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Abstract

The authors give the first convergence proof for the Lax-Friedrichs finite difference
scheme for non-convex genuinely nonlinear scalar conservation laws of the form

ut + f(k(x, t), u)x = 0,

where the coefficient k(x, t) is allowed to be discontinuous along curves in the (x, t)
plane. In contrast to most of the existing literature on problems with discontinuous
coefficients, here the convergence proof is not based on the singular mapping approach,
but rather on the div-curl lemma (but not the Young measure) and a Lax type en-
tropy estimate that is robust with respect to the regularity of k(x, t). Following [14],
the authors propose a definition of entropy solution that extends the classical Kružkov
definition to the situation where k(x, t) is piecewise Lipschitz continuous in the (x, t)
plane, and prove the stability (uniqueness) of such entropy solutions, provided that the
flux function satisfies a so-called crossing condition, and that strong traces of the solu-
tion exist along the curves where k(x, t) is discontinuous. It is shown that a convergent
subsequence of approximations produced by the Lax-Friedrichs scheme converges to
such an entropy solution, implying that the entire computed sequence converges.
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§ 1 . Introduction

The main part of this paper investigates the Lax-Friedrichs finite difference algorithm
as it applies to the Cauchy problem for scalar conservation laws with the form

ut + f(k(x, t), u)x = 0, u(x, 0) = u0(x), (1.1)
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where (x, t) ∈ R× R+; u(x, t) is the scalar unknown function; and u0(x), k(x, t), f(k, u) are
given functions to be detailed later. Here it suffices to say that for the convergence analysis
we need k(x, t) ∈ BVloc(R × R+), u 7→ f(k(x, t), u) genuinely nonlinear for a.e. (x, t), and
u0(x) bounded (see Section 2 for the complete list of assumptions).

The special feature of the problem studied herein is the nonlinear flux function f(k(x, t),
u) that depends explicitly on the spatial and temporal variables through a coefficient k(x, t)
that may be discontinuous. Problems like (1.1) occur in a variety of applications, and they
have been widely studied in recent years, both from a mathematical and numerical point of
view, at least when k is independent of the time variable t, in which case (1.1) is equivalent
to a 2× 2 resonant (non-strictly hyperbolic) system of conservation laws:

kt = 0, ut + f(k, u)x = 0. (1.2)

Since there is generally no spatial total variation bound for u, the “singular mapping”
approach has been used as the main analytical tool for proving convergence of various nu-
merical schemes and thereby existence of weak solutions. The singular mapping approach to
establishing compactness consists of transforming the numerical approximation u∆(x, t) via
z∆(x, t) = Ψ(k(x, t), u∆(x, t)), where Ψ(k, u) is the so-called singular mapping. A singular
mapping that is appropriate for the problem considered here is

Ψ(k, u) =
∫ u

|fw(k, w)| dw.

In many cases it is possible to show that the total variation of the transformed quantity z∆

is bounded independently of the level of the discretization parameter ∆. Helly’s theorem
then gives convergence (along a subsequence) of z∆ as ∆ ↓ 0. Since the continuous mapping
u 7→ Ψ(k, u) is one-to-one, u∆ also converges (along the same subsequence as z∆).

Regarding previous work on problems like (1.1), we refer to [32, 20, 21, 9] for Glimm
and Godunov schemes (based on (1.2) not (1.1)) and [8, 17, 18] for front tracking schemes
(based on (1.2)). Appropriate scalar versions of the Godunov and Engquist-Osher schemes
are analyzed in [33, 34, 13], see also [12, 11] for some other scalar approximation schemes
and an application of compensated compactness. We refer to introductory parts of [12, 13]
for an overview of the activity on problems with discontinuous fluxes. A variety of results
have been obtained recently also for a model of continuous sedimentation in ideal clarifier-
thickener units. This model consists of a particular conservation law with two discontinuous
coefficients. We refer to [2, 3] (and the references cited therein) for an overview of the
mathematical and numerical results for this model.

Some time ago, Lin, Temple, and Wang [20] observed that a bound on the total vari-
ation (measured under the singular mapping), and thus convergence, had not yet been
established for the 2 × 2 Lax-Friedrichs scheme, nor for any of the scalar schemes that ap-
ply to the version of (1.1) where the coefficient k = k(x) is independent of time. Since
then such bounds have been established for a number of scalar schemes, but the question of
the Lax-Friedrichs scheme has been left unresolved. Numerical evidence indicates that the
Lax-Friedrichs scheme is well-behaved on these problems (see, e.g., [2]). In fact Tveito and
Winther [35] provide examples where the Lax-Friedrichs scheme performs well while meth-
ods based on 2×2 Riemann solvers may fail. Based on this numerical evidence, we conclude
that it is the singular mapping approach that is deficient at this point. This approach to
convergence for scalar difference schemes depends strongly on the close functional relation-
ship between the viscosity of the Engquist-Osher flux, the Kružkov entropy flux, and the
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singular mapping. This is true also for the Godunov scheme, where the proof depends on the
fact that the Engquist-Osher flux is nearly identical to the Godunov flux when f is concave.
This leads us to believe that the singular mapping approach is not readily applicable to
the Lax-Friedrichs scheme, and it motivated our interest in the compensated compactness
approach [22–25, 30, 31, 7, 4], which represents a departure from the singular mapping tech-
nique used in the literature cited above. Another aspect is that, possibly due to technical
difficulties with the singular mapping approach, the case where the nonlinearity u 7→ f(k, u)
is nonconvex has received less attention in the literature than the convex/concave case. An
attractive feature of the compensated compactness approach is that no convexity condition
is required for u 7→ f(k, u), but merely that u 7→ f(k(x, t), u) is “genuinely nonlinear” for
a.e. (x, t), i.e., for a.e. (x, t) there are no intervals where u 7→ f(k(x, t), u) is linear. Also, sign
changes of the discontinuous coefficient k are handled without any special considerations.
Sign changes are commonly ruled out [17, 18, 16, 33, 34] due to added analytical techni-
calities with the singular mapping approach. Finally, being one of the points of this paper,
the time dependent coefficient case can be treated without any new significant difficulties
compared to the time independent case. Most of the previous literature assumes that the
coefficient is time independent, but see the discussion below.

The present paper can be divided into three parts as follows:
1. In Section 3 we prove a compensated compactness lemma in the spirit of Tartar

[30, 31]. The proof is based on the div-curl lemma but does not rely on the Young measure.
This is an advantage in the present general context since the fundamental theorem of Young
measures applies most easily to functions F (x, t, u) that are continuous in all the variables
(herein we are interested in the (x, t) discontinuous function F (x, t, u) = f(k(x, t), u)). Al-
though we will omit the details, the compensated compactness lemma found herein can be
formulated for problems with a vector-valued coefficient k(x, t) = (k1(x, t), · · · , kM (x, t),
M ≥ 1. Vector-valued coefficients occur naturally in certain applications, including models
for continuous sedimentation, see [2, 3] and the references cited therein.

2. We use the compensated compactness lemma to prove convergence to a weak so-
lution of the Lax-Friedrichs scheme as it applies to (1.1), thereby obtaining the first con-
vergence result for the Lax-Friedrichs scheme as applied to conservation laws with a dis-
continuous flux. The details are presented in Sections 2 and 4. As a direct consequence
we obtain an existence result for (1.1) with no assumptions on the convexity/concavity of
u 7→ f(k, u) and/or sign changes in k(x, t). In addition, more or less for free, our method
of analysis allows for a time dependent coefficient. The time dependent case was treated
only recently in [27]. The author proved existence of a unique and stable solution under the
assumption that u 7→ f(k, u) is convex and k(x, t) is piecewise smooth, i.e., k(x, t) is allowed
to be discontinuous along a finite number of curves in the (x, t) plane. The method of proof
differs from the singular mapping and compensated compactness approaches. It consists in
proving convergence of the control theory representation of the unique viscosity solution of
the corresponding Hamilton-Jacobi equation where the coefficient k(·, t) has been smoothed
out via a standard mollifier. After the main results of this paper were obtained, we learned
of a preprint [5] in which the authors use the singular mapping approach to prove conver-
gence of a front tracking scheme for (1.1) when the coefficient k(x, t) has a multiplicative
space-time dependence a(x)g(t) > 0, the nonlinearity u 7→ f(k, u) is concave, the mapping
k 7→ f(k, u) is nondecreasing, and the initial function u0(x) is roughly speaking of bounded
total variation. We would like to stress that the existence result given herein holds under
conditions that are significantly more general than those needed for the existence results in
[27, 5].
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3. For a general class of problems with “piecewise smooth” coefficients and a possibly
degenerate diffusion operator, the authors of [14] introduced a Kružkov type notion of an
entropy solution and proved uniqueness of this solution. Uniqueness was proved for flux
functions that satisfied a so called “crossing condition” and a technical condition regarding
the existence of traces at the jump points in the coefficients. In [14] it was assumed that
the discontinuous coefficients did not depend on the temporal variable t. The notion of
entropy solution and the uniqueness result in [14] extend to time dependent coefficients.
This extension is the topic of Sections 5 and 6, see also Section 7 for a final remark about
our entropy solution theory and its relation to [1, 10]. Regarding uniqueness of solutions
to (1.1) when k = k(x) is allowed to be discontinuous, some other results can be found in
[18, 16, 33, 28]. In Section 5 we prove that any limit of the Lax-Friedrichs scheme is an
entropy solution. Consequently, whenever the uniqueness result applies, the whole sequence
of Lax-Friedrichs approximate solutions converge to the entropy solution.

We close this introduction by making a few remarks on the usefulness of the Lax-
Friedrichs scheme in applications. Roughly speaking, shock-capturing numerical schemes
for hyperbolic problems can be classified as either central (Lax-Friedrichs type) schemes or
upwind (Godunov type) schemes. A disadvantage with upwind schemes is that one needs the
(exact or approximate) solution of the Riemann problem. In the 1990s the central schemes
received much interest after the introduction of the second-order sequel to the Lax-Friedrichs
scheme in [26]. The second order central scheme in [26] can be viewed as a direct extension of
the first-order Lax-Friedrichs central scheme, in which the problem of excessive dissipation
is resolved by reconstructing, in each time step, a MUSCL type piecewise-linear interpolant
from the cell averages computed in the previous time step. The second order central scheme
is as easy to use as the first order Lax-Friedrichs scheme (there is no need for a Riemann
solver). We refer to the lecture notes [29] for a general overview of central schemes and
their applications. In [2] we applied first and second order central schemes to (systems of)
conservation laws with discontinuous coefficients modeling continuous sedimentation in ideal
clarifier-thickener units, and we refer to that paper for numerical experiments illustrating
the performance of the Lax-Friedrichs scheme studied herein.

§ 2 . Assumptions and the Lax-Friedrichs Scheme

We begin by listing some assumptions on u0, k, f that are needed for the convergence
analysis (more assumptions will be introduced in Section 5 for the definition of entropy
solution).

Regarding the initial function we assume

u0 ∈ L∞(R), a ≤ u0(x) ≤ b for a.e. x ∈ R. (2.1)

For the discontinuous coefficient k : R× R+ → R we assume that

k ∈ L∞(R×R+) ∩BVloc(R×R+), α ≤ k(x, t) ≤ β for a.e. (x, t) ∈ R× R+. (2.2)

We recall that BVloc(R×R+) denotes the set of L1
loc(R×R+) functions z(x, t) for which the

partial derivatives zx and zt are bounded Radon measures on compact subsets of R× R+.
Regarding the flux function f : [α, β]× [a, b] → R we assume that

{
u 7→ f(k, u) ∈ C2[a, b] for all k ∈ [α, β];

k 7→ f(k, u) ∈ C1[α, β] for all u ∈ [a, b].
(2.3)
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Furthermore, we assume that u 7→ f(k(x, t), u) is genuinely nonlinear a.e. in R×R+. More
precisely, for a.e. (x, t) ∈ R× R+, we assume

fuu(k(x, t), u) 6= 0 for a.e. u ∈ [a, b]. (2.4)

Note that this also implies a condition on the coefficient k(x, t). For example, if f(k, u) has
a multiplicative form kf(u), (2.4) is satisfied if f(u) is genuinely nonlinear (i.e., f ′′ 6= 0 a.e.)
and |k(x, t)| 6= 0 for a.e. (x, t) ∈ R× R+.

With the assumption (2.3) the partial derivatives fk and fu exist everywhere, and
‖fk‖∞ and ‖fu‖∞ denote the (finite) Lipschitz constants of fk and fu with respect to
(k, u) ∈ [α, β]× [a, b]. With the notation fk and fu, we always mean the first order partial
derivatives of f(·, ·) with respect to the first and second variables.

We need also an assumption on f that guarantees that the Lax-Friedrichs approxima-
tions stay uniformly bounded. For example, we can require

f(k, a) = f(k, b) = 0 for all k ∈ [α, β], (2.5)

which in fact implies that the interval [a, b] becomes an invariant region.
Next we describe the Lax-Friedrichs scheme. Let ∆x > 0 and ∆t > 0 denote the spatial

and temporal discretization parameters, which are chosen so that they always obey the CFL
condition

λ‖fu‖∞ ≤ 1− κ, λ =
∆t

∆x
for some κ ∈ (0, 1). (2.6)

Here κ is a positive parameter which we can choose to be very small so that the allowable
time step is reduced only negligibly. We will work under the standing assumption that the
space step ∆x and the time step ∆t are comparable, i.e., there are constants c1, c2 > 0 such
that c1 ≤ ∆t

∆x ≤ c2.
The time domain [0,∞) is discretized via tn = n∆t for n ∈ Z0

+ := {0, 1, · · · } (Z+ :=
{1, 2, · · · }), resulting in time strips [tn, tn+1). The spatial domain R is divided into cells
[xj−1, xj+1) with centers at the points xj = j∆x for j ∈ Z. Let χj(x) be the characteristic
function for the interval [xj−1, xj+1) and χn

j the characteristic function for the rectangle
[xj−1, xj+1)× [tn, tn+1).

The finite difference scheme then generates, for each mesh size ∆ = (∆x, ∆t), with ∆x

and ∆t taking values in sequences tending to zero, a piecewise constant approximation

u∆(x, t) =
∑

n∈Z0
+

∑

j∈Z
j+n=even

χn
j (x, t)Un

j , (2.7)

where the values {Un
j : (j, n) ∈ Z× Z0

+, j + n = even} remain to be defined.
We define {U0

j : j = even} by

U0
j =

1
2∆x

∫ xj+1

xj−1

u0(x) dx. (2.8)

Given {Un
j : j + n = even}, we define next {Un+1

j : j + n = odd}. Let (K, U) =
(K, U)(x, t) denote a weak solution of the 2× 2 system

Kt = 0, Ut + f(K,U)x = 0, (x, t) ∈ R× R+ (2.9)
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with Riemann initial data

K(x, 0) =

{
kn

j−1, x < xj ,

kn
j+1, x > xj ,

U(x, 0) =

{
Un

j−1, x < xj ,

Un
j+1, x > xj ,

where the coefficient k(x, t) has been discretized via the piecewise constant approximation

k∆(x, t) =
∑

n∈Z0
+

∑

j∈Z
j+n=even

χn
j (x, t)kn

j , kn
j = lim

x↓xj

k(x, t̂n). (2.10)

Here t̂n is any point lying in the interval [tn, tn+1) where the limit exists. With the assump-
tion that k ∈ BVloc(R × R+), the limit in this formula exists for almost all t ∈ [tn, tn+1),
and so this definition makes sense. We then define

Un+1
j =

1
2∆x

∫ xj+1

xj−1

U(x, ∆t) dx.

Integrating the weak formulation of (2.9) over the control volume [xj−1, xj+1)×(0, ∆t) gives
∫ xj+1

xj−1

U(x, ∆t) dx

=
∫ xj+1

xj−1

U(x, 0) dx−
∫ ∆t

0

(f(K(xj+1, t), U(xj+1, t))− f(K(xj−1, t), U(xj−1, t))) dt.

After a direct evaluation of the integrals for ∆t small, we obtain the staggered Lax-
Friedrichs scheme

Un+1
j =

1
2
(Un

j−1 + Un
j+1)−

λ

2
(f(kn

j+1, U
n
j+1)− f(kn

j−1, U
n
j−1)), (2.11)

which also can be written in conservation form

Un+1
j = Un

j − λ(Fn
j+1/2 −Fn

j−1/2), (2.12)

where
Fn

j+1/2 =
1
2
(f(kn

j , Un
j ) + f(kn

j+1, U
n
j+1))−

1
2λ

∆+Un
j

is the Lax-Friedrichs numerical flux.
Notice that in this paper we restrict our attention to the sublattice

{(xj , tn) : j + n = even},
which means that {U0

j : j = even}, {U1
j : j = odd}, {U2

j : j = even} etc. are calculated.

§ 3 . A Compensated Compactness Lemma

We provide a compensated compactness lemma [23, 24, 25, 30, 31] that can be applied
to scalar conservation laws with a space-time discontinuous flux. The compensated com-
pactness method, and its applications to (systems of) conservation laws, is nicely reviewed
in [4, 22].

Before we can prove the compensated compactness lemma, we need to recall the cele-
brated div-curl lemma.



THE LAX-FRIEDRICHS SCHEME FOR DISCONTINUOUS FLUX PROBLEMS 293

Lemma 3.1. (div-curl Lemma) Let Ω ⊂ R2 be an open domain. With ε > 0 denoting
a parameter taking its values in a sequence which tends to zero, suppose

Dε ⇀ D in (L2(Ω))2, Eε ⇀ E in (L2(Ω))2,

{div Dε}ε>0 lies in a compact subset of W−1,2
loc (Ω),

{curl Eε}ε>0 lies in a compact subset of W−1,2
loc (Ω).

Then along a subsequence

Dε · Eε → D · E in D′(Ω).

A feature of the proof of the compensated compactness lemma below is that it avoids
the use of the Young measure by following an approach developed by Chen and Lu [4, 22]
for the standard scalar conservation law, i.e., (1.1) with f = f(u). This is preferable as the
fundamental theorem of Young measures applies most easily to functions that are continuous
in all variables.

Lemma 3.2. (Compensated Compactness) Suppose the first part of (2.2), the first
part of (2.3), and (2.4) hold. Suppose {uε}ε>0 is a sequence of measurable functions on
R× R+ that satisfies the following two conditions:

(1) There exist two finite constants a and b with a < b, both independent of ε, such
that

a ≤ uε(x, t) ≤ b for a.e. (x, t) ∈ R× R+.

(2) The two sequences

{S1(uε)t + Q1(k(x, t), uε)x}ε>0,

{S2(k(x, t), uε)t + Q2(k(x, t), uε)x}ε>0

(3.1)

belong to a compact subset of W−1,2
loc (R× R+), where

S1(u) = u− c, Q1(k, u) = f(k, u)− f(k, c),

S2(k, u) = f(k, u)− f(k, c), Q2(k, u) =
∫ u

c

(fu(k, ξ))2 dξ for any c ∈ R.

Then there exists a subsequence of {uε}ε>0 that converges a.e. to a function u ∈ L∞(R×R+).

Proof. In what follows, we use “overline” to denote weak-∗ limits in L∞(R × R+).
Fix any bounded open set Ω ⊂ R× R+, and introduce the vector fields

Dε = (S1(uε), Q2(k(x, t), uε)), Eε = (−Q2(k(x, t), uε), S2(k(x, t), uε)).

We can apply the div-curl lemma to the sequences {Dε}ε>0, {Eε}ε>0. The result is the
so-called Murat-Tartar commutator relation:

Dε · Eε = D · E a.e. in Ω,

that is,

(fε − f(k(x, t), c))2 − (uε − c)
∫ uε

c

(fu(k(x, t), ξ))2 dξ

= ( (fε − f(k(x, t), c)) )2 − (uε − c)
∫ uε

c

(fu(k(x, t), ξ))2 dξ,

(3.2)
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where fε := f(k(x, t), uε). We have

(fε − f(k(x, t), c))2 = (fε − f(k(x, t), ū))2 + 2(fε − f(k(x, t), ū))(f(k(x, t), ū)

− f(k(x, t), c)) + (f(k(x, t), ū)− f(k(x, t), c))2

and

(uε − c)
∫ uε

c

(fu(k(x, t), ξ))2 dξ

= (uε − ū)
∫ uε

ū

(fu(k(x, t), ξ))2 dξ + (ū− c)
∫ uε

ū

(fu(k(x, t), ξ))2 dξ

+ (uε − c)
∫ ū

c

(fu(k(x, t), ξ))2 dξ.

Using these identities in (3.2), we find that

(fε − f(k(x, t), ū))2 − (uε − ū)
∫ uε

ū

(fu(k(x, t), ξ))2 dξ

+ 2(fε − f(k(x, t), ū))(f(k(x, t), ū)− f(k(x, t), c))

+ (f(k(x, t), ū)− f(k(x, t), c))2 − (ū− c)
∫ uε

ū

(fu(k(x, t), ξ))2 dξ

− (uε − c)
∫ ū

c

(fu(k(x, t), ξ))2 dξ

= ( (fε − f(k(x, t), c)) )2 − (uε − c)
∫ uε

c

(fu(k(x, t), ξ))2 dξ .

(3.3)

We have

( (fε − f(k(x, t), c)) )2 = ( (fε − f(k(x, t), ū)) )2 2(fε − f(k(x, t), ū))(f(k(x, t), ū)

− f(k(x, t), c)) + (f(k(x, t), ū)− f(k(x, t), c))2

and

(uε − c)
∫ uε

c

(fu(k(x, t), ξ))2 dξ

= (uε − ū)
∫ uε

ū

(fu(k(x, t), ξ))2 dξ + (ū− c)
∫ uε

ū

(fu(k(x, t), ξ))2 dξ

+ (uε − c)
∫ ū

c

(fu(k(x, t), ξ))2 dξ

= (ū− c)
∫ uε

ū

(fu(k(x, t), ξ))2 dξ + (uε − c)
∫ ū

c

(fu(k(x, t), ξ))2 dξ.

Plugging these identities into (3.3) yields

I(uε)− ( (fε − f(k(x, t), ū)) )2 = 0 a.e. in Ω, (3.4)
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where

I(uε) := (fε − f(k(x, t), ū))2 − (uε − ū)
∫ uε

ū

(fu(k(x, t), ξ))2 dξ.

By the Cauchy-Schwartz inequality,

(fε − f(k(x, t), ū))2 =
( ∫ uε

ū

fu(k(x, t), ξ) dξ
)2

≤ (uε − u)
∫ uε

ū

(fu(k(x, t), ξ))2 dξ. (3.5)

Actually there is equality in (3.5) if and only if fuu(k(x, t), ξ) = 0 for all ξ between u and
uε. This implies that both terms in (3.4) are nonpositive a.e. in Ω, and thus they must be
equal to zero. The second term being zero gives fε = f(k(x, t), ū) for a.e. (x, t) ∈ Ω. The
first term in (3.4) being zero means that

lim
ε↓0

∫∫

Ω

I(uε)ϕ(x, t) dx dt

is zero for any function ϕ ∈ L1(Ω). Hence I(uε) → 0 a.e. in Ω. In view of the “genuinely
nonlinear” condition (2.4), and thus a strict inequality in (3.5), the nonpositive function
I( · ) has a strict global maximum at ū with I(ū) = 0, so that

I(uε) ≤ −Cα a.e. on {|uε − ū| > α}

for some constant Cα > 0 that depends on α but not ε. Consequently

meas{|uε − ū| > α} ≤ 1
Cα

∫∫

Ω∩|uε−ū|>α

Iε(x, t) dx dt → 0 ε ↓ 0.

Since α > 0 was arbitrary, this shows that uε → ū in measure, which implies that a
subsequence of {uε}ε>0 converges to ū a.e. in Ω. Since Ω was arbitrary, a standard diagonal
argument finishes the proof of the lemma.

Remark 3.1. By looking at Lemma 3.2 it becomes clear why we need to assume in
(2.2) also some regularity in the time variable of k(x, t).

When verifying (3.1) it is convenient to have following functional analysis lemma at
our disposal (see [4, 22]).

Lemma 3.3. Let Ω ⊂ Rd be a bounded open set. Let q and r be a pair of constants
satisfying 1 < q ≤ 2 < r < ∞. Then

(compact set of W−1,q
loc (Ω)) ∩ (bounded set of W−1,r

loc (Ω)) ⊂ (compact set of W−1,2
loc (Ω)).

§ 4 . Convergence Analysis

Now we set out to prove that the Lax-Friedrichs approximate solutions {u∆}∆>0 de-
fined in Section 2 converge strongly to a weak solution of (1.1), at least along a subsequence.
The general strategy of the convergence proof is in the spirit of the one used by DiPerna [7],
and it has been used in various contexts and by many different authors since then (see, e.g.,
[4] for an overview). We first derive a uniform L∞ estimate via an invariant region principle.
Then a precise entropy estimate is obtained for the quadratic entropy function S(u) = 1

2u2.
The key point is that the entropy estimate is robust with respect to the smoothness of the
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coefficient k(x, t). Moreover, it immediately provides us with discrete L2 estimates on the
spatial and temporal differences of the approximate solution u∆, which imply the desired
W−1,2

loc compactness of {u∆}∆>0. An application of the compensated compactness lemma
from Subsection 3.2 then gives the desired strong convergence in Lp for any p < ∞.

The first lemma guarantees that the scheme is monotone (see [6], this will be used in
Section 5 only) and that the approximations Un

j remain within the initial domain [a, b].

Lemma 4.1. (Monotonicity and L∞ Estimate) Suppose the CFL condition (2.6)
holds. Then the Lax-Friedrichs scheme (2.11) is monotone. Moreover, the computed ap-
proximations satisfy u∆(x, t) ∈ [a, b] for all x and all t ≥ 0.

Proof. Fix a time level n ≥ 0, and for the sake of concreteness, assume that n is odd.
If V n

j ≥ Un
j for all odd j, then for j even, the following relationship is easily derived from

the definition (2.11) of the scheme:

V n+1
j − Un+1

j =
1
2
(1− λfu(kn

j+1, w
n
j+1))(V

n
j+1 − Un

j+1)

+
1
2
(1 + λfu(kn

j−1, w
n
j−1))(V

n
j−1 − Un

j−1),
(4.1)

where wn
j−1 ∈ co(Un

j−1, V
n
j−1) and wn

j+1 ∈ co(Un
j+1, V

n
j+1). It is clear that the right hand side

of (4.1) is nonnegative if the CFL condition (2.6) is satisfied, which proves that the scheme
is monotone. To demonstrate the invariance of the initial domain [a, b], we start with the
observation that the functions w∆(x, t) ≡ a, v∆(x, t) ≡ b are fixed point solutions of the
finite difference equation (2.11). This is a result of the assumption (2.5). At the initial time
level,

a = w∆(x, t0) ≤ u∆(x, t0) ≤ v∆(x, t0) = b,

and thus monotonicity, along with the fixed point property of w∆(x, t) and v∆(x, t), yields

a = w∆(x, t1) ≤ u∆(x, t1) ≤ v∆(x, t1) = b.

Clearly we can continue this way inductively, showing that the computed approximations
satisfy a ≤ u∆(x, tn) ≤ b for all n ≥ 0.

Lax [19] derived an entropy estimate for the Lax-Friedrichs scheme as it applies to a
hyperbolic system of conservation laws admitting a strictly convex entropy. The following
lemma, as well as its proof, is an adaptation of that entropy estimate to the context of this
paper.

Lemma 4.2. (Entropy Estimate) Let (S,Q) be defined by

S(u) =
1
2
u2, Qu(k, u) = ufu(k, u).

With kn
j−1, U

n
j−1 and kn

j+1, U
n
j+1 given, compute Un+1

j by (2.11). Then

S(Un+1
j )− 1

2
(S(Un

j−1) + S(Un
j+1)) +

λ

2
(Q(kn

j+1, U
n
j+1)−Q(kn

j−1, U
n
j−1))

≤ −κ2

8
(Un

j+1 − Un
j−1)

2 +O(|kn
j+1 − kn

j−1|).
(4.2)
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Proof. Let us introduce the functions w, v, Φ : [a, b] → R defined by

w(s) = sUn
j−1 + (1− s)Un

j+1,

v(s) =
1
2
(w(s) + Un

j+1)−
λ

2
(f(kn

j+1, U
n
j+1)− f(kn

j−1, w(s))),

Φ(s) =
1
2
(S(w(s)) + S(Un

j+1)) +
λ

2
(Q(kn

j−1, w(s))−Q(kn
j+1, U

n
j+1))− S(v(s)).

It will be useful to have the following elementary facts about these functions collected in
one place before continuing with the proof:

w(0) = Un
j+1, w(1) = Un

j−1, w′(s) = Un
j−1 − Un

j+1,

v(0) = Un
j+1 −

λ

2
(f(kn

j+1, U
n
j+1)− f(kn

j−1, U
n
j+1)), v(1) = Un+1

j ,

v′(s) =
1
2
(1 + λfu(kn

j−1, w(s)))w′(s) =
1
2
(1 + λfu(kn

j−1, w(s)))(Un
j−1 − Un

j+1),

Φ(0) = S(Un
j+1)−

λ

2
(Q(kn

j+1, U
n
j+1)−Q(kn

j−1, U
n
j+1))

− S
(
Un

j+1 −
λ

2
(f(kn

j+1, U
n
j+1)− f(kn

j−1, U
n
j+1))

)
,

Φ(1) =
1
2
(S(Un

j−1) + S(Un
j+1)) +

λ

2
(Q(kn

j−1, U
n
j−1)−Q(kn

j+1, U
n
j+1))− S(Un+1

j ).

Now the main point is to estimate Φ′(s). Straightforward calculations show that

Φ′(s) =
1
2
(1 + λfu(kn

j−1, w(s)))(Un
j−1 − Un

j+1)(w(s)− v(s)) (4.3)

and

w(s)− v(s) =
1
2

(
1− λ

f(kn
j−1, w(s))− f(kn

j−1, U
n
j+1)

w(s)− Un
j+1

)
(w(s)− Un

j+1)

+
λ

2
(f(kn

j+1, Uj+1)− f(kn
j−1, Uj+1)),

so that, with A := 1− λ(f(kn
j−1, w(s))− f(kn

j−1, U
n
j+1))/(w(s)− Un

j+1),

w(s)− v(s) =
A

2
(w(s)− Un

j+1) +
λ

2
(f(kn

j+1, U
n
j+1)− f(kn

j−1, U
n
j+1))

=
A

2
(Un

j−1 − Un
j+1)s +

λ

2
(f(kn

j+1, U
n
j+1)− f(kn

j−1, U
n
j+1)).

(4.4)

As a consequence of the CFL condition (2.6), A ≥ κ. Similarly, the quantity

1 + λfu(kn
j−1, w(s))

appearing in (4.3) is not less than κ. Thus

Φ′(s) ≥ κ2

4
(Un

j−1 − Un
j+1)

2s− C|kn
j+1 − kn

j−1|

for some positive constant C independent of ∆.
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Integrating this last inequality from 0 to 1 gives

Φ(1)− Φ(0) ≥ κ2

8
(Un

j−1 − Un
j+1)

2 − C|kn
j+1 − kn

j−1|,

which concludes the proof of the lemma as soon as we show that −Φ(0) is bounded by a
constant times |kn

j+1 − kn
j−1|. Using convexity of S,

S
(
Un

j+1 −
λ

2
(f(kn

j+1, U
n
j+1)− f(kn

j−1, U
n
j+1))

)

≤ S(Un
j+1)− S′(Un

j+1)
λ

2
(f(kn

j+1, U
n
j+1)− f(kn

j−1, U
n
j+1)),

and inserting this estimate into −Φ(0) yields easily the desired upper bound.

The next lemma is a consequence of the entropy estimate.

Lemma 4.3. (L2 Estimates on Spatial/Temporal Differences) For T > 0, N =
bT/∆tc, and X > 0, J = bX/2∆xc+ 2, we have the bounds

∆x

N∑
n=0

∑

|j|≤J

j+n+1=even

(Un
j+1 − Un

j−1)
2 ≤ C1(X, T ) < ∞,

N−1∑
n=0

∫ X

−X

(u∆(x, tn+1)− u∆(x, tn))2 dx ≤ C2(X, T ) < ∞,

(4.5)

where C1(X, T ) and C2(X, T ) are independent of ∆.

Proof. Starting from (4.2), we derive the following estimate by exploiting the tele-
scoping nature of the sum and taking into account the boundary terms.

κ2∆x

8

N∑
n=0

∑

|j|≤J

j+n+1=even

(Un
j+1 − Un

j−1)
2

≤ ∆x

2

∑

|j|≤J

(U0
j )2 +

∆t

2

N∑
n=0

(|Q(kn
J−1, U

n
J−1)|+ |Q(kn

J+1, U
n
J+1)|)

+
∆t

2λ

N∑
n=0

(|S(Un
J−1)|+ |S(Un

J+1)|) +O
(

∆x

N∑
n=0

∑

j∈Z
j+n=even

|kn
j+2 − kn

j |
)

.

(4.6)

The first part of (4.5) now clearly follows from (2.1) and (2.2), as well as the fact that S

and Q are continuous.
To prove the second part of (4.5), fix n ≥ 0. Then, taking into account the staggered

nature of the mesh and our choice of J ,
∫ X

−X

(u∆(x, tn+1)− u∆(x, tn))2 dx

≤ ∆x
∑

|j|≤J

j+n+1=even

((Un+1
j − Un

j−1)
2 + (Un+1

j − Un
j+1)

2). (4.7)
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Using the definition of the difference algorithm, and then Jensen’s inequality, we get

(Un+1
j − Un

j−1)
2 =

(1
2
(Un

j+1 − Un
j−1)−

1
2
λ(f(kn

j+1, U
n
j+1)− f(kn

j−1, U
n
j−1))

)2

≤ 1
2
(Un

j+1 − Un
j−1)

2 +
1
2
(λ(f(kn

j+1, U
n
j+1)− f(kn

j−1, U
n
j−1)))

2.

(4.8)

An application of the inequality (a + b)2 ≤ 1
2a2 + 1

2b2 yields

(f(kn
j+1, U

n
j+1)− f(kn

j−1, U
n
j−1))

2

≤ 1
2
‖fu‖2∞(Un

j+1 − Un
j−1)

2 +
1
2
‖fk‖2∞(kn

j+1 − kn
j−1)

2

≤ 1
2
‖fu‖2∞(Un

j+1 − Un
j−1)

2 + ‖fk‖2∞‖k‖L∞(R)|kn
j+1 − kn

j−1|.

Using this estimate in (4.8) gives

(Un+1
j − Un

j−1)
2 ≤ 1

2

(
1 +

1
2
λ2‖fu‖2∞

)
(Un

j+1 − Un
j−1)

2

+
1
2
λ2‖fk‖2∞‖k‖L∞(R)|kn

j+1 − kn
j−1|.

(4.9)

A similar calculation provides the same estimate for the quantity (Un+1
j − Un

j+1)
2. Substi-

tuting these estimates into (4.7), the result is

∫ X

−X

(u∆(x, tn+1)− u∆(x, tn))2 dx ≤ 2∆x
∑

|j|≤J

j+n+1=even

((
1 +

1
2
λ2‖fu‖2∞

)
(Un

j+1 − Un
j−1)

2

+ λ2‖fk‖2∞‖k‖L∞(R)|kn
j+1 − kn

j−1|
)
. (4.10)

The second part of (4.5) now follows by summing (4.10) over n ∈ {0, · · · , N − 1}, and
invoking the first part of (4.5), along with the assumption that k(x, t) belongs to BVloc(R×
R+).

Now we prove the W−1,2
loc compactness of the Lax-Friedrichs approximate solutions.

Lemma 4.4. (W−1,2
loc Compactness) For any function S(k, u) having the same regu-

larity as f(k, u), the sequence of distributions

{S(k(x, t), u∆)t + Q(k(x, t), u∆)x}∆>0

lies in a compact subset of W−1,2
loc (R× R+), where Qu(k, u) = Su(k, u)fu(k, u).

Proof. Let φ ∈ D([−X, X] × [0, T ]) for some X > 0, T > 0, and fix indices N :=
bT/∆tc, J = bX/2∆xc+ 1. Define

〈L∆, φ〉 =
∫

R+

∫

R
(S(k(x, t), u∆)φt + Q(k(x, t), u∆)φx) dx dt.
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Let us first write L∆ = L∆
1 + L∆

2 , where

〈L∆
1 , φ〉 =

∫

R+

∫

R
(S(k(x, t), u∆)− S(k∆(x, t), u∆))φt dx dt

+
∫

R+

∫

R
(Q(k(x, t), u∆)−Q(k∆(x, t), u∆))φx dx dt,

〈L∆
2 , φ〉 =

∫

R+

∫

R
(S(k∆(x, t), u∆)φt + Q(k∆(x, t), u∆)φx) dx dt.

In what follows, we let Ω denote an arbitrary but fixed bounded open subset of R×R+.
Let q1 ∈ (1, 2] and set p = q1

q1−1 ∈ [1,∞). With φ ∈ W 1,q1
0 (Ω), we have by Hölder’s inequality

|〈L∆
1 , φ〉| ≤ C‖k − k∆‖Lp(Ω)‖φ‖W

1,q1
0 (Ω)

→ 0 as ∆ ↓ 0,

so that
{L∆

1 }∆>0 is compact in W−1,q1(Ω), q1 ∈ (1, 2]. (4.11)

In what follows, we employ the simplifying notation

Sn
j := S(k∆(xj , tn), u∆(xj , tn)), Qn

j := Q(k∆(xj , tn), u∆(xj , tn)),

and similarly for φn
j . We decompose L∆

2 as follows:

〈L∆
2 , φ〉 =

N−1∑
n=0

∑

j∈Z
j+n=even

∫ tn+1

tn

∫ xj+1

xj−1

(S(k∆, u∆)φt + Q(k∆, u∆)φx) dx dt

=
N−1∑
n=0

∑

j∈Z
j+n=even

∫ xj+1

xj−1

S(k∆, u∆)(φ(x, tn+1)− φ(x, tn)) dx

+
N−1∑
n=0

∑

j∈Z
j+n=even

∫ tn+1

tn

Q(k∆, u∆)(φ(xj+1, t)− φ(xj−1, t)) dt

=
∑

j=even

∫ xj+1

xj−1

SN
j φ(x,N∆t) dx−

∑

j=even

∫ xj+1

xj−1

S0
j φ(x, 0) dx

−
N∑

n=1

∑

j∈Z
j+n=even

∫ xj

xj−1

(Sn
j − Sn−1

j−1 )φ(x, tn) dx

−
N∑

n=1

∑

j∈Z
j+n=even

∫ xj+1

xj

(Sn
j − Sn−1

j+1 )φ(x, tn) dx

−
N∑

n=1

∑

j∈Z
j+n=even

∫ tn

tn−1

(Qn−1
j+1 −Qn−1

j−1 )φ(xj , t) dt

= 〈L∆
2,0, φ〉+ 〈L∆

2,1, φ〉+ 〈L∆
2,2, φ〉+ 〈L∆

2,3, φ〉+ 〈L∆
2,4, φ〉,
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where (after some work)

〈L∆
2,0, φ〉 =

∑

j=even

∫ xj+1

xj−1

SN
j φ(x,N∆t) dx−

∑

j=even

∫ xj+1

xj−1

S0
j φ(x, 0) dx,

〈L∆
2,1, φ〉 = −2∆x

N∑
n=1

∑

j∈Z
j+n=even

{(
Sn

j −
1
2
Sn−1

j−1 −
1
2
Sn−1

j+1

)
+

λ

2
(Qn−1

j+1 −Qn−1
j−1 )

}
φn

j ,

〈L∆
2,2, φ〉 =

N∑
n=1

∑

j∈Z
j+n=even

∫ xj

xj−1

(Sn−1
j−1 − Sn

j )(φn
j − φ(x, tn)) dx,

〈L∆
2,3, φ〉 =

N∑
n=1

∑

j∈Z
j+n=even

∫ xj+1

xj

(Sn−1
j+1 − Sn

j )(φn
j − φ(x, tn)) dx,

〈L∆
2,4, φ〉 =

N∑
n=1

∑

j∈Z
j+n=even

∫ tn

tn−1

(Qn−1
j+1 −Qn−1

j−1 )(φn
j − φ(xj , t)) dt.

For the term 〈L∆
2,1, φ〉, we claim that

|〈L∆
2,1, φ〉| =

∣∣∣∣−2∆x

N∑
n=1

∑

j∈Z
j+n=even

{(
Sn

j −
1
2
Sn−1

j−1 −
1
2
Sn−1

j+1

)
+

λ

2
(Qn−1

j+1 −Qn−1
j−1 )

}
φn

j

∣∣∣∣

= O
(

∆x

N∑
n=1

∑

|j|≤J

j+n+1=even

(Un−1
j+1 − Un−1

j−1 )2 + |k|BV ([−X,X]×[0,T ])

)
‖φ‖L∞(Ω).

(4.12)

To prove this claim, we first observe that in the expression
(
Sn

j −
1
2
Sn−1

j−1 −
1
2
Sn−1

j+1

)
+

λ

2
(Qn−1

j+1 −Qn−1
j−1 ), (4.13)

we may replace Sn−1
j±1 = S(k∆(xj±1, tn−1), u∆(xj±1, tn−1)) by

S(k∆(xj , tn), u∆(xj±1, tn−1)) := Ŝn−1
j±1 ,

and absorb the difference in the “|k|BV term”. With this simplification, we can follow the
first part of the proof of Lemma 4.2, with S(k∆(xj , tn), u) playing the role of S(u), noting
that we must replace the formula (4.3) for Φ′(s) by

Φ′(s) =
1
2
(1 + λfu(kn

j−1, w(s)))(Un
j−1 − Un

j+1)S
′′(θ)(w(s)− v(s)), (4.14)

where θ lies between w(s) and v(s). Now for s ∈ [0, 1], both w(s) and v(s) lie in [a, b], giving
us a uniform bound on S′′(θ):

|S′′(θ)| ≤ max
w∈[a,b]

|S′′(w)| := B.
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We then find that
∣∣∣
(
Sn

j −
1
2
Ŝn−1

j−1 −
1
2
Ŝn−1

j+1

)
+

λ

2
(Qn−1

j+1 −Qn−1
j−1 )

∣∣∣

= |Φ(1)− Φ(0)|+O (|kn
j+1 − kn

j−1|)
≤ max

s∈[0,1]
|Φ′(s)|+O (|kn

j+1 − kn
j−1|).

(4.15)

Referring to (4.14) and (4.4), and recalling the CFL condition (2.6), we find that for s ∈ [0, 1],

|Φ′(s)| ≤ B|Un
j+1 − Un

j−1||w(s)− v(s)|

≤ B|Un
j+1 − Un

j−1|
(1

2
|Un

j+1 − Un
j−1|+

λ

2
‖fk‖∞|kn

j+1 − kn
j−1|

)

≤ B

2
(Un

j+1 − Un
j−1)

2 +
Bλ

2
‖fk‖∞|Un

j+1 − Un
j−1||kn

j+1 − kn
j−1|

≤ B
(1

2
+

λ

4
‖fk‖∞

)
(Un

j+1 − Un
j−1)

2 +
Bλ

4
‖fk‖∞(kn

j+1 − kn
j−1)

2

≤ B
(1

2
+

λ

4
‖fk‖∞

)
(Un

j+1 − Un
j−1)

2 +
Bλ

2
‖fk‖∞‖k‖∞|kn

j+1 − kn
j−1|.

(4.16)

Substituting this estimate into (4.15), it is now clear that the claim (4.12) holds.
Now by combining the estimate (4.12) with the first part of (4.5) and (2.2), we see that

|〈L∆
2,1, φ〉| ≤ C‖φ‖L∞(Ω), φ ∈ C0(Ω),

which yields the uniform bound

‖L∆
2,0‖M(Ω), ‖L∆

2,1‖M(Ω) ≤ C,

where M(Ω) = (Cc(Ω))∗ denotes the space of bounded measures on Ω. Sobolev’s imbedding
theorem gives M(Ω) ⊂ W−1,q2(Ω) with compact injection for any q2 ∈ (1, 2). Hence

{L∆
2,1

}
∆>0

is compact in W−1,q2(Ω), q2 ∈ (1, 2). (4.17)

To estimate 〈L∆
2,2, φ〉, we use Hölder’s inequality to get

|〈L∆
2,2, φ〉| ≤ ∆x−

1
2

{
∆x

N∑
n=1

∑

|j|≤J

j+n=even

(Sn−1
j−1 − Sn

j )2
} 1

2

×
{

N∑
n=1

∑

|j|≤J

j+n=even

( ∫ xj

xj−1

(φn
j − φ(x, tn)) dx

)2
} 1

2

.

Using (4.5), see also (4.7), and (2.2), we obtain

∆x

N∑
n=1

∑

|j|≤J

j+n=even

(Sn−1
j−1 − Sn

j )2 ≤ C∆x

N∑
n=1

∑

|j|≤J

j+n=even

{(Un
j − Un−1

j−1 )2 + (kn
j − kn−1

j−1 )2} ≤ C,
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so that
|〈L∆

2,2, φ〉| ≤ C‖φ‖Cα
0 (Ω)∆xα− 1

2 , φ ∈ Cα
0 (Ω), α ∈

(1
2
, 1

)
.

Similarly, we have

|〈L∆
2,3, φ〉|, |〈L∆

2,4, φ〉| ≤ C∆xα− 1
2 ‖φ‖Cα

0 (Ω), φ ∈ Cα
0 (Ω), α ∈

(1
2
, 1

)
.

Sobolev’s imbedding theorem gives W 1,p
0 (Ω) ⊂ Cα

0 (Ω) for α ∈ (
0, 1− 2

p

)
. Hence

|〈L∆
2,2, φ〉|, |〈L∆

2,3, φ〉|, |〈L∆
2,4, φ〉| ≤ C∆xα− 1

2 ‖φ‖W 1,p
0 (Ω)

for p > 2
2−α , α ∈ (

1
2 , 1

)
, that is,

‖L∆
2,2‖W−1,p(Ω), ‖L∆

2,3‖W−1,p(Ω), ‖L∆
2,4‖W−1,p(Ω) ≤ C∆xα− 1

2 → 0 as ∆ ↓ 0.

This implies that

{L∆
2,2 + L∆

2,3 + L∆
2,4}∆>0 is compact in W−1,q3(Ω) (4.18)

for q3 ∈
(
1, 2

1+α

)
, α ∈ (

1
2 , 1

)
.

Summing up, from (4.11), (4.17), and (4.18), it follows that the sequence of distribu-
tions {L∆}∆>0 is compact in W−1,q(Ω) for 1 < q := min(q0, q1, q2) < 2

1+α < 2. In addition,
since a ≤ u∆ ≤ b, {L∆}∆>0 is bounded in W−1,r(Ω) for any r > 1. From Lemma 3.3 we
conclude that {L∆}∆>0 is compact in W−1,2(Ω). This concludes the proof of the lemma
since Ω was an arbitrary bounded open subset of R× R+.

Now we come to our main convergence/existence theorem.

Theorem 4.1. (Convergence/Existence) Suppose (2.1)–(2.6) hold. Let u∆ = u∆(x, t)
be the Lax-Friedrichs approximate solution generated by (2.7), (2.8), (2.10) and (2.11). Pass-
ing if necessary to a subsequence, we have

u∆ → u in Lp
loc(R× R+) as ∆ ↓ 0, for any p < ∞,

and u ∈ L∞(R×R+) is a weak solution u of the Cauchy problem (1.1), i.e., u is a bounded
measurable function satisfying ∀φ ∈ D(R× [0,∞)),

∫

R+

∫

R
(uφt + f(k(x, t), u)φx) dx dt +

∫

R
u0(x)φ(x, 0) dx = 0. (4.19)

Proof. The strong Lp
loc-convergence of u∆ to a function u ∈ L∞(R × R+) follows

immediately from Lemma 4.4 and Lemma 3.2. It remains to prove that u is a weak solution.
Omitting the details, this can be done by taking S(u) = u, Q(k, u) = f(k, u) in the proof of
Lemma 4.4.

§ 5 . A Kružkov Type Entropy Inequality

In [14], we proposed a notion of entropy solution for (one-dimensional) degenerate
parabolic equations with coefficients that were only spatially dependent. We then showed L1

stability and uniqueness of entropy solutions, assuming that a certain crossing condition (see
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Section 6) is satisfied, and that the solution has traces along the jumps in the discontinuous
parameters. The key ingredient of the entropy concept in that paper is a generalization
of the classical Kružkov entropy inequality. That generalization includes new terms that
account for the contribution at each jump in the spatially discontinuous coefficients. In
this section, we introduce a version of that entropy inequality for (1.1), i.e., for the purely
hyperbolic problem when the coefficient is allowed to vary temporally as well as spatially.

Before proceeding, we make some additional regularity assumptions about the co-
efficient k(x, t). We basically assume that k is piecewise Lipschitz continuous in R ×
[0,∞). More specifically, we assume that there are finitely many Lipschitz continuous curves
ω1, ω2, · · · , ωM , whose union we denote

M⋃
m=1

ωm = Ω.

We assume that each curve ωm has a Lipschitz continuous parameterization in terms of t,
i.e.,

x = ξm(t), t ∈ [0,∞), ξm ∈ Lip([0,∞)), 1 ≤ m ≤ M. (5.1)

For such a curve ωm, we denote the speed of the discontinuity by

sm(t) =
d

dt
ξm(t),

which is well defined for a.e. t ∈ (0,∞). Note that we are not allowing any of the curves
ωm to have any horizontal segments in the x − t plane. For the sake of simplicity, we also
assume that none of the curves intersect. The curves ω1, · · · , ωM partition R × R+ \ Ω in
an obvious way into a finite union of open sets:

R× R+ \ Ω = R0 ∪R1 ∪ · · · ∪ RM ,

with the curve ωm separating the sets Rm−1 and Rm. We will assume that

k ∈ Lip(Rm), m = 1, · · · ,M.

With this assumption, k has well-defined limits from the right and left along each of the
curves ωm, 1 ≤ m ≤ M , and we denote these limits by k(ξ±m(t), t), respectively. By way of
simplifying the appearance of the equations, we will sometimes use the notation

k±m(t) := k(ξ±m(t), t).

With our additional regularity assumptions about the coefficient k, we can be more
specific about its discretization. In what follows, we will assume that k is discretized via

k∆(x, t) =
∑

n∈Z0
+

∑

j∈Z
j+n=even

χn
j (x, t)kn

j , kn
j = lim

x↓xj

k(xj , tn). (5.2)

This definition is a particular instance of the discretization originally defined by (2.10).

Definition 5.1. (Entropy Solution) A weak solution u(x, t) of the Cauchy problem
(1.1) is called an entropy solution if the following Kružkov-type entropy inequality holds for
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all c ∈ R and all test functions 0 ≤ ψ ∈ D(R× [0,∞)):
∫∫

R×R+

(|u− c|ψt + sign(u− c)(f(k, u)− f(k, c))ψx) dx dt

+
∫

R
|u0 − c|ψ(x, 0) dx−

∫∫

R×R+\Ω
sign(u− c)f(k(x, t), c)xψ dx dt

+
M∑

m=1

∫ ∞

0

|f(k+
m(t), c)− f(k−m(t), c)|ψ(ξm(t), t) dt ≥ 0.

(5.3)

We now demonstrate via a sequence of lemmas (culminating in Theorem 5.1) that
limit solutions constructed via the Lax-Friedrichs scheme are entropy solutions in the sense
of Definition 5.1 above. We begin with a discrete entropy inequality established in [14]
for the Engquist-Osher scheme. The calculation in that paper is easily adapted to our
Lax-Friedrichs algorithm, giving the following lemma, which we state without proof.

Lemma 5.1. For fixed c ∈ R, let F (k, u, c) := sign(u− c)(f(k, u)− f(k, c)) denote the
Kružkov entropy flux associated with the entropy |u−c|. The following cell entropy inequality
is satisfied by approximate solutions {Un

j } generated by the scheme (2.11):

|Un+1
j − c| ≤ 1

2
|Un

j+1 − c|+ 1
2
|Un

j−1 − c|

− λ

2
(F (kn

j+1, U
n
j+1, c)− F (kn

j−1, U
n
j−1, c))

− λ

2
sign(Un+1

j − c)(f(kn
j+1, c)− f(kn

j−1, c)).

(5.4)

The next lemma gives the simplified entropy condition that results when the test func-
tion has support that does not intersect any of the jump curves ω1, · · · , ωM .

Lemma 5.2. Let u(x, t) be a weak solution constructed as the limit of approximations
u∆ generated by the Lax-Friedrichs scheme, as in Theorem 4.1, and let c ∈ R. Let 0 ≤ ψ ∈
D(R× [0,∞) \ Ω). Then the following entropy inequality is satisified:

∫∫

R×R+

(|u− c|ψt + sign(u− c)(f(k, u)− f(k, c))ψx) dx dt

+
∫

R
|u0 − c|ψ(x, 0) dx +

∫∫

R×R+

sign(u− c)f(k(x, t), c)xψ dx dt ≥ 0.

(5.5)

Proof. Let ψ be a test function of the type described in the statement of the lemma,
and choose T > 0 and X > 0 such that for ∆x and ∆t sufficiently small,

supp(ψ) ⊆ [−X + 2∆x,X − 2∆x]× [0, T −∆t] ⊂ [−X, X]× [0, T ].

To simplify the notation, let V n
j = |Un

j − c|, Fn
j = F (kn

j , Un
j , c), with F defined in Lemma

5.1, and ψn
j = ψ(xj , tn). Multiplying (5.4) by ψn+1

j /∆t, and rearranging, we find that

1
2∆t

(V n+1
j − V n

j−1)ψ
n+1
j +

1
2∆t

(V n+1
j − V n

j+1)ψ
n+1
j +

1
2∆x

(Fn
j+1 − Fn

j−1)ψ
n+1
j

+
1

2∆x
sign(Un+1

j − c)(f(kn
j+1, c)− f(kn

j−1, c))ψ
n+1
j ≤ 0.

(5.6)
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We next multiply by 2∆x∆t, and then sum this inequality over {(j, n) |n ≥ 0, j + n + 1 =
even}, yielding Σ1 +Σ2 +Σ3 ≤ 0, where the Σi are defined in (5.7), (5.11), and (5.13) below.
We analyze separately the convergence of each of the sums Σ1, Σ2, Σ3. First, consider the
sum

Σ1 := 2∆x∆t
∑

n≥0

∑

j∈Z
j+n+1=even

1
2∆x

(Fn
j+1 − Fn

j−1)ψ
n+1
j . (5.7)

We replace ψn+1
j by ψn

j−1 and obtain

Σ1 = 2∆x∆t
∑

n≥0

∑

j∈Z
j+n+1=even

1
2∆x

(Fn
j+1 − Fn

j−1)ψ
n
j−1 + E1,

where
E1 := 2∆x∆t

∑

n≥0

∑

j∈Z
j+n+1=even

1
2∆x

(Fn
j+1 − Fn

j−1)(ψ
n+1
j − ψn

j−1).

We claim that E1 → 0 as ∆ → 0. Clearly

|ψn+1
j − ψn

j−1| ≤ ‖ψx‖∞∆x + ‖ψt‖∞∆t,

and so with the notation

F̂ (x, t) = F (k(x, t), u(x, t), c), F̂∆(x, t) = F (k∆(x, t), u∆(x, t), c),

we have the following bound for E1:

E1 ≤ 1
2
(‖ψx‖∞ + λ‖ψt‖∞)

∫ T

0

∫ X

−X

|F̂∆(x + 2∆x, t)− F̂∆(x, t)| dx dt. (5.8)

We use the triangle inequality to estimate this last integral:
∫ T

0

∫ X

−X

|F̂∆(x + 2∆x, t)− F̂∆(x, t)| dx dt

≤
∫ T

0

∫ X

−X

|F̂∆(x + 2∆x, t)− F̂ (x + 2∆x, t)| dx dt

+
∫ T

0

∫ X

−X

|F̂ (x + 2∆x, t)− F̂ (x, t)| dx dt

+
∫ T

0

∫ X

−X

|F̂ (x, t)− F̂∆(x, t)| dx dt.

(5.9)

Since F is Lipshitz-continuous, convergence in Lp
loc(R × R+) of k∆ and u∆ implies that

F̂∆ → F̂ in Lp
loc(R×R+). Thus, the first and third integrals on the right hand side of (5.9)

converge to zero as ∆ → 0. By a standard fact from real analysis, the second integral also
converges to zero, and so we see that also E1 → 0. By using summation by parts, along
with the bounded convergence theorem, it is now evident that

Σ1 → −
∫∫

R×R+

F (u, k, c)ψx dx dt. (5.10)



THE LAX-FRIEDRICHS SCHEME FOR DISCONTINUOUS FLUX PROBLEMS 307

Next, consider the sum

Σ2 := 2∆x∆t
∑

n≥0

∑

j∈Z
j+n+1=even

( 1
2∆t

(V n+1
j − V n

j−1)ψ
n+1
j +

1
2∆t

(V n+1
j − V n

j+1)ψ
n+1
j

)

= ∆x∆t
∑

n≥0

∑

j∈Z
j+n+1=even

−1
∆t

(V n
j−1(ψ

n+1
j − ψn

j−1) + V n
j+1(ψ

n+1
j − ψn

j+1))

+ 2∆x
∑

j∈Z
j+1=even

(V 0
j−1 + V 0

j+1

2

)
ψ1

j

= −2∆x∆t
∑

n≥0

∑

j∈Z
j+n+1=even

V n
j+1

( 1
2ψn+1

j + 1
2ψn+1

j+2 − ψn
j+1

∆t

)

+ 2∆x
∑

j∈Z
j+1=even

(V 0
j−1 + V 0

j+1

2

)
ψ1

j .

(5.11)

The quantity in parentheses in the first sum on the last line is equal to ψt(xj+1, t
n)+O(∆2),

and so an application of the bounded convergence theorem gives

Σ2 → −
∫∫

R×R+

|u− c|ψt dx dt−
∫

R
|u0 − c|ψ(x, 0) dx. (5.12)

Finally, we address the sum

Σ3 := 2∆x∆t
∑

n≥0

∑

j∈Z
j+n+1=even

1
2∆x

sign(Un+1
j − c)(f(kn

j+1, c)− f(kn
j−1, c))ψ

n+1
j . (5.13)

By the fact that k is Lipschitz continuous within the support of ψ, we find (by applying
Lemma 4.3 of [14]) that there is a set Θ which is at most countable such that for c ∈ R \Θ,

Σ3 →
∫∫

R×R+

sign(u− c)f(k(x, t), c)xψ dx dt. (5.14)

Combining (5.10), (5.12), and (5.14), we conclude that (5.5) holds for c ∈ R\Θ. To complete
the proof, we must show that (5.5) actually holds for all c ∈ R. For this, we can proceed as
in the proof of Lemma 4.4 of [14], to which we refer the interested reader.

Lemma 5.3. Let u(x, t) be a weak solution constructed as the limit of approximations
u∆ generated by the Lax-Friedrichs scheme, as in Theorem 4.1. Let 0 ≤ ψ ∈ D(R× [0,∞)).
Then the following entropy inequality is satisfied for all c ∈ R:

∫∫

R×R+

(|u− c|φt + sign(u− c)(f(k, u)− f(k, c))ψx) dx dt

+
∫

R
|u0 − c|ψ(x, 0) dx +

∫∫

R×R+\Ω
|f(k(x, t), c)x|ψ dx dt

+
M∑

n=1

∫ ∞

0

|f(k+
m(t), c)− f(k−m(t), c)|ψ(ξm(t), t) dt ≥ 0.

(5.15)
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Proof. For now, assume that the support of ψ intersects at most one of the curves,
say ωm, but none of the other jump curves.

Our starting point is the following cell entropy inequality, which is a simple consequence
of the cell entropy inequality (5.4).

|Un+1
j − c| ≤ 1

2
|Un

j+1 − c|+ 1
2
|Un

j−1 − c|

− λ

2
(F (kn

j+1, U
n
j+1, c)− F (kn

j−1, U
n
j−1, c))

+
λ

2
|f(kn

j+1, c)− f(kn
j−1, c)|.

(5.16)

Proceeding as in the proof of Lemma 5.2, we multiply the entropy inequality (5.16) by
ψn+1

j /∆t, rearrange, then multiply by 2∆x∆t, and sum over the set {(j, n) |n ≥ 0, j+n+1 =
even}, resulting in Σ1 + Σ2 + Σ̃3 ≤ 0, where Σ1 and Σ2 are defined by (5.7) and (5.11), and

Σ̃3 := 2∆x∆t
∑

n≥0

∑

j∈Z
j+n+1=even

∣∣∣f(kn
j+1, c)− f(kn

j−1, c)
2∆x

∣∣∣ψn+1
j . (5.17)

We can repeat the arguments used in Lemma 5.2 to show that

Σ1 → −
∫∫

R×R+

sign(u− c)(f(k, u)− f(k, c))ψx dx dt−
∫

R
|u0 − c|ψ(x, 0) dx, (5.18)

Σ2 → −
∫∫

R×R+

|u− c|ψt dx dt. (5.19)

We now address the sum Σ̃3. Due to our regularity assumptions and method of dis-
cretizing k, there is a unique index j0 = j0(n) such that

xj0−1 < ξm ≤ xj0+1

and

|k−m(tn)− kn
j0−1| ≤ 2∆x‖kx‖L∞(R×R+\Ω),

|k+
m(tn)− kn

j0+1| ≤ 2∆x‖kx‖L∞(R×R+\Ω).
(5.20)

Next, we write Σ̃3 in the form

Σ̃3 : = 2∆x∆t
∑

n≥0

∣∣∣f(kn
j0+1, c)− f(kn

j0−1, c)
2∆x

∣∣∣ψn+1
j0

+ 2∆x∆t
∑

n≥0

∑

j<j0
j+n+1=even

∣∣∣f(kn
j+1, c)− f(kn

j−1, c)
2∆x

∣∣∣ψn+1
j

+ 2∆x∆t
∑

n≥0

∑

j>j0
j+n+1=even

∣∣∣f(kn
j+1, c)− f(kn

j−1, c)
2∆x

∣∣∣ψn+1
j

=: Σ̃31 + Σ̃32 + Σ̃33.

(5.21)



THE LAX-FRIEDRICHS SCHEME FOR DISCONTINUOUS FLUX PROBLEMS 309

By applying the bounded convergence theorem, we obtain

Σ̃32 + Σ̃33 →
∫∫

R×R+\ωm

|f(k(x, t), c)x|ψ dx dt. (5.22)

Recalling (5.20), we can write Σ̃31 in the form

Σ̃31 = ∆t
∑

n≥0

|f(k+
m(tn), c)− f(k−m(tn), c)|ψn+1

j0
+ E2(∆x),

where
|E2(∆x)| ≤ 4T‖fk‖∞‖kx‖L∞(R×R+\Ω)‖ψ‖∞∆x.

From this it is clear that as ∆ → 0,

Σ̃31 →
∫ ∞

0

|f(k+
m(t), c)− f(k−m(t), c)|ψ(ξm(t), t) dt. (5.23)

By combining (5.18), (5.19), (5.22), and (5.23), we conclude that the desired entropy in-
equality (5.15) holds in the case where the support of ψ intersects only one jump curve.

For the general case, we can decompose the test function 0 ≤ ψ ∈ D(R × [0,∞))
according to

ψ = ψ1 + · · ·+ ψM , 0 ≤ ψm ∈ D(R× [0,∞)), m = 1, · · · ,M,

where supp(ψm) possibly intersects ωm, but none of the other jump curves. By the preceding
argument, the entropy inequality (5.15) holds for each ψm separately. By adding each of
the resulting entropy inequalities, we then conclude that (5.15) holds for ψ.

Theorem 5.1. Suppose (2.1)–(2.6) hold, and that k satisfies the additional regularity
conditions described at the beginning of this section. Let u∆ = u∆(x, t) be the Lax-Friedrichs
approximate solution generated by (2.7), (2.8), and (2.11), using (5.2) to discretize k. Let
u : R×R+ → R be a weak solution constructed as the limit of a subsequence of the approxi-
mations u∆, as in Theorem 4.1. Then u is an entropy solution.

Proof. Let 0 ≤ ψ ∈ D(R × [0,∞)). For ε > 0, define the tube ωε
m of width 2ε

containing the curve ωm:

ωε
m := {(x, t) ∈ R× [0,∞) | x ∈ (ξm(t)− ε, ξm(t) + ε), t ∈ [0,∞)}.

For each sufficiently small ε > 0, we can write the test function ψ as a sum of two test
functions, one having support away from the set Ω, and the other with support in the
vicinity of Ω. Concretely, there are test functions ρε, σε ∈ D(R× [0,∞)) such that

ψ(x, t) = ρε(x, t) + σε(x, t), 0 ≤ ρε(x, t) ≤ ψ(x, t), 0 ≤ σε(x, t) ≤ ψ(x, t),

where ρε has support located around the jumps in k:

supp(ρε) ⊆ ωε
1 ∪ · · · ∪ ωε

M ,

ρε(ξm(t), t) = ψ(ξm(t), t), m = 1, · · · , M, ε > 0,

and σε vanishes around the jumps in k, i.e.,

supp(σε) ⊆ (R× [0,∞) \ Ω).
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We can accomplish this decomposition in such a way that

σε → ψ in L1(R× R+), ρε → 0 in L1(R× R+). (5.24)

By applying Lemma 5.2 with the test function σε, we obtain
∫∫

R×R+

(|u− c|σε
t + sign(u− c)(f(k, u)− f(k, c))σε

x) dx dt

+
∫

R
|u0(x)− c|σε(x, 0) dx−

∫∫

R×R+\Ω
sign(u− c)f(k(x, t), c)x σε dx dt ≥ 0.

(5.25)

Similarly, an application of Lemma 5.3 with the test function ρε yields
∫∫

R×R+

(|u− c|ρε
t + sign(u− c)(f(k, u)− f(k, c))ρε

x) dx dt

+
∫

R
|u0(x)− c|ρε(x, 0) dx +

∫∫

R×R+\Ω
|f(k(x, t), c)x|ρε dx dt

+
M∑

m=1

∫ ∞

0

|f(k(ξ+
m(t), t), c)− f(k(ξ−m(t), t), c)|ρε(ξm(t), t) dt ≥ 0.

(5.26)

We now add the two entropy inequalities (5.25) and (5.26), using ρε + σε = ψ, along
with ρε(ξm(t), t) = ψ(ξm(t), t) to get

∫∫

R×R+

(|u− c|ψt + sign(u− c)(f(k, u)− f(k, c))ψx) dt dx

+
∫

R
|u0(x)− c|ψ(x, 0) dx +

∫∫

R×R+\Ω
|f(k, c)x|ρε dt dx

−
∫∫

R×R+

sign(u− c)f(k, c)xσε dt dx

+
M∑

m=1

∫ ∞

0

|f(k+
m(t), c)− f(k−m(t), c)|ψ(ξm(t), t) dt ≥ 0.

(5.27)

Thanks to (5.24), we complete the proof by sending ε ↓ 0 in (5.27).

§ 6 . A Uniqueness Result

As we mentioned previously, in [14] we proved L1 stability and uniqueness of entropy
solutions, assuming that the coefficient was independent of time. In this section we indicate
how those results can be extended to the situation considered here, i.e., k(x, t) depends on
both space and time. Throughout this section we continue to assume that k satisfies the
additional regularity conditions described at the beginning of Section 5.

As in [14], we impose a so-called crossing condition on the flux at each discontinuity
in k. By way of describing that condition, fix a jump in k(x, t) located at a point (ξm(t), t)
on one of the curves ωm, 1 ≤ m ≤ M . Let us temporarily suppress the dependence on time,
writing k∓m := k∓m(t), and observe that the graphs of u 7→ f(k−m, u) and u 7→ f(k+

m, u) can
cross. For such a crossing, we make the following assumption:
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Assumption 6.1. (Crossing Condition) For any jump in k with associated left and
right limits (k−m, k+

m), we require that for any states u and v, the following crossing condition
must hold:

f(k+
m, u)− f(k−m, u) < 0 < f(k+

m, v)− f(k−m, v) =⇒ u < v. (6.1)

Geometrically, the crossing condition requires that either the graphs of f(k−m, ·) and
f(k+

m, ·) do not cross, or if they do, the graph of f(k−m, ·) lies above the graph of f(k+
m, ·)

to the left of any crossing point. As mentioned in [14], our crossing condition rules out
some physically important examples. Nevertheless, there are also important cases where the
crossing condition is satisfied. One example is the clarifier-thickener model (see [3]), which
includes a nontrivial flux crossing that satisfies the crossing condition. Of course, in the
multiplicative case f(k, u) = kf(u) there is no flux crossing, and Assumption 6.1 is trivially
satisfied.

Remark 6.1. We impose the crossing condition only because the entropy inequality
(5.3) is not sufficient to guarantee uniqueness when the crossing condition is violated. We do
not intend to convey that only problems satisfying the crossing condition are well posed. In a
forthcoming paper [15] we will augment the entropy condition in such a way that uniqueness
is assured whether or not the crossing condition is satisfied.

One more technical issue is the existence of traces along the discontinuity curves ωm,
m = 1, · · · ,M . We make the following assumption.

Assumption 6.2. Let u be an entropy solution of (1.1). For m = 1, · · · ,M , suppose u

admits strong right and left traces along each curve ωm. We denote these traces by u±m(t) :=
u(ξ±m(t), t), respectively, and suppose u±m(·) ∈ L∞(ωm). Hence, for any T > 0,

ess lim
ε↓0

∫ T

0

|u(ξm(t)± ε, t)− u±m(t)| dt = 0, m = 1, · · · ,M.

In [14], we showed in some important examples that with the additional assumption
that ∂tu is a Radon measure, it is possible to demonstrate the existence of traces directly
from the fact that u is an entropy solution. Another instance where we automatically have
the existence of strong traces is when k(x, t) is constant on each region Rm, m = 1, · · · ,M .
This is due to the genuinely nonlinearity assumption (2.4), which induces a regularizing
effect at the boundary of each Rm. This is a consequence of a general result by Vasseur [36].

Lemma 6.1. For m = 1, · · · ,M , suppose Rm is an open set with a regular Lipschitz
boundary. Let u be an entropy solution to the Cauchy problem (1.1). Suppose

k(x, t) = km ∈ R, ∀ (x, t) ∈ Rm, m = 1, · · · ,M. (6.2)

Then u admits strong (right and left) traces u±m(t) along each curve ωm, m = 1, · · · ,M .
Moreover, u admits a strong trace at t = 0+, so that the initial condition u|t=0 = u0

is satisfied in the strong L1
loc sense.

Proof. The proof is simply to observe that we can apply [36, Theorem 1], since
Definition 5.1 implies that u satisfies





ut + f(km, u)t = 0, η(u)t + q(km, u)x ≤ 0, in Rm,

∀ η ∈ C2(R), η′′ ≥ 0, qu(km, u) = η′(u)fu(km, u),
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and Rm is an open set with a regular Lipschitz boundary, m = 1, · · · , M .

Lemma 6.1 can probably be extended to the case where k(x, t) varies smoothly on each
Rm by replacing the kinetic approach used in [36] by the compensated compactness method
used herein, but this is outside the scope of the present paper. Here we simply assume the
existence of traces in the general case (Assumption 6.2).

Turning now to the goal of establishing uniqueness, we have the following lemma, which
provides the Rankine-Hugoniot jump condition and the entropy jump condition along the
curves ωm, for 1 ≤ m ≤ M .

Lemma 6.2. Let u be an entropy solution. Fix one of the discontinuity curves ωm,
m = 1, · · · ,M . The following Rankine-Hugoniot condition holds for almost all t ∈ R+:

f(k+
m(t), u+

m(t))− f(k−m(t), u−m(t)) = sm(t)[u+
m(t)− u−m(t)], (6.3)

and the following entropy jump condition holds for almost all t ∈ R+ and for every c ∈ R:

F (k+
m(t), u+

m(t), c)− F (k−m(t), u−m(t), c)− sm(t)[|u+
m(t)− c| − |u−m(t)− c|]

≤ |f(k+
m(t), c)− f(k−m(t), c)|.

(6.4)

Proof. We begin with the proof of (6.3). First, let us define the following compactly
supported Lipschitz function (ε > 0)

θε(x) =





1
ε
(ε + x), if x ∈ [−ε, 0],

1
ε
(ε− x), if x ∈ [0, ε],

0, if |x| ≥ ε.

(6.5)

Then, since u(x, t), k(x, t) ∈ L∞(R× R+), a density argument reveals that

φ(x, t) = θε(x− ξm(t))ϕ(t), ϕ ∈ D(0, T )

can be used as an admissible test function in the weak formulation (4.19). The result is
∫ ∞

0

∫

R
u(θε(x− ξm(t))ϕ′(t)− sm(t)θ′ε(x− ξm(t))ϕ(t)) dt dx

+
1
ε

∫ ∞

0

∫ ξm(t)

ξm(t)−ε

f(k(x, t), u)ϕ(t) dx dt

− 1
ε

∫ ∞

0

∫ ξm(t)+ε

ξm(t)

f(k(x, t), u)ϕ(t) dx dt = 0.

(6.6)

Here we have used the fact that for a.e. t ∈ R+,

∂tφ(x, t) = θε(x− ξm(t))ϕ′(t)− sm(t)θ′ε(x− ξm(t))ϕ(t).

As ε ↓ 0 the integrals on the second and third lines of (6.6) converge according to

1
ε

∫ ∞

0

∫ ξm(t)

ξm(t)−ε

f(k(x, t), u)ϕ(t) dx dt →
∫ ∞

0

f(k−m(t), u−m(t))ϕ(t) dt,

1
ε

∫ ∞

0

∫ ξm(t)+ε

ξm(t)

f(k(x, t), u)ϕ(t) dx dt →
∫ ∞

0

f(k+
m(t), u+

m(t))ϕ(t) dt.

(6.7)
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For the integral on the first line of (6.6),
∫ ∞

0

∫

R
u(x, t)(θε(x− ξm(t))ϕ′(t)− sm(t)θ′ε(x− ξm(t))ϕ(t)) dt dx

=
∫ ∞

0

∫

R
u(x, t)θε(x− ξm(t))ϕ′(t) dt dx

−
∫ ∞

0

∫ ξm(t)

ξm(t)−ε

sm(t)u(x, t)ϕ(t) dx dt +
∫ ∞

0

∫ ξm(t)+ε

ξm(t)

sm(t)u(x, t)ϕ(t) dx dt.

(6.8)

When ε ↓ 0, the first integral on the right hand side of (6.8) converges to zero, while the
remaining integrals converge to

∫ ∞

0

(−sm(t)u+
m(t) + sm(t)u−m(t))ϕ(t) dt. (6.9)

By combining these limits, it is evident that when ε ↓ 0 in (6.6), the result is
∫ ∞

0

(f(k+
m(t), u+

m(t))− f(k−m(t), u−m(t))− sm(t)u+
m(t) + sm(t)u−m(t))ϕ(t) dt = 0.

Since ϕ is an arbitrary test function on (0,∞), the integrand must vanish for a.e. t ∈ (0,∞),
and the proof of (6.3) is complete.

To prove (6.4), we use the test function φ in the entropy inequality (5.3). The result is
∫ ∞

0

∫

R
|u− c|(θε(x− ξm(t))ϕ′(t)− sm(t)θ′ε(x− ξm(t))ϕ(t)) dt dx

+
1
ε

∫ ∞

0

∫ ξm(t)

ξm(t)−ε

sign(u− c)(f(k(x, t), u)− f(k(x, t), c)) ϕ(t) dx dt

− 1
ε

∫ ∞

0

∫ ξm(t)+ε

ξm(t)

sign(u− c)(f(k(x, t), u)− f(k(x, t), c)) ϕ(t) dx dt

−
∫∫

R×R+\Ω
sign(u− c)f(k(x, t), c)xφdx dt

+
∫ ∞

0

|f(k(ξ+
m, t), c)− f(k(ξ−m, t), c)|ϕ(t) dt ≥ 0.

(6.10)

Since θε → 0 in L1(R) as ε ↓ 0, we have
∫∫

R×R+\Ω
sign(u− c)f(k(x, t), c)xφ dx dt → 0.

With this in mind, the proof of (6.4) can be completed in a manner similar to the proof of
(6.3), and so the details are omitted.

By combining the jump conditions (6.3) and (6.4), we get geometric entropy conditions,
which we state in the next lemma.

Lemma 6.3. Let u be an entropy solution. Fix one of the curves of discontinuity, say
ωm, 1 ≤ m ≤ M . Fix a time t ∈ R+ where sm(t) and the right and left traces u±m(t) exist.
Suppressing the dependence on time, let

u∓m = u∓m(t), k∓m = k∓m(t), sm(t) = sm.

The appropriate inequality in Table 1 holds for all c lying between u−m and u+
m.
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Table 1. Entropy Jump Conditions

f(k−m, c) ≤ f(k+
m, c) f(k−m, c) ≥ f(k+

m, c)

u−m ≤ c ≤ u+
m f(k+

m, u+
m) + sm(c− u+

m) ≤ f(k+
m, c) f(k−m, u−m) + sm(c− u−m) ≤ f(k−m, c)

u+
m ≤ c ≤ u−m f(k−m, u−m) + sm(c− u−m) ≥ f(k−m, c) f(k+

m, u+
m) + sm(c− u+

m) ≥ f(k+
m, c)

Proof. Let c be a constant lying between u−m and u+
m. With our simplified notation,

the Rankine-Hugoniot condition and entropy jump conditions boil down to

f(k+
m, u+

m)− f(k−m, u−m) = sm(u+
m − u−m), (6.11)

and

F (k+
m, u+

m, c)− F (k−m, u−m, c)− sm(|u+
m − c| − |u−m − c|) ≤ |f(k+

m, c)− f(k−m, c)|. (6.12)

Now consider the case in the upper left entry of Table 1, i.e., u−m ≤ c ≤ u+
m, f(k−m, c) ≤

f(k+
m, c). Assume for now that c ∈ (u−m, u+

m). In this case, the inequality (6.12) becomes

f(k+
m, u+

m)− f(k+
m, c) + f(k−m, u−m)− f(k−m, c)

≤ sm(u+
m − c + u−m − c) + f(k+

m, c)− f(k−m, c).

Cancelling f(k−m, c) from both sides, then applying the Rankine-Hugoniot condition (6.11),
and finally dividing by two, gives the upper left entry in the table,

f(k+
m, u+

m) + sm(c− u+
m) ≤ f(k+

m, c). (6.13)

Now assume that c coincides with one of the endpoints, say c = u+
m, the case where

c = u−m being similar. Then the inequality (6.12) becomes

f(k−m, u−m)− f(k−m, c) ≤ sm(u−m − c) + f(k+
m, c)− f(k−m, c).

Cancelling f(k−m, c) from both sides, and using the Rankine-Hugoniot condition (6.11) again
gives

f(k+
m, u+

m) ≤ f(k+
m, c).

With the assumption that c = u+
m, we have sm(c− u+

m) = 0, and so (6.13) holds in this case
also.

The other three entries in Table 1 are derived in an analogous way, and so we omit
their proofs.

We are now in a position to prove our main uniqueness theorem.

Theorem 6.1. Suppose that (2.1)–(2.4) hold, and that the coefficient k(x, t) satisfies
the additional regularity assumptions described in Section 5. Let v and u be two entropy
solutions to the Cauchy problem (1.1) with initial data v0, u0 ∈ L∞(R), respectively. If
f satisfies the crossing condition (Assumption 6.1), and we assume the existence of traces
(Assumption 6.2) then, for a.e. t > 0,

∫ r

−r

|v(x, t)− u(x, t)| dx ≤ C

∫ r+‖fu‖t

−r−‖fu‖t
|v0(x)− u0(x)| dx, ∀ r ∈ R (6.14)

for some finite constant C > 0. If k(x, t) is piecewise constant, i.e., (6.2) holds, then C = 1.
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Proof. Let F be the Kružkov entropy flux defined in Lemma 5.1. Following [14], we
can use the Kružkov method to prove that for any 0 ≤ ψ ∈ D(R× R+),

−
∫∫

ΠT

(|v − u|ψt + F (k(x, t), v, u)ψx) dt dx

≤ C

∫∫

ΠT

|v − u|ψ dt dx +
M∑

m=1

∫ ∞

0

[F (k(x, t), v, u)− sm(t)|v − u|]x=ξ+
m

x=ξ
−
m

ψ dt

(6.15)

for some constant C depending on f , and kx away from discontinuities. Here the notation
indicates limits from the right and left at x = ξm, which exist by assumption. Following the
proof of Theorem 4.1 of [14], we must show that

M∑
m=1

∫ ∞

0

[F (k(x, t), v, u)− sm(t)|v − u|]x=ξ+
m

x=ξ
−
m

ψ dt ≤ 0. (6.16)

It suffices to show that for each fixed m ∈ {1, · · · , M}, and for a.e. t ∈ R+,

Sm(t) := F (k(ξ+
m(t), t), v(ξ+

m(t), t), u(ξ+
m(t), t))

− F (k(ξ−m(t), t), v(ξ−m(t), t), u(ξ−m(t), t))

− sm(t)|v(ξ+
m(t))− u(ξ+

m(t))|+ sm(t)|v(ξ−m(t))− u(ξ−m(t))| ≤ 0.

(6.17)

To this end, fix m ∈ {1, · · · ,M}, and fix a time t ∈ R+ where all of the relevant right and
left limits exist. With the simplifying notation

k∓ = k(ξ∓m(t), t), v∓ = v(ξ∓m(t), t), u∓ = u(ξ∓m(t), t), sm(t) = s, Sm(t) = S, (6.18)

Sm(t) becomes

Sm(t) := S = F (k+, v+, u+)− F (k−, v−, u−)− s|v+ − u+|+ s|v− − u−|. (6.19)

To show that S ≤ 0, we proceed as in the proof of Theorem 4.1 of [14]. The proof in that
paper applies to the case where all of the curves ωm are vertical lines in the x − t plane,
i.e. the discontinuity speed satisifies s ≡ 0. We will show that the present problem can be
reduced to the case where s ≡ 0. Keeping in mind that we are focused on a fixed point (x, t)
located on a fixed discontinuity curve ωm, we start by introducing the modified flux,

f̂(k, u) := f(k, u)− su,

and the associated entropy flux,

F̂ (k, u, c) := sign(u− c)(f̂(k, u)− f̂(k, c)) = F (k, u, c)− s|u− c|.

A glance at Definition 6.1, and in particular (6.1), reveals that the original flux f and
the modified flux f̂ have exactly the same crossings (or lack thereof). In addition, our
assumption that the crossing condition is satisfied for f implies the same for f̂ . In terms of
F̂ , the quantity S becomes

S = F̂ (k+, v+, u+)− F̂ (k−, v−, u−), (6.20)
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Table 2. Entropy Jump Conditions in Terms of f̂

f̂(k−, c) ≤ f̂(k+, c) f̂(k−, c) ≥ f̂(k+, c)

u− ≤ c ≤ u+ f̂(k+, u+) ≤ f̂(k+, c) f̂(k−, u−) ≤ f̂(k−, c)

u+ ≤ c ≤ u− f̂(k−, u−) ≥ f̂(k−, c) f̂(k+, u+) ≥ f̂(k+, c)

i.e., the same quantity appearing in the proof of Theorem 4.1 of [14], except without the
diffusion terms. In terms of f̂ , Table 1 of this paper becomes Table 2, which is the same as
Table 1 of [14] without the diffusion terms.

Ignoring the diffusion terms that appear in [14], we can now retrace the steps of the
proof of Theorem 4.1 of that paper, allowing us to complete the present proof.

By combining the convergence theorem (Theorem 4.1) and the uniqueness theorem
(Theorem 6.1), we have the following well-posedness result.

Theorem 6.2. Assume
(1) that (2.1)–(2.6) hold,
(2) that the additional regularity conditions for k stated in Section 5 are satisfied,
(3) that f satisfies the crossing condition (Assumption 6.1), and
(4) that traces exist (Assumption 6.2).

Then a unique entropy solution to the Cauchy problem (1.1) exists, and the solution depends
continuously (in the L1 norm) on the initial data. The entire computed sequence of approx-
imations {u∆} generated by the Lax-Friedrichs scheme given by (2.7), (2.8), (2.11), (5.2)
converges to the unique entropy solution u.

Remark 6.2. If k(x, t) is piecewise constant, i.e., (6.2) holds, then the assumption (4)
in Theorem 6.2 is automatically fulfilled thanks to Lemma 6.1.

§ 7 . A Final Remark About Uniqueness

Our uniqueness theorem (Theorem 6.1) was established under the so-called crossing
condition (Assumption 6.1). If there is a flux crossing (or in fact, just an intersection of the
two flux curves) associated with a jump in k, say at ξm, then it is possible for the solution u

to be continuous across the jump, i.e., u−m = u+
m. In that case, both the Rankine-Hugoniot

condition (6.11) and the entropy jump condition (6.12) hold trivially, as do the conditions
listed in Table 1. We emphasize that our entropy theory does not impose any additional
condition on the solution in this situation, and that such solutions are thus admissible under
our definition of entropy solution. In this regard, our entropy theory is somewhat different
from that of Adimurthi, Gowda, and Jaffre [1], who require that a certain characteristic
condition hold even if the solution u is continuous at a jump in k. In particular, there
are situations where their entropy solution theory rules out continuous solutions that are
admissible under our entropy theory. The main application discussed in [1] is flow in porous
media, and evidently a more compressive solution is appropriate in that setting, based on
physical considerations. One application that has been of great interest to us is the clarifier-
thickener model [2, 3]. In this setting, where we have a jump in k due to a source term giving
rise to diverging flows, our entropy solution theory seems appropriate.
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We defer to [15] a more detailed discussion of the relationship between our entropy
condition and the characteristic condition mentioned above. For now, we merely note that
the characteristic condition of Adimurthi, Gowda, and Jaffre is enforced by our entropy con-
ditions, except in the case above where the flux curves intersect and u−m = u+

m. In particular,
if the flux curves f(k−m, u) and f(k+

m, u) do not intersect, our entropy conditions imply the
characteristic condition of Adimurthi, Gowda, and Jaffre. Finally, let us mention that Kaass-
chieter [10] proposes essentially the same characteristic condition as Adimurthi, Gowda, and
Jaffre, but he assumes that the flux curves f(k−m, u) and f(k+

m, u) do not intersect, and so
his entropy theory is consistent with the one proposed herein.

Acknowledgement. The authors thank Siddhartha Mishra for helping them to un-
derstand the entropy condition of [1].
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[24] Murat, F., Compacité par compensation, II, in Proceedings of the International Meeting on Recent
Methods in Nonlinear Analysis, Rome, 1978, Bologna, Pitagora, 1979, 245–256.
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