , xn)T , y = (y1, y2, · · · , yn)T , then (3.1) changes to

dx(t)
dt

= −Ax(t) + Bf(y(t− σ)) + I,

dy(t)
dt

= −Cy(t) + Dg(x(t− τ)) + J,

(3.2)

where

σ = (σ1, · · · , σn)T , f(y(t− σ)) = (f1(y1(t− σ1)), · · · , fn(yn(t− σn)))T ,

τ = (τ1, · · · , τn)T , g(x(t− τ)) = (g1(x1(t− τ1)), · · · , gn(xn(t− τn)))T ,

A = diag(a1, · · · , an), C = diag(c1, · · · , cn).

System (3.1) consists of two sets of n neurons arranged on two layers, namely, I-layer
and J-layer. xi(·) and yi(·) denote membrane potentials of i-th neurons from the I-layer
and J-layer, respectively; bij , dij correspond to synaptic connection matrices. Ii, Ji denote
external inputs to the neurons introduced from outside the network; σj , τj are time delays.

Obviously, model (3.1) represents a generalization of those studied by [18–22]. System
(3.1) was also considered by [23]. Almost all of the works dealt with the asymptotic stability
and the conditions guaranteeing the convergence ignored the signs of entries in the connection
matrices. In this section, we simplify the two-layer model and obtain the global exponential
stability result with more general activation functions.

Theorem 3.1. Suppose that f ∈ G{F1, F2, · · · , Fn}, g ∈ G{G1, G2, · · · , Gn} and there
exist positive diagonal matrices P1, P2, Q1 and Q2 such that

2P1A− P1BQ−1
2 (P1B)T −GQ1G > 0, (3.3)

2P2C − P2DQ−1
1 (P2D)T − FQ2F > 0. (3.4)
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Then, for each I, J ∈ Rn, system (3.1) has a unique equilibrium point, say,
(

x∗

y∗

)
, which is

globally exponentially stable, independent of the delays.

Proof. Firstly, we simplify the two-layer model and the bidirectional associative mem-
ory neural network can be regarded as a single-layer system, i.e., the delayed Hopfield neural
network studied in the previous section.

We let w(t) = (x1(t), x2(t), · · · , xn(t), y1(t), y2(t), · · · , yn(t))T . Then system (3.1) can
be rewritten as

dw(t)
dt

= −
( A 0

0 C

)
w(t) +

( 0 B
D 0

)
h(w(t− η)) +

( I
J

)
, (3.5)

where

η = (τ1, τ2, · · · , τn, σ1, σ2, · · · , σn)T , h = (g1, g2, · · · , gn, f1, f2, · · · , fn)T ,

h(w(t− η)) = (g1(x1(t− τ1)), · · · , gn(xn(t− τn)), f1(y1(t− σ1)), · · · , fn(yn(t− σn)))T .

In fact, it is a Hopfield-type neural network and the connection matrix is
( 0 B

D 0

)
, the

new activation function is h. η denotes the new time delays. Since f ∈ G{F1, F2, · · · , Fn},
g ∈ G{G1, G2, · · · , Gn}, we get h ∈ G{G1, G2, · · · , Gn, F1, F2, · · · , Fn}.

From the conditions (3.3) and (3.4), after a direct calculation, we can obtain

2
(

P1 0
0 P2

)(
A 0
0 C

)
−

(
G 0
0 F

)(
Q1 0
0 Q2

)(
G 0
0 F

)

−
(

P1 0
0 P2

)( 0 B
D 0

)(
Q1 0
0 Q2

)−1( 0 B
D 0

)T (
P1 0
0 P2

)
> 0.

Therefore, by Theorem 2.1, system (3.5) has a unique equilibrium point, say, w∗, or equiv-

alent to
(

x∗

y∗

)
for system (3.1), which is globally exponentially stable, independent of the

delays. The proof is completed.

Remark 3.1. In the proof, we do a simplification and the two-layer neural network can
be considered as a single-layer system. While the latter have been studied extensively and
many interesting works on the global stability have been obtained. By this simplification,
we can get many similar results. For example, see the results in [21–24].

§ 4 . Conclusion

In this article, a class of Hopfield-type neural networks with time delays have been
investigated. We use a new Lyapunov function to analyze the global exponential stability
of these models and obtain a new condition guaranteeing the convergence. This stability
criterion concerns the differences between excitatory and inhibitory effects on units, thus,
we extend some existing results in the literature. Furthermore, we get these results with
more general activation functions.

We also consider the delayed bidirectional associative memory (BAM) neural networks.
The BAM models are simplified and can be regarded as the popular Hopfield-type neural
networks. The exponential stability result of these two-layer systems has been established.
By use of the simplification method, some existing results can be easily obtained.
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