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Abstract

In this paper, a central limit theorem for strong near-epoch dependent sequences
of random variables introduced in [9] is showed. Under the same moments condition,
the authors essentially weaken the “size” requirement mentioned in other papers about
near epoch dependence.
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§ 1 . Introduction

Mixingales cover a general class of practical and theoretical stochastic models. The con-
cept of mixingale generalized one-step-ahead unpredictability to asymptotic unpredictability.
It was introduced by Mcleish [10] for the case p = 2, and was extended by Andrews (1988).
Let {Xn, n ≥ 1} be a sequence of random variables defined on a probability space (Ω,F , P ).
{Fn, n ≥ 1} be a sequence of σ-subfields of F , which are increasing in n. For p > 0, put
‖X‖p = (E|X|p)1/p and EnX = E(X|Fn).

Definition 1.1. Let p ≥ 1. {Xn,Fn, n ≥ 1} will be called an Lp-mixingale if there
exist sequences {an} and {µ(m)} of nonnegative constants, where µ(m) → 0 as m → ∞,
such that for all n ≥ 1, and m ≥ 0,

‖En−mXn‖p ≤ µ(m)an,

‖Xn − En+mXn‖p ≤ µ(m + 1)an.

A function µ(m) is said to be size −λ if µ(m) = O(m−λ−ε) for some ε > 0. Fur-
thermore, we will call {Xn, n ≥ 1} “a mixingale of size −λ” if µ(m) in Definition 1.1 is of
size −λ. For mixingales, the earliest result was the moment inequality of the maximum of
partial sums, which was obtained by Mcleish [10] for the case of p = 2. From this result, one
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obtained some convergence theorems immediately. Also with the help of it, CLT and weak
convergence were proved (cf. [4, 11, 12] ). Mcleish’s inequality is about 2-th moment and
needs “size” −1/2, which are also required for CLT and weak convergence of a mixingale
(see [4, Assumption 1]).

The relationship between mixingales and mixing processes is similar to that between
martingale differences and independent processes. Just as martingale differences need not
be independent, so mixingales need not be mixing. We know that a function of a mixing
sequence, which depends on an infinite number of lags and/or leads of the sequence, is not
generally mixing. The definition in the following captures the idea of asymptotically mixing,
which goes back to Ibragimov (1962) and had been formalized in different ways by other
researchers. Let {Vn, n ≥ 1} be a sequence of random variables, and put

F t
s = σ(Vs, · · · , Vt), Et

sX = E(X|F t
s).

Definition 1.2. Let p > 0. {Xn, n ≥ 1} will be called Lp-near epoch dependent (Lp-
NED) on {Vn, n ≥ 1} if there exist sequences {dn} and {ν(m)} of nonnegative constants,
where ν(m) → 0 as m →∞, such that for n ≥ 1 and m ≥ 0,

‖Xn − En+m
n−mXn‖p ≤ ν(m)dn.

Both mixingales and NED sequences are widely used in some fields, such as econo-
metrics, during the recent years. For NED sequences, the terminology size, which has been
defined for mixingale, is also applicable. We will call {Xn, n ≥ 1} “an Lp-NED sequence of
size −λ” if ν(m) in Definition 1.2 is of size −λ. Suppose that {Xn, n ≥ 1} is an Lp-NED
on a mixing sequence {Vn, n ≥ 1}, and further if the former has a size related to the mixing
dependence size of the latter, {Xn, n ≥ 1} is then a mixingale (cf. [3, Theorem 17.5]).
Therefore, the theory of mixingale can be applied to studying Lp-NED sequence. Transfer
the conditions imposed on mixingale to an NED sequence, when the r-th moment, r > 2,
of the sequence exists, “size” −1/2 of NED and “size” −r/(r − 2) (or −r/(2(r − 1))) of
α-mixing (or ϕ-mixing) are required (see [4, Assumption 2]). Based on them, one showed a
CLT and weak convergence for an NED sequence (cf. [2, 4, 5]). For the CLT, Jong’s result
seems to be the most general one. So the following two questions are interesting: What
about the Mcleish inequality in the p-th moment, p > 2, case? Can the sizes of both NED
and mixing dependence be weakened?

Lin [9] considered these questions. In order to get an analogy of the Mcleish inequality
in the case of p > 2 and weaken “size” condition, we make a little restriction on NED
concept by introducing a new class of dependent random variables, which is a subclass of
NED sequence, but also “approximately” mixing. We called such sequence a strong NED
sequence. In that paper, we verified two strong NED examples which are given in [3] as two
NED examples, and established a maximal inequality on p-th moment, p > 2, under weaker
dependence sizes. Using this inequality, we will show a CLT for strong NED in this paper.
The conditions we supposed here are general. The moments condition is the same as that
required in the CLT for the original NED sequence, but the conditions imposed on “size” of
both strong NED and mixing are weakened essentially.

The following definition of strong Lp-NED was introduced in [9]. Put

Sk(n) =
k+n∑

t=k+1

Xt.
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Definition 1.3. Let p > 0. {Xn, n ≥ 1} will be called a strong Lp-NED sequence
on {Vn, n ≥ 1} if there exist sequences {dn} and {ν(m)} of nonnegative constants, where
ν(m) → 0 as m →∞ such that for all k > 0, n ≥ 1 and m ≥ 0,

‖Sk(n)− Ek+n+m
k+1−mSk(n)‖p ≤ ν(m)

( n∑

j=1

d2
k+j

)1/2

.

§ 2 . The Theorem

Theorem 2.1. Let {Xn, n ≥ 1} be a sequence of random variables with EXn = 0 and
E|Xn|p ≤ M < ∞ for some p > 2, n = 1, 2, · · · . Suppose that {Xn, n ≥ 1} is strong Lp-NED
on a ϕ-mixing sequence {Vn, n ≥ 1} with

ϕ(n) = O((log n)−p(1+δ/2)), (2.1)

{dn} and {ν(m)} satisfying

lim sup
n→∞

sup
k≥0

n∑

j=1

d2
k+j/n = B < ∞, (2.2)

ν(m) = O((log m)−(1+δ/2)), (2.3)

σ2
n : = ES2

n →∞ as n →∞, (2.4)

where Sn =
n∑

j=1

Xj . Then we have

Sn/σn → N(0, 1) in distribution.

To illustrate the generality of our theorem, we give a simple example — a kind of linear
process, which arises very frequently in econometric modelling applications.

Example 2.1. Let {Vn,−∞ < n < ∞} be a zero-mean, Lp-bounded (p > 2) ϕ-mixing
sequence with mixing coefficient ϕ(n) satisfying (2.1), and define a linear sequence

Xn =
∞∑

j=−∞
θjVn−j .

If the coefficients of innovation satisfy

θj = O
(
(log |j|)−2−δ/2/j

)
,

we obtain
Sn/σn → N(0, 1) in distribution.

Proof. Note that
∞∑

n=1
ϕ1/2(2n) < ∞, and

ν(m) = 21/p
∞∑

j=m+1

(|θj |+ |θ−j |) = O
(
(log(m))−(1+δ/2

) → 0 as m →∞.
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From [9], we know that {Xn, n ≥ 1} is strong Lp-NED on {Vn,−∞ < n < ∞} with
dn = sup

n
‖Vn‖p and ν(m) is as above. It is obvious that (2.2) and (2.4) are satisfied.

According to Theorem 2.1, we have

Sn/σn → N(0, 1) in distribution.

However, when applying Jong’s Theorem 2 (cf. [4]), the “size” of mixing coefficient
should be −p/(2(p− 1)) and the “size” of NED dependence be −1/2, which implies that

θj = O(|j|−3/2−δ).

So the conditions imposed on “size” are weakened essentially in our theorem.
To prove Theorem 2.1, we need some lemmas. Define {ln} and {bn} to be nondecreasing

sequences of positive integers such that bn/n → 0, ln/bn → 0, and rn := [n/bn].

Lemma 2.1. (cf. [4]) Let {Xnt, 1 ≤ t ≤ n, n ≥ 1} be an array of random variables,
{Fnt, 1 ≤ t ≤ n, n ≥ 1} be an array of σ-fields that is increasing in t for each n. Suppose
that

(a)
n∑

t=rnbn+1

Xnt
p→ 0,

(b)
rn∑

i=1

(i−1)bn+ln∑

t=(i−1)bn+1

Xnt
p→ 0,

(c)
rn∑

i=1

E(Zni|Fn,i−1)
p→ 0,

(d)
rn∑

i=1

(Zni − E(Zni|Fni))
p→ 0,

(e)
rn∑

i=1

(E(Zni|Fni)− E(Zni|Fn,i−1))2
p→ 1,

(f)
rn∑

i=1

E((E(Zni|Fni)− E(Zni|Fn,i−1))2I(|E(Zni|Fni)− E(Zni|Fn,i−1)| > ε)) → 0

as n →∞ for all ε > 0, where Zni =
ibn∑

t=(i−1)bn+ln+1

Xnt. Then

n∑
t=1

Xnt → N(0, 1) in distribution.

Lemma 2.2. (cf. [9]) Let {Vn, n ≥ 1} be a ϕ-mixing sequence with mixing coefficient
ϕ(n) satisfying (2.1), and let {Xn, n ≥ 1} be a means zero Lp-bounded and strong Lp-NED
sequence on {Vn}, p > 2, with {dn} and {ν(m)} satisfying (2.2) and (2.3). Then there exists
a finite constant C depending only on {ϕ(·)} and {ν(·)} such that for all positive integers k
and n,

E
(

max
1≤i≤n

|Sk(i)|p
)
≤ C(Dn)p/2, (2.5)

where D = B
∨

sup
n≥1

‖Xn‖2p.
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Remark 2.1. For the case of p = 2, under the conditions of Lemma 2.2, Lin [9] showed
that

ESk(n)2 ≤ CDn,

where D = B
∨

sup
n≥1

‖Xn‖22.

Remark 2.2. From the proof of Lemma 2.2 (cf. [9, Theorem 2.1]), we can see that

for fixed k ≥ 0, the B in Lemma 2.2 can be replaced by
n∑

j=1

d2
k+j/n.

Lemma 2.3. (cf. [2]) Let X be a G-measurable, Lp-integrable random variable for
p ≥ 1, and G1 ⊆ G2 ⊆ G. Then

‖X − E(X|G2)‖p ≤ 2‖X − E(X|G1)‖p.

Lemma 2.4. (cf. [13]) Let s0 < s1 < s2 < s3 and Y be an Fs3
s2

-measurable, Lp-
integrable random variable for p ≥ 1. Then

‖E(Y |Fs1
s0

)− EY ‖p ≤ 2ϕ(s2 − s1)1−1/p‖Y ‖p.

§ 3 . Proof of Theorem 2.1

From Lemma 2.1, Theorem 2.1 will be proved if we can verify the conditions (a)–(f) in
Lemma 2.1 with

Xnt = Xt/σn, Zni =
ibn∑

t=(i−1)bn+ln+1

Xnt

and
Fnt = Ftbn := F tbn

1 .

Take
rn = O

(
ν(ln)−2η

∧
ϕ(ln)−1/4

)
as n →∞,

where 0 < η < 1/2 is a constant specified later on.

Verification of (a). By Remark 2.1, σ2
n = O(n), and hence, bn = o(σ2

n). Using
Lemma 2.2, we have

P
(∣∣∣

n∑

t=rnbn+1

Xnt

∣∣∣ ≥ ε
)
≤ 1

εp
E
∣∣∣ 1
σn

n∑

t=rnbn+1

Xt

∣∣∣
p

≤ 1
εp · σp

n
C(D1 · bn)p/2,

where

D1 = B1

∨
sup
n≥1

‖Xn‖2p, B1 = lim sup
n→∞

bn∑

j=1

d2
rnbn+j/bn.

So the right hand side of the inequality above is

O(σ−2
n · bn)p/2 = o(1).

Therefore by the Markov inequality, (a) is verified.
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Verification of (b). Let T denote the set
{

t : t ∈
rn⋃

i=1

[(i− 1)bn + 1, (i− 1)bn + ln]
}

.

Then applying Lemma 2.2, we obtain

E
∣∣∣

rn∑

i=1

(i−1)bn+ln∑

t=(i−1)bn+1

Xnt

∣∣∣
p

= E
∣∣∣
∑

t∈T

Xnt

∣∣∣
p

≤ (1/σp
n)C(D2 · rnln)p/2,

where
D2 = B2

∨
sup
n≥1

‖Xn‖2p, B2 = lim sup
n→∞

∑

t∈T

d2
t /rnln.

So the right hand side of the inequality above is

O
( rn∑

i=1

(i−1)bn+ln∑

t=(i−1)bn+1

d2
t

σ2
n

)p/2

= O(rnlnσ−2
n )p/2 = o(1),

which implies (b) immediately.

Verification of (c). We will show that E(Zni|Fn,i−1) is a strong Lp-NED sequence
with respect to

Hi+m
i−m = σ({V(i−m)bn+ln+1, · · · , V(i+m)bn

}).
By Lemma 2.3, we have

∥∥∥
k+s∑

i=k+1

E(Zni|Fn,i−1)− E
( k+s∑

i=k+1

E(Zni|Fn,i−1)|Hk+s+m
k+1−m

)∥∥∥
p

≤
k+s∑

i=k+1

‖E(Zni|Fn,i−1)− E
(
E(Zni|Hk+s+m

k+1−m)|Fn,i−1

)‖p

≤
k+s∑

i=k+1

∥∥∥
ibn∑

t=(i−1)bn+ln+1

Xnt − E
( ibn∑

t=(i−1)bn+ln+1

Xnt|Hk+s+m
k+1−m

)∥∥∥
p

≤ 2
k+s∑

i=k+1

∥∥∥
ibn∑

t=(i−1)bn+ln+1

Xnt − E
( ibn∑

t=(i−1)bn+ln+1

Xnt|F ibn+mln
(i−1)bn+ln+1−mln

)∥∥∥
p

≤ 2
k+s∑

i=k+1

ν(mln) ·
( ibn∑

t=(i−1)bn+ln+1

d2
t /σ2

n

)1/2

≤ 2 min(ν(m), ν(ln))
k+s∑

i=k+1

cni

≤ c · ν(m)1−η
( k+s∑

i=k+1

cniν(ln)η
)1/2

,

where

c2
ni =

ibn∑

t=(i−1)bn+ln+1

d2
t /σ2

n = O(bnσ−2
n ) = o(1).
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Moreover
rn∑

i=1

cni = O(rnb1/2
n σ−1

n ) = O(r1/2
n ),

so

ν(ln)η
k+s∑

i=k+1

cni ≤ c
( k+s∑

i=k+1

cniν(ln)η
)1/2

for some c > 0.

The η in the last inequality is chosen such that we can define

(1− η)(1 + δ/2) = 1 + δ∗/2,

where 0 < δ∗ < δ. So E(Zni|Fn,i−1) is a strong Lp-NED sequence with

ν∗(m) = ν(m)1−η = O((log n)−(1+δ∗/2)).

Furthermore, note that

ϕ(n) = O((log n)−p(1+δ/2)) = o((log n)−p(1+δ∗/2)).

Let

S∗k(j) =
k+j∑

i=k+1

E(Zni|Fn,i−1).

Then applying the method in the proof of Lemma 2.2 and Remark 2.2, we obtain

E(|S∗k(rn)|p) ≤ C(D∗rn)p/2,

where

D∗ = B∗∨
sup

1≤i≤rn

‖E(Zni|Fn,i−1)‖2p, B∗ =
rn∑

i=1

cniν(ln)η/rn.

Moreover, by Lemma 2.4 and the definition of strong NED, it follows that

‖E(Zni|Fn,i−1)‖2p
≤ cp

(‖E(E(Zni|F ibn+[ln/2]
(i−1)bn+[ln/2])|Fn,i−1)‖2p

+ ‖Zni − E(Zni|F ibn+[ln/2]
(i−1)bn+[ln/2])‖2p

)

≤ cp

(
4ϕ([ln/2])2−2/p‖Zni‖2p + ν([ln/2])2c2

ni

)

= O
(
(ϕ([ln/2])2−2/p + ν([ln/2])2)bnσ−2

n

)
. (3.1)

So we get

E(|S∗k(rn)|p) = O
(
(ϕ([ln/2])2−2/p + ν([ln/2])2)rnbnσ−2

n + ν(ln)ηrnb1/2
n σ−1

n

)p/2 = o(1),

which implies (c).

Verification of (d). The proof is analogous to the verification of (c).

Verification of (e). From the definition of Xnt, we should only prove

rn∑

i=1

(E(Zni|Fni)− E(Zni|Fn,i−1))2 − E
( n∑

t=1

Xnt

)2 p→ 0. (3.2)
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Note that

E
( n∑

t=1

Xnt

)2

− E
( rnbn∑

t=1

Xnt

)2

= E
( n∑

t=rnbn+1

Xnt

)( n∑
t=1

Xnt +
rnbn∑
t=1

Xnt

)

≤
∥∥∥

n∑

t=rnbn+1

Xnt

∥∥∥
2
·
∥∥∥

n∑
t=1

Xnt +
rnbn∑
t=1

Xnt

∥∥∥
2

= o(1)

by the argument of the verification of (a). Next, we note that

∥∥∥
rn∑

i=1

(i−1)bn+ln∑

t=(i−1)bn+1

Xnt

∥∥∥
2

= o(1)

by the argument of the verification of (b). Therefore, (3.2) will be verified if we can show
that

rn∑

i=1

(E(Zni|Fni)− E(Zni|Fn,i−1))2 − E
( rn∑

i=1

Zni

)2 p→ 0. (3.3)

We divide the left hand side of (3.3) into three parts, that is

rn∑

i=1

(E(Zni|Fni)− E(Zni|Fn,i−1))2 − E
( rn∑

i=1

Zni

)2

=
{ rn∑

i=1

(E(Zni|Fni)− E(Zni|Fn,i−1))2 −
rn∑

i=1

Z2
ni

}

+
{ rn∑

i=1

Z2
ni −

rn∑

i=1

EZ2
ni

}
+

{ rn∑

i=1

EZ2
ni − E

( rn∑

i=1

Zni

)2}

=: I1 + I2 + I3.

Next we show that I1
p→ 0, I2

p→ 0 and I3 → 0 respectively.
Note that

E|I1| ≤
rn∑

i=1

E|(E(Zni|Fni)− E(Zni|Fn,i−1)− Zni)

· (E(Zni|Fni)− E(Zni|Fn,i−1) + Zni)|

≤
rn∑

i=1

(‖Zni − E(Zni|Fni)‖2 + ‖E(Zni|Fn,i−1)‖2
) · 3‖Zni‖2.

Similarly to (3.1), we have

‖E(Zni|Fn,i−1)‖2 = O
(
(ϕ([ln/2])1/2 + ν([ln/2]))b1/2

n σ−1
n

)
,

and similarly

‖Zni − E(Zni|Fni)‖2 = O
(
(ϕ([ln/2])1/2 + ν([ln/2]))b1/2

n σ−1
n

)
.
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Therefore

E|I1| = O
(
(ϕ([ln/2])1/2 + ν([ln/2]))rnbnσ−2

n

)
= o(1),

which implies I1
p→ 0.

To prove I2
p→ 0, we denote

hK(x) = xI(|x| ≤ K) + KI(x > K)−KI(x < −K).

It is obvious that

|hK(x)− hK(y)| ≤ |x− y|.

Let

Z∗ni = hKδcni(Zni),

where Kδ will be chosen later on and cni is as in the verification of (c). Note that for any
ε > 0,

E
(
Z2

ni/c2
niI(Z2

ni/c2
ni > ε)

)

≤ ε(2−p)/2E
∣∣∣

ibn∑

t=(i−1)bn+ln+1

Xt

∣∣∣
p/( ibn∑

t=(i−1)bn+ln+1

d2
t

)p/2

≤ C0ε
(2−p)/2

for some absolute constant C0. Hence, Z2
ni/c2

ni is uniformly integrable. Then

E
∣∣∣

rn∑

i=1

(Z2
ni − Z∗2ni )

∣∣∣

≤ 2E
rn∑

i=1

(Z2
niI(Z2

ni > K2
δ c2

ni))

≤ 2max
n≥1

max
1≤i≤rn

E(Zni/cni)2I(Z2
ni/c2

ni > K2
δ )

rn∑

i=1

c2
ni ≤ δ

by the uniformly integrability of Z2
ni/c2

ni and the fact that

rn∑

i=1

c2
ni = O(rnbnσ−2

n ) = O(1),

provided Kδ is large enough. So if we can show

lim
n→∞

∥∥∥
rn∑

i=1

(Z∗2ni − EZ∗2ni )
∥∥∥

p
= 0 for any δ > 0, (3.4)

I2
p→ 0 is proved.

We will show that Z∗2ni −EZ∗2ni is strong Lp-NED with respect to Hi+m
i−m which is denoted
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as in the verification of (c).

∥∥∥
k+s∑

i=k+1

Z∗2ni − E
( k+s∑

i=k+1

(Z∗2ni |Hk+s+m
k+1−m)

)∥∥∥
p

≤
k+s∑

i=k+1

‖h2
Kδcni

(Zni)− E(h2
Kδcni

(Zni)|Hk+s+m
k+1−m)‖p

≤
k+s∑

i=k+1

‖h2
Kδcni

(Zni)− h2
Kδcni

(E(Zni|Hk+s+m
k+1−m))‖p

≤
k+s∑

i=k+1

‖hKδcni(Zni)− hKδcni(E(Zni|Hk+s+m
k+1−m))‖p · 2Kδcni

≤
k+s∑

i=k+1

‖Zni − E(Zni|Hk+s+m
k+1−m)‖p · 2Kδcni

≤ 2
k+s∑

i=k+1

∥∥∥
ibn∑

t=(i−1)bn+ln+1

Xnt

− E
( ibn∑

t=(i−1)bn+ln+1

Xnt|F ibn+mln
(i−1)bn+ln+1−mln

)∥∥∥
p
· 2Kδcni

≤ 2
k+s∑

i=k+1

ν(mln)
( ibn∑

t=(i−1)bn+ln+1

d2
t /σ2

n

)1/2

· 2Kδcni

≤ 4Kδ · ν(mln)
k+s∑

i=k+1

c2
ni

≤ c · ν(m)1−η
( k+s∑

i=k+1

c2
niν(ln)2η

)1/2

,

where η is as in the verification of (c). Moreover we have

‖Z∗2ni − EZ∗2ni ‖p ≤ 2Kδcni‖Zni‖p = O(bnσ−2
n ).

Therefore, applying the method in the proof of Lemma 2.2 and Remark 2.2, we obtain

∥∥∥
rn∑

i=1

(Z∗2ni − EZ∗2ni )
∥∥∥

p
≤ C(D∗∗rn)1/2,

where

D∗∗ = B∗∗∨
sup

1≤i≤rn

‖Z∗2ni − EZ∗2ni ‖2p, B∗∗ =
rn∑

i=1

c2
niν(ln)2η/rn.

So ∥∥∥
rn∑

i=1

(Z∗2ni − EZ∗2ni )
∥∥∥

p
= O

(
rnb2

nσ−4
n + rnbnσ−2

n ν(ln)2η
)1/2 = o(1).

Then I2
p→ 0 is proved.
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Consider I3. Let m = [ln/3] and note that

1
2
|I3| =

∣∣∣
rn∑

i=1

rn∑

j=i+1

EZniZnj

∣∣∣

≤
rn∑

i=1

rn∑

j=i+1

|E(Zni − E(Zni|F ibn+m
(i−1)bn+ln+1−m))(Znj − E(Znj |Fjbn+m

(j−1)bn+ln+1−m))|

+
rn∑

i=1

rn∑

j=i+1

(|E((Zni − E(Zni|F ibn+m
(i−1)bn+ln+1−m))E(Znj |Fjbn+m

(j−1)bn+ln+1−m))|

+ |E(E(Zni|F ibn+m
(i−1)bn+ln+1−m)(Znj − E(Znj |F jbn+m

(j−1)bn+ln+1−m)))|)

+
rn∑

i=1

rn∑

j=i+1

|E(E(Zni|F ibn+m
(i−1)bn+ln+1−m)E(Znj |Fjbn+m

(j−1)bn+ln+1−m))|

=: I31 + I32 + I33.

Using the Cauchy-Schwarz inequality and the definition of strong Lp-NED, we get

I31 ≤
rn∑

i=1

rn∑

j=i+1

‖Zni − E(Zni|F ibn+m
(i−1)bn+ln+1−m)‖2

· ‖Znj − E(Znj |Fjbn+m
(j−1)bn+ln+1−m)‖2

≤
rn∑

i=1

rn∑

j=i+1

ν(m)2bnσ−2
n

≤ r2
nν(m)2bnσ−2

n = O(ν(ln)2−2η) = o(1).

Similarly

I32 ≤
rn∑

i=1

rn∑

j=i+1

‖Zni − E(Zni|F ibn+m
(i−1)bn+ln+1−m)‖2 · ‖Znj‖2

+
rn∑

i=1

rn∑

j=i+1

‖Znj − E(Znj |F jbn+m
(j−1)bn+ln+1−m)‖2 · ‖Zni‖2

≤ 2r2
nν(m)bnσ−2

n = O(ν(ln)1−2η) = o(1).

{E(Zni|F ibn+m
(i−1)bn+ln+1−m)} is a ϕ-mixing sequence since {Vn, n ≥ 1} is ϕ-mixing. Noting

that m = [ln/3], we get

I33 ≤
rn∑

i=1

rn∑

j=i+1

ϕ(m)1/2‖E(Zni|F ibn+m
(i−1)bn+ln+1−m)‖2

· ‖E(Znj |Fjbn+m
(j−1)bn+ln+1−m)‖2

≤ ϕ(m)1/2
rn∑

i=1

rn∑

j=i+1

‖Zni‖2 · ‖Znj‖2

≤ ϕ(m)1/2r2
nbnσ−2

n = O
(
ϕ(m)1/4

)
= o(1).

Therefore, combining the facts above together, we obtain I3 → 0.
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Verification of (f). Let

Wni = E(Zni|Fni)− E(Zni|Fn,i−1),

and cni be as in the verification of (c). Then

rn∑

i=1

EW 2
niI(|Wni| > ε) ≤ max

1≤i≤rn

E(W 2
ni/c2

ni)I(|Wni/cni| > ε/cni)
rn∑

i=1

c2
ni

= O
(

max
1≤i≤rn

E(W 2
ni/c2

ni)I(|Wni/cni| > ε/cni)
)
.

Applying Lemma 2.2, we get

‖Wni/cni‖p ≤ ‖E(Zni/cni|Fni)‖p + ‖E(Zni/cni|Fn,i−1)‖p

≤ 2‖Zni/cni‖p = O
( ibn∑

t=(i−1)bn+ln+1

(d2
t /σ2

n)(1/c2
ni)

)1/2

= O(1),

which implies that W 2
ni/c2

ni is uniformly integrable. Therefore (f) is verified.
The proof of the theorem is complete.
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