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UNCONDITIONAL CAUCHY SERIES AND
UNIFORM CONVERGENCE ON MATRICES

A. AIZPURU* A. GUTIERREZ-DAVILA**

Abstract

The authors obtain new characterizations of unconditional Cauchy series in terms
of separation properties of subfamilies of P(N), and a generalization of the Orlicz-Pettis
Theorem is also obtained. New results on the uniform convergence on matrices and
a new version of the Hahn-Schur summation theorem are proved. For matrices whose
rows define unconditional Cauchy series, a better sufficient condition for the basic
Matrix Theorem of Antosik and Swartz, new necessary conditions and a new proof of
that theorem are given.
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§1. Introduction

In the literature, many applications of the Basic Matrix Theorem of [3] to problems of
measure theory and Banach spaces theory have been found (see [10, 8], etc.) In this paper,
we generalize several results that appear in [10, 5-7] and obtain new characterizations of
unconditional Cauchy series (uca) in terms of separation properties of subfamilies of P(N)
and a generalization of the Orlicz-Pettis Theorem. For other interesting generalizations of
this theorem, we refer the reader to [11, 12]. In this paper, Wu Junde and Lu Shijie ob-
tain a generalization which considers a dual pair [X,Y] and replaces the subseries-o(X,Y)
convergence (or, equivalently, the mo-multiplier-o(X,Y) convergence, where mq denotes the
scalar-valued sequence space which satisfies that for each (¢;); € mo {t;: ¢ € N} is a fi-
nite set) by the Ad-multiplier-o(X,Y") convergence, where \ is a scalar-valued sequence space
which has the S-WGHP and contains cpp. Wu Junde and Lu Shijie [12] prove that these
assumptions imply the A-7(X,Y)-multiplier convergence of a series in X, where 7(X,Y) de-
notes the Mackey topology. The paper shows the A-multiplier convergence of series depends
completely upon the AK-property of A.

The mentioned separation properties let us prove new version of interesting results on
the uniform convergence on matrices. The main result of [7] follows at once from the new
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version of the Hahn-Schur summation theorem that we prove in this paper. For matrices
whose rows are unconditional Cauchy series, the case more frequently found in applications,
we improve some sufficient conditions for the Basic Matrix Theorem. We also prove some
new necessary conditions for that theorem. As a consequence, we give a proof of this theorem
and of the converse result.

Although this paper is developed in the framework of normed space theory, most of
the results can be extended, with some warnings, to Abelian topological groups.

Our Theorem 2.1, Lemma 2.1 and Theorem 2.2 are contained in [2], although they are
proved here with a different technic. We include it for the sake of completeness.

§ 2. Unconditional Cauchy Series

Let us denote by ¢o(N) the family of finite subsets of N. Let us suppose that F is a
Boolean algebra such that ¢o(N) C F C P(N) and F has the Vitali-Hahn-Saks property (see

[9]). Let X be a Banach space and let Y x; be a series in X such that > x; is convergent,
€N i€EA
for A € F. It can be proved (see [1]), that > x; is unconditionally convergent (uco).
ieN
If > x; is a series in X such that for any disjoint sequence (A4;); in ¢o(N), there exists
€N
an infinite set M C N such that > x; is convergent, for A = U A;, then > ax; is uco (see
e ieM

[3,7)).

In what follows, we obtain some new characterizations of unconditional Cauchy series.
Some characterizations of uco series can be found in ([10,12]).

Theorem 2.1. Let > x; be a series in a normed space X. The following properties
i

are equivalent:

(i) The series > x; is uca.

i

(ii) For any pair [(A;)i, (B;):] of disjoint sequences of mutually disjoint elements of

d0(N), there exists B C N and an infinite set M C N such that > x; is of Cauchy, A; C B
i€B

and B; C B¢ forie M.

Proof. Since any uca series is a Cauchy subseries, it is clear that (i)=-(ii). Let us
suppose that (ii) is true and that (i) is false. There exist £ > 0 and a sequence (F},), in
¢o(N) with sup F,, < inf Fj,41 and || > a;|| > ¢ for n € N. Let Ay = {inf F}, inf F}, +

e F,
1, --+, sup Fi} and By = A\ F}, for k € N. By (ii), there exists B C N and an infinite set
M C N such that > x; is a Cauchy series, F; C B and B; C B¢ for i € M. It is obvious
i€B
that >zl =] X wi|| > e, k€ M. This contradicts (ii).
i€BNA, i€F),

Corollary 2.1. Let Y x; be a series in a normed space X. The following properties
i
are equivalent:

(i) The series Y x; is uco.

3
(ii) The series Y x; is convergent and verifies property (ii) in Theorem 2.1.
i
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The following lemma will let us prove a result that weakens the usual hypothesis of
Orlicz-Pettis Theorem.

Lemma 2.1. Let (a;5); jen be a real matriz (of infinite dimension) with the following
properties:

(i) Forj €N, (a;;); is convergent.

(ii) For any pair [(A;)i, (B;):] of disjoint sequences of mutually disjoint elements of

d0(N), there exists B C N and an infinite set M C N such that ( > aij)‘ s a convergent
jeB 2
sequence, A; C B and B; C B¢ forie M.
Then, for every P C N, the sequence ( > a,;j>
jep
uniformly convergent, for every disjoint sequence (Ay)y of P(N).

?

is convergent and ( > alvj) 18

JEA, i

Proof. By Theorem 2.1, it is clear that ) a;; is unconditionally convergent for every
J
i€ N.
Let us suppose that there exists P C N such that the sequence ( > Cli]‘)l is not a
JeEp v
Cauchy sequence; let ¢ > 0 be such that for every k € N, there exists n > k such that
Z Ak — Anj| > €.
jep
For k1 = 1, let n; > ky and my € N be such that ‘ > (ar,j — anlj)‘ > €.
jePN{1,2,--,m1}

. . . 5
Since (a;j); is a Cauchy sequence, there exist 1 > nq such that | Y (a;; — Cl»,-j)‘ < — for

jec 8
l,r >l andC C {1,2,--- ,my}. Let ks > I and na > ks be such that | 3 (akzj—aw)’ > e
jEP
It is clear that for some ms € N, my > my we have | > (ar,; — amj)‘ < % for B C
jEB
{ma+1,ma+2,---}. Then
Z (aij - aan)
jePN{mi+1,- ,ma}
> ‘ Z(aij - anzj) - ‘ Z (ak2_7‘ - a’n2j) - ’ Z (aij - aan)
JEP JEP,j<mq JEP,j>m2
L. e _3
- 8 8 4

We can obtain, inductively, three increasing sequences (k;);, (n;); and (m;); of natural
numbers with the following properties:

(a) ki <ng <kog<ng<---.

(b)

E k5 — Qnyj
jec

<§ for O C {1,2,--- ,mi_1} ifi e N.

3
(¢c) UF;,=Pn{mi_1+1,---,m;} fori e Nand ¢ > 1, then | > ak,; — an,; >Z€
JjeF;
@) | S anj — an,s <§,ifBg{mi+1,mi+2,-~-} for i > 1.

JEB
Let B; = {m;—1 +1,--- ,m;} \ F; for ¢ > 1. By applying the hypothesis (ii) to the

pair [(F})i, (B;);], we can find B C N and an infinite set M C N such that ( > aij> is

jEB @
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convergent, F; C B and B; C B® for ¢ € M. However, for i € M,

‘ E QAk;j — An;j

jEB
€
> ‘ Z (akij - anij)‘ - ) Z (akz‘j - a’nij)‘ - ’ Z (akij - anij) > 9’
JEF; JEB,j<mi_1 JEB, j>my;
which contradicts the Cauchy condition for ( > aij) .
jEB i
For i € N, let us consider the measure y; : P(N) — R defined by p;(A) = > a;; for
JEA

A € P(N). Tt follows, from the Vitali-Hahn-Saks theorem (see [4, 9]), that the sequence (1;);
is uniformly strongly additive; i.e., (u;(A;)); converges to zero uniformly in ¢ € N, where
(A;); is a disjoint sequence of P(N). Now it is easy to check that (u;(A4;)); is uniformly
convergent, in j € N.

Remark 2.1. The final step of former theorem can be done, without using the Vitali-
Hahn-Saks theorem, through the following result:
Let (asj)i,; be a real matrix (of infinite dimension) such that, for every P C N,

the sequence ( > a;;) is convergent. Then, for every disjoint sequence (4,), in P(N),
jep /i

( > aij> _is uniformly convergent in n.
JEAR ¢
A sketch of the proof of this result is as follows:

First, we observe that if ) «; is an absolutely convergent series in R, then for every

J
disjoint sequence (4, ), in P(N), we have > | > aj’ < +o0.

i€EN' jEA;

If the conclusion of the result is false, we can inductively construct the sequences
of natural numbers (k;.),, (i;), with k1 < i1 < ke < is < -+ and (n,),, (m,), with
ny <mi <mng < meg < --- such that for every natural number r > 1,

€ .

(@) > | > (apj —ag)| < 1 ifpg>ky,and C C{1,2,--- ;m_1}.

meC ' jeA,,

) | ¥ (aks—aiy)| > =

JEAR,
) X | X (ak.;— airj)‘ < S if B is a subset of {m,+1,m, +2,---}.
meEB ' jEA,, 4

Let us define A = U A,,. It is easy to check that the sequence ( > xm) does not
reN jEA ?
verify the Cauchy condition, which contradicts our hypothesis.

Theorem 2.2. Let Y x; be a series in the normed space X. The following properties
i

are equivalent if X is complete:

(i) The series > x; is uca.

i

(ii) For every pair [(A;):, (B;)i] of disjoint sequences of mutually disjoint elements of

o0(N), there exists B C N and an infinite set M C N such that > x; is weakly convergent,
i€B

A, C B and B; C B® ifi € M.

Without the hypothesis of completeness, we have (ii)=(i).
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Proof. It is clear that (i)=-(ii). Let us assume (ii). If (i) is false, let € > 0 and let us

suppose that the sequence (F,), C ¢o(N) is such that sup F,, < inf F, 41 and || Y z;|| > ¢
i€F,
for n € N. Let f,, € Sx+ be such that fn( > xz> > ¢ for n € N. We can assume that

X is separable; therefore, a subsequence of (ZJEC:;n, which will be also denoted by (fy)n, is
*-w-convergent to some fy € Bx«.
The matrix (f;(z;));; verifies the hypothesis of Lemma 2.1, which contradicts the
inequality fi( >oxj) >e.
JEF;
Remark 2.2. Let £ be a family of elements of P(N) such that ¢o(N) C £ and with
the following property:

(a) for every pair [(A;)q, (B;)i] of disjoint sequence of mutually disjoint elements of
¢0(N), there exists an infinite set M C N and a B € £ such that A; C B and B; C B¢ for
ieM.

Let >  x; be a series in the normed space X. If ) x; is weakly convergent for every

i i€A
A € L then it follows, from Theorem 2.2, that Y x; is uca. It is easy to check that if 3 x;
i i€A
is a weakly Cauchy series for every A € L, then ) z; is a weakly unconditional Cauchy

series. Let £ be a family in P(N) such that ¢¢(N) C £ and with the following property:

(b) for every disjoint sequence (4;); in ¢o(N), there exists an infinite set M C N such
that U A; e L.

ieM

It is well known that if > x; is a series such that Y z; is weakly convergent for every
A€ L, then Y z; is uca. !

€A

We now give an example (see [2]) of a family £ in P(N) with the property (a) that
lacks the property (b).

Let B; the family of subsets A C N such that A and A° have infinite even numbers
and infinite odd numbers. Let £ = By U ¢o(N). It is easy to check that for any given
pair [(Ap)n, (Bn)n] of disjoint sequences of mutually disjoint elements of ¢o(N), there exists
B € £ and an infinite set M C N such that A; C B and B; C B¢ for i € M. However, in
general, it is not true that for any disjoint sequence (A,), in ¢o(N), there exists an infinite
set M C N such that |J A; € £. Therefore, the union of the members of any subsequence
of ({2n})nen does notlﬁaj\glong to L.

§ 3. Uniform Convergence in Matrices

In this section we will study, for sequences and series, the uniform convergence on
matrices.

The following result is a version of the Hahn-Schur summation theorem (see [7]) for
normed spaces that improves Theorem 1 in [10].
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Theorem 3.1. Let (z;;);; be a matriz in the normed space X, where (z;;); is a Cauchy
sequence for every j € N and, for i € N, either Y x;; is uca or ) x;; verifies condition (ii)
J J
in Theorem 2.2. Then, the following properties are equivalent:
(1) If [(An)n, (Br)n] is a pair of disjoint sequences of mutually disjoint elements of
@o(N), then there exists B C N and an infinite set M C N such that (i) A; C B and B; C B¢
forie M; (ii) For every € > 0, there exists k € N such that if p,q > k there exists ly with

) (a:pj—xqj)H<e for 1> .
JjEBN[L]

(2) ( > x”) is a Cauchy sequence, uniformly in n € N, for any disjoint sequence
jEA‘n ?

(An)n in ¢o(N).
(3) The series Y x;; is uca uniformly in i € N, for A C N.
JjEA
(4) The series Y x;; is uca uniformly in i € N and A € P(N).
jEA
(5) Let CX be a completion of X and, for j € N, let xo; € CX be the limit of (zi;);.
Then, the series Y xoj is ico in CX and lim )" x;; = Y xo; uniformly in A € P(N).
JEN v ojeA JEA
(6) Let A € P(N). For every € > 0, there exists k € N such that for p,q > k there

Yoo (zp — a?qj)H <e forl>lp.
JEAN[L,]

exists lg with

Proof. We first prove that (1)=-(2). Let us suppose that there exists a disjoint
sequence (A, )y in ¢o(N) and an € > 0 such that for any k¥ € N there exist ¢ > k and ny,
with H Z ({Zikj 717”)” > €.

JEAn,

For k1 = 1, there exist 47 > k; and n; such that H (Tryy — xilj)H > e. Let
JGA

my > sup A, be such that || > (xg,; — ®iy;)
JjEB
€
let i1 be such that H > (i, — erj)H < = forl,r >ip, C C{1,2,--- ,mq}.
j€C

‘<§ for a finite set B C {m; +1,---} and

Let ko > ig1. Let io > ko and ny be such that H (Thyj — Tins) ‘ > ¢. If we define
JEAR,

3
By = An \ {12, ), then || & (g — )| > =

JEB2
Let mg > sup A,, be such that H > (@hyy — xhj)H < % for any finite set B C
JjEB
{ma+1,---} and let igp2 be such that H Z:C Ly —Tnj H < % forl,r > g2, C C {1,2,--- ,ma}.
VIS
We can obtain, inductively, three sequences of natural numbers (kp,)n, (in)n and (my,)n
such that k1 < i3 < ke < ig < -+ and m; < mg < ---, and a disjoint sequence (B;); in
¢o(N) (where By = A,,,) such that for every r € N, r > 1,
Te
(a) B, C{my_1+1,--- ,my}and || > (zk.; — i ) ‘ >3

JEBy,

H > (xk, xiTj)H << forCC {1,2,- ,m,_1}.
jec 8
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() || X @k —xi5)

jEB

Let us define F, = {m,_1 +1,--- ,m,} \ B, for r € N. By hypothesis, there exists
B C N and an infinite set M C N such that B; C B and F; C B¢ for i € M, and verify the
property (ii) that appears in (1).

It is clear that for r € M, r > 1, and | > m,,

> (Th,j — Ti,5)

H Y wky @ = H > (k5 — i) ‘ - H
Jj€Br JEB, j<m,_1, j€E[L,]

jeBn[Ll]
5e
- H > (k5 — xm’)” z 5

JEB, j>m., jE[L,]

‘<§ for any finite set B C {m, +1,---}.

which contradicts (ii) of (1).
We now prove that (2)=-(3). Let us suppose that for some A € P(N) and £ > 0, we

have that for any k € N, there exists F' € ¢o(N), inf F' > k, and ¢ such that oozl > e
JEANF

>ce. Let mp €

For k1 =1, let Fy € ¢o(N), inf Fy > kq, and 41 such that H D Ty
JEANF,

’<§ for any finite set B C {my +1,---} and i € {1,2,--- ,i1}.

N be such that H > @y
JEB

For ko > max{mi,sup F1 }, let F5 € ¢o(N), inf F5 > ko, and i5 such that H Do Tiy,
JEANF,

> ¢ (let us observe that iy > i1). Then, it is clear that
Te
H D (@i *fﬂm‘)H > 5
JEANF,

We can inductively obtain an increasing sequence (i, ), of natural numbers and a disjoint
sequence (F.), in ¢o(N) with inf F}. > sup F,._; for r € N, such that

H > (@i —wiy)

JEANF,

7e
8 )

>

which contradicts our hypothesis.
It is obvious that (3)=-(4). Now, we prove (4)=-(5). Let us observe that ( > xij)
JEA
is a Cauchy sequence. We fix A € P(N) and let Iy € N be such that H Yo || < Z for
jEB
B C{ly+1,---} and i € N. Let us consider ¢ > p > Iy and let ¢ € N be such that

H > (@i — azoj)H < Z for C C {p,---,q}. Then, it is clear that
jeC

7

| & ol % w-ale] T =

JEAN[p,q] JEAN[p,q] JEAN[p,q]

<e.

This proves that ) zg; is ico in CX. By a similar procedure, it can be obtained that
JEN
( > xij) _is a sequence that converges to Y x¢; uniformly in A € P(N).
JEA i jea
The remaining parts of the proof are obvious.
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Corollary 3.1. Let (x;;); ; be a matriz in a normed space X, where (z;;); is a Cauchy

sequence for j € N and, for i € N, the series Y x;; is subseries convergent. Then the
J
following conditions are equivalent:

(1) If [(An)n, (Br)n] is a pair of disjoint sequences of mutually disjoint elements of
¢o(N), then there exists B C N and an infinite set M C N such that (i) A; C B and B; C B¢

forie M, (ii) ( > xij) is a Cauchy sequence.

jEB i

(2) The sequence ( > xlj) is of Cauchy uniformly in n € N, for every disjoint
JEA, B
sequence (Ap)n in ¢o(N).

(3) For every A CN, the series %xij 18 uco uniformly in i € N.

i€

(4) The series %xij is uco um‘}ormly inieN and A e P(N).

i€

(5) Let CX be cjz completion of X. For every j € N, let xg; € CX be the limit of (x;);.
Then, the series Y xoj is uco in CX and lim > x;; = > xo; uniformly in A € P(N).

JjeN v ojeA JjeEA
(6) The sequence ( ,Z:Am”)» is of Cauchy, for A € P(N).
Jje v

Lemma 3.1. Let X be a normed space and let (z;;); ; be a matriz in X such that, for
i €N, (zi5); is a Cauchy sequence and, for j € N, (x;5); is a Cauchy sequence.

(a) The following conditions are equivalent:

(1) (z45) ts uniformly of Cauchy in j € N.

(2) (z45); is uniformly of Cauchy in i € N.

(3) For every e > 0, there exist k,l € N such that ||k — 5] < e fori >k and
il

Under any of these conditions, (x4); is a Cauchy sequence.

(b) Let CX be a completion of X, let xo; be the limit in CX of the sequence (z;):,
for j € N and, similarly, let x,o be the limit of (x;);, for i € N. Then, if for every e > 0,
there exist k,1 € N such that ||zi — x45]| < e fori >k and j > 1, there exists zop such that

li§n Toj = lilm Tio = lilm Tip = 1%151 Ti5 = Too-

Proof. The proof of (a) is straightforward. Let us prove (b). For any given ¢ > 0, we
consider k,l € N such that ||zy — x4 < % fori > kand j > 1. For j > 1, let ig > k be

such that ||z;; — zo;]| < % and ||z — zol]] < g for ¢ > ig. Then

lzoj — zorll < |y — sl + [|zis — wall + |lza — zal| < e

for i > 4y. This proves that (x¢;); is a Cauchy sequence and, similarly, (x;); is also a
Cauchy sequence. Let us observe that, by (a), (x;;); converges to xo; uniformly in ¢ and,
similarly, (x;;); converges to z;o uniformly in j. The remaining results are now easy to be
obtained.
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Theorem 3.2. Let (x;5);; be a matriz in a normed space X, where (x;;); is a Cauchy
sequence for every j € N, and )~ x;; is, for i € N, either uca or verifies the condition (ii)
jEN
in Theorem 2.2. The followmgjsetatements are equivalent:
(1) If [(An)n, (Bn)n] is a pair of disjoint sequences of mutually disjoint elements of
d0(N) such that A; is a singleton for i € N, there exists B C N and an infinite set M C N
such that () A; C B and B; C B¢ for i € M; (ii) For every e > 0, there exists k € N such

that if p,q > k, there exists lo with Yo (xp — xg) ‘ < e forl>lg.
JeBN[L,]

(2) The sequence (z;5); is of Cauchy uniformly in j € N.
(3) For any infinite set P C N, there exists an infinite set B C P such that for every

€ > 0, there exists k € N such that if p,q > k, there exists ly with Yoo (zp — acqj)H <e
JEBN[1,]]
forl > 1.

Proof. We first prove that (1)=(2). If (2) is false, let € > 0 be such that for every
k € N, there exists ¢ > k and j with |z;; — 24| > €.

We can inductively obtain three sequences of natural numbers (j,),, (m;),, with j; <
my < jo < mo < ---,and (k.)p, (iy)y, with k1 < i1 < kg < iy < ---, such that for r € N;
the following properties hold:

@) Nwkg. = @i, |l > e

(b) H > (xh,; — xiTj)H << forCC {1,2,--- ,my_1} and r > 1.
jec 8
(c) H > (@k,y — :cirj)H < % for a finite set B C {m,.,m, +1,--- }.

je€B
For r € N, let A, = {j,} and B, = {m,—1 +1,--- ,m,} \ {j-}. By hypothesis, there
exists B C N and an infinite set M C N with the properties (i) and (ii) in (1). However, for
every r € M, r < 1, and every [ > m,, we have

> (wng - firj)H > @k, 5, — @i .|l = H > (Th,5 — fUm‘)H

jE€B[L,1) JEBALY, j<m,

3e
S PSRRI

jEBN[LI], j>m,

This contradicts condition (ii) in (1).

We now prove that (2)=-(3).

It is easy to check that the sequences (x;;); are uniformly convergent for i € N. We
can inductively obtain two strictly increasing sequences of natural numbers (m,.), and (i),
such that

. 1 ) )
(1) Nlzps — zg5ll < r+ 127+t for p,q > i, and j € N.

1 ‘ .
W for j > m, and i € N.
Without loss of generality, we can assume that P = N. For any r € N, we choose

(ii) il <

1
Jr € PN [my,my11) and define B = {j,,r € N}. Let € > 0. If » € N is such that o <€
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and p,q > i,, then

Z (Tpj — @qj)

‘ + H Z (Tpj — @qj)

‘ < H A Z (Tpj — Tq5)

jEBN[L,]] €BN[L,1], j<mnr JEBN[LI], j>m
1 1
< pY=s} + pYas) <g,
where [ € N.

It is obvious that (3)=-(1). This completes the proof.

Corollary 3.2. Let (x;5);; be a matriz in a normed space X , where (z;); is a Cauchy

sequence, for j € N, and ) x;; is subseries convergent, for i € N. The following statements
J
are equivalent:

(1) If [(An)n, (Bn)n] is a pair of disjoint sequences of mutually disjoint elements of
d0(N) and, fori € N, A; is a singleton, then there exists B C N and an infinite set M C N

with the properties: (1) A; € B and B; C B¢ fori € M, (i) ( > :L'ZJ) is a Cauchy
jEB ?

sequence.
(2) The sequence (x;5); is of Cauchy, uniformly in j € N.

(3) For any infinite set P C N, there exists an infinite set B C P such that ( > xij)
j€B

2

is a Cauchy sequence.

Remark 3.1. Let £ be a family in P(N) such that ¢o(N) C £ and has the following
property:

(¢) For any pair [(A;), (B;)] of disjoint sequences of mutually disjoint elements of ¢ (N)
and such that A; is a singleton, for ¢ € N, there exists an infinite set M C Nand a B € £
such that A; C B and B; C B° fori € M.

Corollary 3.2 is also true if we substitute (1) by the following statement: There exists

a family £ with the property (c) such that ( > xij) _is a Cauchy sequence, for B € L.
JjEB g

Let £ be a family in P(N) such that ¢o(N) C £ and with the following property:

(d) for every sequence of mutually different singleton sets (4;);, there exists an infinite

set M C N such that |J A; € L.
ieM
In [3], it has been proved that (1)=-(2) (in Corollary 3.2) remains true if (1) is replaced

by the following statement: there exists a family £ with property (d) such that ( > zij) _
j€B i
is a Cauchy sequence, for B € L.
In the following example we obtain a family £ with the property (c) that lacks the
properties (d), (a) and (b) mentioned in Remark 2.2.

We consider the family B C P(N) of the A C N such that

(i) A and A€ have an infinite number of even numbers and an infinite number of odd
numbers.

(ii) The set {n € N;{4n,4n — 1} C A} is finite.

Let £ = BU¢y(N). We consider the pair of disjoint sequences [(4;);, (B;);] of mutually
disjoint sets, where A; = {47 —1,4i} and B; = {4i+ 2} for i € N. It is obvious that if there
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exists A € L such that {i € N; A; C A} is infinite, then A does not satisfy (ii), which is a
contradiction. However, it is easy to check that £ satisfies the separation property where A;
is a singleton; i.e. satisfies (d). We also have that the union of the terms on any subsequence
of ({2n})nen does not belong to L.

As a consequence of the former theorem, we can obtain an easy proof of the Basic

Matrix Theorem of Antosik and Swartz. We also prove that the converse result is also valid.

Corollary 3.3. Let (z;);; be a matriz in a normed space X such that, for j € N,
(x45)i is a Cauchy sequence. The following statements are equivalent:

(1) For any infinite set P C N, there exists an infinite set B C P such that ( > a:ij)
jEB

1
is a Cauchy sequence.
(2) The matriz (x;;);; satisfies the following properties:
(i) The sequence (z;;); is convergent for every i € N.
(if) (xij)i is @ Cauchy sequence, uniformly in j € N.
(i) For any infinite set P C N, there exists an infinite set B C P such that ) x;j
jEB
is convergent, for i € N.
Proof. We first prove that (1)=(2). If (2) is false, then there exist & > 0 and three
strictly increasing sequences (k;)r, (¢»)r and (j,), of natural numbers such that

(a) b <ig <ko<ig<-n,
(b) ||xkr]r - xlr]r” > € for re N

For p,q € N, we define 23, 1,4 = 2,5, and 22 4 = 7;,j,. The sequence (z;;); converges

ij
to zero for ¢ € N. We can inductively obtain a sequence (M;); of infinite subsets of N,
M; = {a;j,j € N} for i € N, such that, for i € N,

(1) M1 C M,

(2) i1 < agyn,

(3) > zj is uca.
JEM;

It is obvious that if M = {ay;,i € N}, then the matrix (z;;)ien jenm satisfies the
conditions of Theorem 3.2. This contradicts that ||z2;_1,; — 22:|| > € for i € N.

Let us prove that (2)=-(1). Let P be an infinite set and, as before, let P’ C P be such
that > a;; is uca, for ¢ € N. By (iii), let B C P’ be an infinite set such that ) x;; is
JEP jJEB

convergent. Theorem 3.2 let us conclude the proof.
By using arguments similar to those we have used in the former proof, the following
result can be proved.

Corollary 3.4. Let (x;5);; be a matriz in a Banach space X such that (x;5); is a
Cauchy sequence for i € N. The following statements are equivalent:

(1) For any infinite set P C N, there exists an infinite set B C P such that ( > a:ij)
JjeB

7

is a Cauchy sequence.

(2) The matriz (x;5);; satisfies the following properties:



346 A. AIZPURU & A. GUTIERREZ-DAVILA
(a) The sequence (x;5); converges to zero, for i € N.
(b) (zi5): is of Cauchy, uniformly in j € N.
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