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IRREDUCIBLE REPRESENTATIONS FOR THE
AFFINE-VIRASORO LIE ALGEBRA OF TYPE B∗∗∗

l
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Abstract

An explicit construction of irreducible representations for the affine-Virasoro Lie
algebra of type Bl, through the use of vertex operators and certain oscillator represen-
tations of the Virasoro algebra, is given.
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§ 1 . Introduction

The theory of vertex operator representations of affine Lie algebras has many important
and interesting applications in mathematics and physics. The first vertex construction of
basic representations for affine Lie algebras, which is usually called the principal vertex
representation, was discovered by Lepowsky and Wilson [13] and it has been generalized
in [12] to all the affine Lie algebras of ADE type. Frenkel and Kac [8], and Segal [15],
have given another construction of the same basic modules of all ADE type Lie algebras by
using the vertex operators X(α, z) which are very useful for the study of the dual resonance
theory. A suitable chosen Heisenberg algebra (or a Heisenberg system) is crucial to these
constructions. By enlarging the Fock spaces, one can construct vertex representations for
other affine Lie algebras. These representations, however, are no longer irreducible.

It was also observed in [8] that the basic given modules afford representations of the
Virasoro algebra too. This makes the basic modules into irreducible modules of larger Lie
algebras—the semi-direct products of affine Lie algebras and the Virasoro algebra, which
play an important role in the representation theory of affine and Virasoro algebras and in
the quantum field theory.

This paper is based on the work of [10], where vertex representations for the toroidal
Lie algebras of type Bl were constructed. A toroidal Lie algebras is the universal central
extension of the iterated multi-loop algebra, Ġ ⊗ C[t±1

0 , t±1
1 , · · · , t±1

ν ] (ν≥ 1), where Ġ is a
simple finite-dimensional Lie algebra over the complex field C. Toroidal Lie algebras can
be considered as the natural generalization of affine Lie algebras. Unlike the affine case,
however, the universal central extension has infinite-dimensional center. By adding the full
derivation algebra together with a 2-cocycle to the toroidal Lie algebra, we can get a larger
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toroidal Lie algebra which has finite-dimensional center. Over the past decade, the vertex
representations of affine Lie algebras have been generalized to vertex representations of the
toroidal Lie algebras (e.g., see [14, 6, 16, 3]). For more results on toroidal Lie algebras, one
can see [1, 2, 4, 5], etc.

The modules constructed in [10] are not irreducible, since the corresponding modules
of affine Lie algebra are not irreducible. In this paper, we extend the affine Lie algebra by
the Virasoro algebra thus constructing a semi-direct product algebra containing the affine
Lie algebra as an ideal and the Virasoro algebra as a subalgebra. By introducing Virasoro
operators which, different from the previous ones, do not preserve the irreducible submodules
of the affine Lie algebra, we prove that the given reducible module not only becomes a module
of the larger algebra but also becomes irreducible.

Through out the paper, we denote by Z+ and Z− the set of positive integers and the
set of negative integers respectively.

§ 2 . Preliminaries

Let g be the finite-dimensional simple Lie algebra of type Bl over the complex field C,
and (· | ·) the Killing form on g. Let h be a Cartan subalgebra of g, and ∆ the root system of
g with respect to h. Let h∗ be the dual space of h. Then there exists the normal orthogonal
basis {e1, · · · , el} of h∗ such that the short root system is ∆S = {±ei | 1 ≤ i ≤ l} and the
long root system is ∆L = {±ei + ej ,±ei − ej | 1 ≤ i < j ≤ l}. The simple root system is
u = {e1 − e2, e2 − e3, · · · , el−1 − el, el}. Let αi = ei − ei+1, 1 ≤ i ≤ l − 1, αl = el. Then the
root lattice is

Q =
{ l∑

i=1

kiαi | ki ∈ Z, 1 ≤ i ≤ l
}

=
{ l∑

i=1

kiei | ki ∈ Z, 1 ≤ i ≤ l
}

.

It is clear that (αi | αi) = 2, 1 ≤ i ≤ l− 1, (αl | αl) = 1. Let α∨ ∈ h be such that α(α∨) = 2.
Define ε : Q×Q → {±1} by

ε(ei, ej) = 1, 1 ≤ i ≤ j ≤ l, ε(ej , ei) = −ε(ei, ej), i < j; (2.1)
ε(a + b, c) = ε(a, c)ε(b, c), ε(a, b + c) = ε(a, b)ε(a, c). (2.2)

Proposition 2.1. (cf. [10]) The Lie algebra g has a basis {eα, α∨i | α ∈ ∆, 1 ≤ i ≤ l}
such that

[α∨i , α∨j ] = 0, [α∨i , eα] = α(α∨i )eα, α ∈ ∆, 1 ≤ i ≤ l; (2.3)

[eα, e−α] = ε(α,−α)α∨, α ∈ ∆; (2.4)
[eα, eβ ] = ε(α, β)eα+β , α ∈ ∆L, β, α + β ∈ ∆; (2.5)
[eα, eβ ] = 2ε(α, β)eα+β , α, β ∈ ∆S , α + β ∈ ∆; (2.6)
[eα, eβ ] = 0, α, β ∈ ∆, 0 6= α + β /∈ ∆. (2.7)

Proposition 2.2. {eαi ,−e−αi , eαl
, e−αl

| 1 ≤ i ≤ l − 1} are Chevalley generators of
g, and {eα,−e−α, eβ , e−β , α∨i | α ∈ ∆+

L , β ∈ ∆+
S , 1 ≤ i ≤ l} is a Chevalley basis of g.

Proof. The results can be checked directly by Proposition 2.1 and the definition of ε.

Let ĝ = g ⊗C[t, t−1] ⊕Cc be the associated affine Lie algebra with the following Lie
bracket

[x⊗ tm + λ1c, y ⊗ tn + λ2c] = [x, y]⊗ tm+n + mδm+n,0(x | y)c, (2.8)
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where x, y ∈ g, λ1, λ2 ∈ C,m, n ∈ Z. For k ∈ Z, let h∗(k) be an isomorphic copy of h∗, and
el(k + 1

2 ) an isomorphic copy of el. Then

H̃ = ⊕
k∈Z

h∗(k) ⊕
k∈Z

Cel

(
k +

1
2

)
⊕Cc0

becomes a Lie algebra with the following Lie bracket

[a(m), b(n)] = m(a | b)δm+n,0c0,[
el

(
m +

1
2

)
, el

(
n− 1

2

)]
=

(
m +

1
2

)
δm+n,0c0,

[H̃, c0] =
[
⊕

k∈Z
h∗(k), el

(
k +

1
2

)]
= 0,

where a, b ∈ h∗,m, n, k ∈ Z. It is easy to see that Ĥ = ⊕
k∈Z\{0}

h∗(k) ⊕
k∈Z

Cel(k + 1
2 )⊕Cc0 is

a Heisenberg Lie algebra. Let

Ĥ− = ⊕
k∈Z−

h∗(k) ⊕
k∈Z−

Cel

(
k +

1
2

)
,

and S(Ĥ−) the symmetric algebra generated by Ĥ−. We define the Fock space V = S(Ĥ−)⊗
C[Q], where C[Q] = ⊕

α∈Q
Ceα is the group algebra on the additive group Q. Then V has a

natural module structure for the Lie algebra H̃ and the group algebra C[Q] with the actions
defined by assigning c0 acting as 1, a(−n) and el(−n+ 1

2 ) acting as multiplications and a(n)
and el(n− 1

2 ) acting as partial differential operators, for n > 0, a ∈ h∗, and a(0) acting as a
partial differential operator on C[Q] for which a(0)er = (a | r)er, where a ∈ h∗.

Let z be a complex variable. We define elements of EndV [[z, z−1]] as follows:

εa(v ⊗ er) = ε(a, r)v ⊗ er, a ∈ Q, (2.9)

za(v ⊗ er) = z(a|r)(v ⊗ er), a ∈ Q, (2.10)

Y (α, z) = exp
( ∞∑

n=1

z2n

n
α(−n)

)
exp

(
−

∞∑
n=1

z−2n

n
α(n)

)
, α ∈ ∆L, (2.11)

Y (α, z) =
√−1 exp

( ∞∑
n=1

z2n

n
α(−n)

)
exp

(
−

∞∑
n=1

z−2n

n
α(n)

)

· exp
( ∞∑

n=0

2z2n+1

2n + 1
el

(
− n− 1

2

))

· exp
(
−

∞∑
n=0

2z−2n−1

2n + 1
el

(
n +

1
2

))
, α ∈ ∆S , (2.12)

X(α, z) = Y (α, z)z(α|α)eαz2αεα =
∑

n∈ 1
2Z

Xn(α)z−2n. (2.13)

For v⊗ er = a1(−n1) · · · ak(−nk)el(−m1 + 1
2 ) · · · el(−ms + 1

2 )⊗ er, where ai, r ∈ Q,ni,mj ∈
Z+, define

deg(v ⊗ er) = −
k∑

i=1

ni −
s∑

j=1

(
mj − 1

2

)
− 1

2
(r | r). (2.14)
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Let V0 and V 1
2

be the subspaces of V spanned by {v ⊗ er | deg(v ⊗ er) ∈ Z} and {v ⊗ er |
deg(v ⊗ er) ∈ Z + 1

2} respectively. Then

V = V0 + V 1
2
.

Proposition 2.3. (cf. [10]) V0 and V 1
2

are completely reducible modules of the affine
Lie algebra ĝ. Particularly, we have

(α∨ ⊗ tn)(v ⊗ er) =
2

(α | α)
α(n)(v ⊗ er), (2.15)

(eα ⊗ tn)(v ⊗ er) = Xn(α)(v ⊗ er), (2.16)

c(v ⊗ er) = v ⊗ er, (2.17)

where α ∈ ∆, n ∈ Z.

§ 3 . Irreducible Modules of the Affine-Virasoro Lie Algebra ĝvir

Let di = −ti+1 d
dt (i ∈ Z) be a derivation of C[t, t−1]. Extend it to the operators on ĝ

by
di(x⊗ tm + λc) = x⊗ di(tm) = −mx⊗ tm+i. (3.1)

Then di is a derivation of ĝ. Let d be the Lie algebra spanned by {di | i ∈ Z}. Then
the universal central extension of d by a 1-dimensional center CK, is the Virasoro algebra,
denoted by Vir, with the following Lie bracket

[dm, dn] = (m− n)dm+n +
m3 −m

12
δm+n,0K. (3.2)

Now we consider the Lie algebra ĝvir = g ⊕ Vir with the Lie bracket defined by (2.8),
(3.1), (3.2) and [ĝvir,Cc⊕CK] = 0. The goal of this section is to prove that V0 and V 1

2
are

irreducible ĝvir-modules. Define operators on V as follows:

L0 =
1
2

l∑

i=1

ei(0)ei(0) +
∑

j>0

l∑

i=1

ei(−j)ei(j) +
∑

j≥0

el

(
− j − 1

2

)
el

(
j +

1
2

)
+

1
16

, (3.3)

Ln =
1
2

∑

j∈Z

l∑

i=1

ei(−j)ei(j + n) +
1
2

∑

j∈Z

el

(
− j − 1

2

)
el(j +

1
2

+ n), n ∈ Z\{0}. (3.4)

Lemma 3.1. For v ⊗ er ∈ V , we have

L0(v ⊗ er) =
(
− deg(v ⊗ er) +

1
16

)
(v ⊗ er). (3.5)

Lemma 3.2. For m, n ∈ Z, α ∈ ∆, we have

[Lm, Xn(α)] = −nXn+m(α). (3.6)

Proof. First it is easy to see that

deg(Xn(α)(v ⊗ er)) = n + deg(v ⊗ er), (3.7)

deg(Ln(v ⊗ er)) = n + deg(v ⊗ er). (3.8)
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If m = 0, then by (3.7) and (3.5) we have

[L0, Xn(α)] = −nXn(α). (3.9)

We can deduce (3.6) by using (3.7)–(3.9).

Lemma 3.3. For m, n ∈ Z, we have

[ei(m), Ln] = mei(m + n), 1 ≤ i ≤ l; (3.10)
[
el

(
m +

1
2

)
, Ln

]
=

(
m +

1
2

)
el

(
m + n +

1
2

)
. (3.11)

Proof. It is straightforward to check the results.

Lemma 3.4. For m, n ∈ Z, one has

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
(l + 1)δm+n,0. (3.12)

From Lemmas 3.2–3.4 and Proposition 2.3, we deduce

Theorem 3.1. V0 and V 1
2

are ĝvir-modules with the action defined by (2.15)–(2.17)
and

di(v ⊗ er) = Li(v ⊗ er), i ∈ Z, (3.13)

K(v ⊗ er) = (l + 1)(v ⊗ er). (3.14)

Now, define a Hermitian form H(·, ·) on V as follows:

H
( l∏

i=1

( si∏

j=1

ei(−nij)kij

) s∏

j=1

el

(
− nj − 1

2

)kj ⊗ er1 ,

l∏

i=1

( qi∏

j=1

ei(−mij)lij

) p∏

j=1

el

(
−mj − 1

2

)lj ⊗ er2

)

= δr1−r2,0δs,p

s∏

j=1

δnj ,mj δkj ,lj

l∏

i=1

(
δsi,qi

si∏

j=1

δnij ,mij δkij ,lij

)

·
( l∏

i=1

si∏

j=1

kij !n
kij

ij

) s∏

j=1

kj !
(
nj +

1
2

)kj

,

and for λ ∈ C, v, w ∈ V ,
(λv,w) = λ(v, w) = (v, λ̄w),

where we assume that ni1 < ni2 < · · · < nisi , mi1 < mi2 < · · · < miqi , 1 ≤ i ≤ l, n1 <
n2 < · · · < ns, m1 < m2 · · · < mp.

Lemma 3.5. The Hermitian form H(·, ·) is positive definite.

Let eα(α ∈ ∆), α∨i (1 ≤ i ≤ l) be the same as in Proposition 2.1. Let

e′±α = ±e±α, e′±β = e±β , α ∈ ∆+
L , β ∈ ∆+

S . (3.15)
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Then by Proposition 2.2, {e′α, α∨i | α ∈ ∆, 1 ≤ i ≤ l} is a Chevalley basis of g. Now define
an antilinear operator ω0 on ĝvir by

ω0(λx) = λ̄ω0(x), x ∈ ĝvir; (3.16)

ω0(e′α ⊗ tm) = −e′−α ⊗ t−m, m ∈ Z, α ∈ ∆; (3.17)

ω0(α∨i ⊗ tm) = −α∨i ⊗ t−m, m ∈ Z, 1 ≤ i ≤ l; (3.18)

ω0(c) = −c, ω0(K) = −K, ω0(dm) = −d−m. (3.19)

It is easy to see that ω0 is an antilinear automorphism of ĝvir.

Lemma 3.6. For n ∈ Z, 1 ≤ i ≤ l and x = v ⊗ er1 , y = w ⊗ er2 ∈ V , we have

H(ei(n)x, y) = H(x, ei(−n)y); (3.20)

H
(
el

(
n +

1
2

)
x, y

)
= H

(
x, el

(
− n− 1

2

)
y
)
. (3.21)

Proof. We can assume that

v =
l∏

i=1

( si∏

j=1

ei(−nij)kij

) s∏

j=1

el

(
− nj − 1

2

)kj ⊗ er1 ,

w =
l∏

i=1

( ti∏

j=1

ei(−mij)lij

) p∏

j=1

el

(
−mj − 1

2

)lj ⊗ er2 .

For n ∈ Z+, let
v = ei(−n)kv1, w = ei(−n)qw1,

where ei(n)v1 = ei(n)w1 = 0. Then

H(ei(n)v ⊗ er1 , w ⊗ er2) = knH(ei(−n)k−1v1 ⊗ er1 , ei(−n)qw1 ⊗ er2)

= δk−1,qk!nkH(v1 ⊗ er1 , w1 ⊗ er2)

= H(ei(−n)kv1 ⊗ er1 , ei(−n)q+1w1 ⊗ er2)

= H(v ⊗ er1 , ei(−n)w ⊗ er2).

If n = 0, we have

H(ei(0)(v ⊗ er1), w ⊗ er2) = (r1 | ei)H(v ⊗ er1 , w ⊗ er2),

H(v ⊗ er1 , ei(0)(w ⊗ er2)) = (r2 | ei)H(v ⊗ er1 , w ⊗ er2).

By the definition of H(·, ·), we have

H(ei(0)x, y) = H(x, ei(0)y).

The proof of (3.21) is similar.

Lemma 3.7. Let Y (α, z) be defined by (2.11) and (2.12), and let

Y (α, z) =
∑

n∈ 1
2Z

Yn(α)z−2n.
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Then for v, w ∈ S(Ĥ−), r ∈ Q,n ∈ Z, we have

H((Yn(α)v)⊗ er, w ⊗ er) = H(v ⊗ er, (Y−n(−α)w)⊗ er), α ∈ ∆L; (3.22)

H((Yn+ 1
2
(α)v)⊗ er, w ⊗ er) = H(v ⊗ er, (Y−n− 1

2
(−α)w)⊗ er), α ∈ ∆S . (3.23)

Proof. Let

E∓(α, z) = exp
(
±

∞∑
n=1

z±2n

n
α(∓n)

)
=

∑

n∈Z

E∓
n (α)z−2n,

F∓(el, z) = exp
(
±

∞∑
n=0

2z±(2n+1)

2n + 1
(el)

(
∓ 2n + 1

2

))
=

∑

n∈ 1
2Z

F∓n (el)z−2n,

F∓(−el, z) = exp
(
±

∞∑
n=0

2z±(2n+1)

2n + 1
(−el)

(
∓ 2n + 1

2

))
=

∑

n∈ 1
2Z

F∓n (−el)z−2n.

Note that E−
n (α) = E+

−n(α) = F−
n− 1

2
(±el) = F+

−n+ 1
2
(±el) = 0 for n ∈ Z+. By Lemma 3.6,

for any v1, v2 ∈ S(Ĥ−), r ∈ Q, we have

H((E∓
n (α)v1)⊗ er, v2 ⊗ er) = H(v1 ⊗ er, (E±

−n(−α)v2)⊗ er), α ∈ ∆; n ∈ Z, (3.24)

H((F∓n (el)v1)⊗ er, v2 ⊗ er) = H(v1 ⊗ er, (F±−n(−el)v2)⊗ er), n ∈ 1
2
Z. (3.25)

If α ∈ ∆L, by the definition of H(·, ·), we can assume that deg v = deg w− n = −k (k ≥ n).
Then

(Yn(α)v)⊗ er =
( k∑

i=0

E−
n−i(α)E+

i (α)v
)
⊗ er,

(Y−n(−α)w)⊗ er =
( k−n∑

i=0

E−
−n−i(−α)E+

i (−α)w
)
⊗ er.

Therefore by (3.24) we have

H((Yn(α)v)⊗ er, w ⊗ er) =
k∑

i=0

H(E−
n−i(α)E+

i (α)v)⊗ er, w ⊗ er)

=
k∑

i=0

H((E+
i (α)v)⊗ er, (E+

−n+i(−α)w)⊗ er)

= H
(
v ⊗ er,

( k∑

i=0

E−
−i(−α)E+

i−n(−α)w
)
⊗ er

)

= H
(
v ⊗ er,

( k−n∑

i=0

E−
−n−i(−α)E+

i (−α)w
)
⊗ er

)

= H(v ⊗ er, (Y−n(−α)w)⊗ er).

Therefore (3.22) holds. We can deduce (3.23) similarly, for β ∈ ∆S , though we still point
out that

Y (±β, z) =
√−1E−(±β, z)E+(±β, z)F−(el, z)F+(el, z),
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and

H(
√−1 Yn+ 1

2
(β)v ⊗ er, w ⊗ er) =

√−1 H(Yn+ 1
2
(β)v ⊗ er, w ⊗ er)

= −H(v ⊗ er,
√−1 Y−n− 1

2
(−β)w ⊗ er).

Theorem 3.2. H(·, ·) is a contravariant Hermitian form on V with respect to ω0,
i.e.,

H(g(x), y) = −H(x, ω0(g)y) (3.26)

for all g ∈ ĝvir, x, y ∈ V . Therefore by Lemma 3.5, V0 and V 1
2

are unitary modules of ĝvir.

Proof. By Lemma 3.6 and the definition of ω0, (3.26) holds for all g ∈ h⊗C[t, t−1]⊕
Cc⊕CK, and it is easy to deduce by Lemma 3.6 that

H(dn(x), y) = −H(x, ω0(dn)y), n ∈ Z.

Let x = v ⊗ er1 , y = w ⊗ er2 ∈ V . By (3.15), (3.17) and (2.16), we have to prove

H(Xn(α)(v ⊗ er1), w ⊗ er2) = −H(v ⊗ er1 , X−n(−α)(w ⊗ er2)), α ∈ ∆L; (3.27)

H(Xn(β)(v ⊗ er1), w ⊗ er2) = H(v ⊗ er1 , X−n(−β)(w ⊗ er2)), β ∈ ∆S . (3.28)

We first prove (3.27). By the definition of H(·, ·), we can assume that r1 + α = r2. Then

Xn(α)(v ⊗ er1) = ε(α, r1)Yn+(α|r1)+1(α)v ⊗ er2 ,

X−n(−α)(w ⊗ er2) = ε(−α, r1 + α)Y−n−(α|r1)−1(−α)w ⊗ er1 .

By (2.1) and (2.2), we know that ε(α, r1) = ε(−α, r1), ε(−α, α) = −1. Therefore

X−n(−α)(w ⊗ er2) = −ε(α, r1)Y−n−(α|r1)−1(−α)w ⊗ er1 .

Then by (3.22) we have

H(Xn(α)(v ⊗ er1), w ⊗ er2) = ε(α, r1)H(v ⊗ er2 , Y−n−(α|r1)−1(−α)w ⊗ er2)

= ε(−α, r1)H(v ⊗ er1 , Y−n−(α|r1)−1(−α)w ⊗ er1)

= −H(v ⊗ er1 , X−n(−α)w ⊗ er2).

For β ∈ ∆S , we can assume that r1 + β = r2. Then

H(Xn(β)(v ⊗ er1), w ⊗ er2) = ε(β, r1)H(Yn+(β|r1)+
1
2
(β)v ⊗ er2 , w ⊗ er2)

= ε(β, r1)H(Yn+(β|r1)+
1
2
(β)v ⊗ er1 , w ⊗ er1),

H(v ⊗ er1 , X−n(−β)(w ⊗ er2)) = ε(β, r1 + β)H(v ⊗ er1 , Y−n−(β|r1)− 1
2
(−β)w ⊗ er1).

Now (3.28) follows from (3.23) and (2.1).

Corollary 3.1. V0 and V 1
2

are completely reducible ĝvir-modules.

Let hvir = h⊕Cc⊕Cd0⊕CK, ĝ+
vir and ĝ−vir be the linear spans of {eα, dn | α ∈ ∆+, n ∈

Z+} and {eα, dn | α ∈ ∆−, n ∈ Z−} respectively.
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Definition 3.1. A highest weight representation of ĝvir is a representation in a vector
space M which admits a non-zero vector v, such that for given Λ ∈ h∗vir,

h(v) = Λ(h)v, h ∈ hvir,

U(ĝ+
vir)v = 0, M = U(ĝ−vir)v,

where U(ĝ+
vir) and U(ĝ−vir) are the universal evenloping algebras of ĝ+

vir and ĝ−vir respectively.

Remark. By Theorem 3.2 and the fact that V is graded, we know that any highest
weight submodule of V is irreducible. Conversely, since V is a graded and restricted module,
any irreducible submodule of V is a highest weight module. Therefore, as ĝvir-module, V is
a direct sum of highest weight modules.

Theorem 3.3. V0 and V 1
2

are irreducible ĝvir-modules.

Proof. We only prove V0 is irreducible, since the proof for V 1
2

is quite similar. Let
v ⊗ er ∈ V0 be such that

h(v ⊗ er) = λ(h)v ⊗ er, h ∈ hvir, (3.29)

U(ĝ+
vir)(v ⊗ er) = 0. (3.30)

Then U(ĝ+)(v ⊗ er) = 0. Therefore r = 0 (see [10]). Let Sk be such that

S(el, z) = F−(el, z)F+(el, z) =
∑

k∈ 1
2Z

Skz−2k.

Then similarly to the proof of (3.6), one can deduce that

[Ln, Sm] =
(
−m− 1

2
n
)
Sm+n, m, n ∈ Z. (3.31)

If v /∈ C(1⊗ e0), then we can assume that

v =
q∑

i=1

aki1,··· ,kisi
S−ki1S−ki2 · · ·S−kisi

,

where aki1,··· ,kisi
∈ C∗ = C\{0}, ki1 + ki2 + · · · + kisi = m (1 ≤ i ≤ q), ki1 > ki2 > · · · >

kisi ≥ 1, and (ki1, ki2, · · · , kisi) > (ki+1,1, ki+1,2, · · · , ki+1,si+1). We say (ki1, ki2, · · · , kisi) >
(kj1, kj2, · · · , kjsj ), if there exists p ≥ 1 such that ki1 = kj1, · · · , ki,p−1 = kj,p−1, kip > kjp.
By (3.31), q ≥ 2, since L1v = 0. Let p ≥ 1 be such that k1j = k2j , 1 ≤ j ≤ p− 1, k1p > k2p.
Then by the fact that L1v = 0 and the use of (3.31), we have p = s1, k2p = k1p − 1 and
k2,p+1 = 1. Therefore k1s1 ≥ 3 and

(
k1s1 −

1
2

)
ak11,··· ,k1s1

+
1
2
ak21,··· ,k2s2

= 0. (3.32)

Note that L2v = 0. If k1s1 > 3, then

(k1s1 − 1)ak11,··· ,k1s1
S−k11S−k12 · · ·S−k1,s1−1S−k1s1+2 = 0.

This means that ak11,··· ,k1s1
= 0, which contradicts the assumption. Therefore k1s1 = 3 and

2ak11,··· ,k1s1
− ak21,··· ,k2s2

= 0. (3.33)

From (3.32) and (3.33), we have

ak11,··· ,k1s1
= ak21,··· ,k2s2

= 0,

which is also in contradiction with the assumption. Therefore v ∈ C(1 ⊗ e0). This proves
that V0 is irreducible.
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