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EXIT DISTRIBUTION LEAVING A BALL FROM
THE CENTER AND BROWNIAN MOTION∗∗∗∗
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Abstract

It is showed that if the first exit distribution leaving any ball from the center is the
uniform distribution on the sphere, then the Lévy process is a scaled Brownian motion.
The paper also gives a characterization of a continuous Hunt process by the first exit
distribution from any ball.
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§ 1 . Introduction

Suppose that E is a locally compact space with a countable base (LCCB) and a compat-
ible metric d. Let E be the Borel σ-algebra on E. For any x ∈ E and r > 0, we let Br(x) =
{y ∈ E : d(x, y) ≤ r}, B◦

r (x) = {y ∈ E : d(x, y) < r} and Sr(x) = {y ∈ E : d(x, y) = r}.
Let Rd be the d-dimensional Euclidean space and B(Rd) be the Borel σ-algebra on Rd. Let
bB(Rd) denote the set of all bounded Borel measurable functions. For any x, y ∈ Rd, we use
〈x, y〉 and |x| to denote the inner product of x and y and the length of x respectively. For
any x ∈ Rd and any r > 0, let σr(x) = σr(x, ·) denote the uniform probability distribution
on Sr(x). For convenience, we let Br = Br(0), B◦

r = B◦
r (0), Sr = Sr(0) and σr = σr(0). Let

µ̂ denote the characteristic function of a probability µ on Rd.
Let X = (Xt, P ) be a Lévy process on Rd starting at 0 with convolution semigroup

π = {πt : t > 0}. The Lévy exponent of π = {πt} is denoted by φ, i.e., π̂t(x) = e−tφ(x). Let
D = {x : |x| ≤ 1}, the closed unit ball. By the Lévy-Khintchine formula (see Theorem 8.1
of [6]),

φ(x) =
1
2
〈x, Ax〉 − i〈γ, x〉+

∫

Rd

[1− ei〈x,y〉 + i〈x, y〉1D(y)]υ(dy),

where A is a symmetric nonnegative-definite d× d matrix, υ is a measure on Rd satisfying
υ({0}) = 0 and

∫
Rd(|y|2 ∧ 1)υ(dy) < ∞, and γ ∈ Rd. The representation of φ by A, υ and γ

is unique, and we call (A, υ, γ) the generating triplet of X or π.
It is well known that any first exit distribution of Brownian motion leaving a ball is

uniformly distributed on the sphere of the ball. In this paper we shall consider the inverse
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problem. If any of such exit distributions of a Lévy process on Rd is uniform, then a natural
question is whether it is a Brownian motion (by a time scaling). We should mention a
program of an argument (which was actually suggested by R. K. Getoor). If the above exit
distributions of a Markov process are uniform, then Theorem II-5.11 of [1] implies that the
process has the same class of (lower semi-continuous) excessive functions as that of Brownian
motion which in turn implies that it has the same class of hitting distributions as that of
Brownian motion by Hunt’s Balayage theorem. Thus a well-known Theorem of Blumenthal-
Getoor-Mckean (see [1]) shows that the process differs from Brownian motion by a time
change. However Hunt’s balayage theorem needs the condition that the process is transient.
Without assuming the transience, little information can be retrieved from excessive functions
since they may only contain constants.

In the present article, we shall prove a Lévy process (without assumption of path
continuity or transience) with the first exit distribution from a ball being uniform on surface
is a Brownian motion (by a time scaling). The approach is rather elementary and does
not use the Blumenthal-Getoor-Mackean Theorem. The paper also gives a characterization
of a continuous Hunt process by the first exit distribution. Without loss of generality, in
this paper, we shall assume that the Lévy process is genuinely d-dimensional, that is, π1

is not supported on any proper linear subspace of Rd, since otherwise we may consider the
subspace instead.

§ 2 . Continuity of Hunt Processes

Let {Ω,F0
t ,F0, P x, θt, Xt} be a Hunt process with state space (E, E) and transition

function (Pt). Then TBc
r
(ω) := inf{t > 0 : d(Xt(ω), X0(ω)) > r}, where d is a fixed metric

on E compatible with the topology, is a stopping time relative to {F0
t }. Let q(ω) be a

property of ω. Then q is said to hold almost surely (a.s.) if the set Λ of ω in Ω for which
q(ω) fails to hold is in F0 and P x(Λ) = 0 for all x ∈ E. Now we give the main theorem of
this section.

Theorem 2.1. The first exit distribution P x(XTBc
r
∈ dy, TBc

r
< ∞) concentrates on

Sr(x) for all x ∈ E and all r > 0 if and only if the sample path is continuous on [0,∞)
almost surely.

Before proving the theorem, we prepare a lemma.

Lemma 2.1. Let ε > 0. Then P x(XTBc
r
∈ dy, TBc

r
< ∞) concentrates on Br+ε(x) \

B◦
r (x) for all x ∈ E and all r > 0 if and only if almost surely, for all t > 0, d(Xt−, Xt) ≤ ε.

Proof. The sufficiency is obvious. Now we prove the necessity. For convenience, we
denote TBc

r
by T r. Then T r is a stopping time relative to {F0

t } for all r > 0. Next, we
define T r

0 := 0, T r
1 := T r and inductively for n ≥ 1,

T r
n+1 := T r

n + T r ◦ θT r
n

= inf{t > T r
n : d(Xt, XT r

n
) > r}.

Obviously, each T r
n is a stopping time relative to {F0

t }. Since T r
n increases with n, the limit

Sr = lim
n

T r
n exists and Sr is a stopping time. On the set {Sr < ∞}, we have lim

n
X(T r

n) =

X(Sr) almost surely by quasi-left continuity. On the other hand, the right continuity of
paths implies that d(X(T r

n+1), X(T r
n)) ≥ r almost surely for all n, which precludes the

existence of lim
n

X(T r
n). There would be a contradiction unless Sr = ∞ almost surely. In

the latter event, we have [0,∞) =
∞⋃

n=0
[T r

n , T r
n+1) almost surely. Note that if T r

n = ∞, then
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[T r
n , T r

n+1) = ∅. In each interval [T r
n , T r

n+1), the oscillation of X(·) does not exceed 2r by
the definition of T r

n+1. We have therefore proved that for each r, there exists Ωr such that

P x(Ωr) = 1 for all x ∈ E, and for any ω ∈ Ωr, [0,∞) =
∞⋃

n=0
[T r

n(ω), T r
n+1(ω)) and X(·, ω)

does not oscillate by more than 2r in any interval [T r
n(ω), T r

n+1(ω)). Let Ω∗ =
∞⋂

m=1
Ω 1

m
.

Then P x(Ω∗) = 1 for all x ∈ E.
By strong Markov property of Hunt process and by our condition, for any x ∈ E,

Ex
[ 1
m
≤ d(X(T

1
m

n ), X(T
1
m

n−1)) ≤
1
m

+ ε, T
1
m

n < ∞
]

= Ex
[
EX(T

1
m

n−1)
[ 1
m
≤ d(X(T

1
m ), X0) ≤ 1

m
+ ε, T

1
m < ∞

]
, T

1
m

n−1 < ∞
]

= Ex
[
EX(T

1
m

n−1)(T
1
m < ∞), T

1
m

n−1 < ∞
]

= Ex
(
T

1
m ◦ θ

T
1
m

n−1

< ∞, T
1
m

n−1 < ∞
)

= Ex(T
1
m

n < ∞).

Therefore for any positive integer m, there exists an Ω′m with P x(Ω′m) = 1 for all x ∈ E

such that, for any ω ∈ Ω′m and any integer n with T
1
m

n (ω) < ∞, we have

1
m
≤ d

(
X

T
1
m

n

(ω), X
T

1
m

n−1

(ω)
)
≤ 1

m
+ ε.

Let Ω′∗ =
∞⋂

m=1
Ω′m and Ω◦ = Ω∗

⋂
Ω′∗. Obviously P x(Ω◦) = 1 for all x ∈ E.

We assert that if ω ∈ Ω◦, then for all t > 0, d(Xt−(ω), Xt(ω)) ≤ ε. Otherwise there
exists some t > 0 such that d(Xt−(ω), Xt(ω)) > ε. Thus d(Xt−(ω), Xt(ω)) > 3

m + ε for

some positive integer m. Since [0,∞) =
∞⋃

n=0
[T

1
m

n (ω), T
1
m

n+1(ω)), the proof is divided into the

following two cases.
Case 1. Suppose that t ∈ (T

1
m

n (ω), T
1
m

n+1(ω)) for some n. Then by definition of T
1
m

n+1,
d(Xt−(ω), Xt(ω)) ≤ 2

m which is impossible.

Case 2. Suppose that t = T
1
m

n (ω) for some n. Then T
1
m

n (ω) < ∞. Hence

d(Xt−(ω), Xt(ω)) = d
(
X

T
1
m

n −
(ω), X

T
1
m

n

(ω)
)

≤ d
(
X

T
1
m

n

(ω), X
T

1
m

n−1

(ω)
)

+ d
(
X

T
1
m

n−1

(ω), X
T

1
m

n −
(ω)

)

≤
( 1

m
+ ε

)
+

2
m

=
3
m

+ ε,

which is also impossible.
Therefore for any ω ∈ Ω◦, d(Xt−(ω), Xt(ω)) ≤ ε for all t > 0.

Proof of Theorem 2.1. We need only to prove the necessity. Since P x(XTBc
r
∈

dy, TBc
r

< ∞) concentrates on Br(x) for any x ∈ E and any r > 0, for any positive integer
n, P x(XTBc

r
∈ dy, TBc

r
< ∞) concentrates on Br+ 1

n
(x) \B◦

r (x) for any x ∈ E and any r > 0.
It follows from Lemma 2.1 that for any positive integer n, almost surely d(Xt−, Xt) ≤ 1

n for
all t > 0. Therefore almost surely the sample path is continuous on [0,∞).



396 ZHANG, H. Z., JIN, M. W. & YING, J. G.

Remark. From the proof above, it is seen that to get the path continuity, it is enough
that there exists a sequence {rn} with rn > 0, lim

n
rn = 0 such that the first exit distribution

P x
(
XTBc

rn
∈ dy, TBc

rn
< ∞)

concentrates on Srn(x) for all x ∈ E and all rn > 0.

It is known that Lévy processes are spatially homogeneous Hunt processes on Euclidean
space. Now suppose that {Ω,F , P x, Xt} is a Lévy Process on Rd with convolution semigroup
{πt}, and its generating triplet is (A, υ, γ). Suppose that π1 6= δ0. Then for any r > 0,
P 0(TBc

r
< ∞) = 1. By the Theorem 19.2 of [6], Theorem 2.1 and Lemma 2.1 above, we

immediately have the following corollaries.

Corollary 2.1. Let ε > 0. Then the following three conditions are equivalent to each
other:

(1) For all r > 0, P 0(XTBc
r
∈ dy) concentrates on Br+ε \B◦

r .
(2) Almost surely for all t > 0, d(Xt−, Xt) ≤ ε.
(3) That υ{|x| > ε} = 0.

Corollary 2.2. The following three conditions are equivalent to each other:
(1) For all r > 0, P 0(XTBc

r
∈ dy) concentrates on Sr.

(2) The sample paths are continuous on [0,∞) almost surely.
(3) The Lévy measure υ = 0.

Similarly, in both corollaries, it is enough that (1) holds for a sequence of positive
numbers {rn} with lim rn = 0.

§ 3 . Brownian Motion and the Hitting Distribution

In this section, we shall prove that a Lévy process on Rd whose exit distribution leaving
any ball from the center is uniform on the sphere is a Brownian motion. Let {Ω,F , P x, Xt} be
a genuinely d-dimensional Lévy process on Rd starting at 0 with generating triplet (A, υ, γ).
If A is a subset of Rd, we define a random variable TA(ω) = inf{t > 0 : Xt(ω) ∈ A}, which
is the first hitting time of A. It is well known that the hitting distribution of a ball for the
standard Brownian motion is given by the Poisson’s kernel (see Theorem 3.1 of Chapter 4
in [5]).

Lemma 3.1. Let c, x ∈ Rd, r > 0 and x /∈ Sr(c). If X is the standard Brownian
motion, then for any f ∈ bB(Rd),

Ex{f [X(TSr(c))]} =
∫

Sr

rd−2|r2 − |x|2|
|y − x|d f(y)σr(c, dy).

For c1, · · · , cd ∈ R, denote by diag{c1, · · · , cd} the diagonalized matrix with diagonal
entries c1, · · · , cd.

Lemma 3.2. Suppose that υ = 0, γ = 0 and A = diag{λ2
1, λ

2
2, · · · , λ2

d}, where λi ≥
1, 1 ≤ i ≤ d. If there exist 1 ≤ i0, i1 ≤ d such that λi0 = 1 and λi1 > 1, then P 0(XTSr

∈ dy)
is not the uniform distribution on the sphere Sr = {x : |x| = r} for any r > 0.

Proof. Without loss of generality, we assume that λ1 = 1 and λd > 1. Let C =
diag{1, λ2, · · · , λd}. For any t > 0, let Yt = C−1Xt. Then {Yt} is the standard Brownian
motion on Rd since

P̂Y1(z) = P̂C−1X1(z) = exp
{
− 1

2
〈C−1z, AC−1z〉

}
= exp

{
− 1

2
〈z, z〉

}
.
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Now let n > 1 and

E1 = {(x1, x2, · · · , xd) ∈ Rd : x1
2 + (λ2x2)

2 + · · ·+ (λdxd)
2 = 1}.

Obviously, S1 = {Cx ∈ Rd : x ∈ E1}. Let TS1 , TSn and TE1 be the hitting times of S1, Sn

and E1 for {Xt} respectively. Let T̂S1 , T̂Sn
and T̂E1 be the hitting times of S1, Sn and E1

for {Yt} respectively. We assert that P 0(XTS1
∈ dy) is not the uniform distribution on S1.

Otherwise E0[f(YbTE1
)] =

∫
S1

f(C−1x)σ1(dx) for any f ∈ bB(Rd). By the strong Markov

property of {Yt} and Lemma 3.1, we have, for any f ∈ bB(Rd),

E0[f(YbTSn
)] = E0{(f(YbTSn

)) ◦ θbTE1
}

= E0{EY (bTE1 )[f(YbTSn
)]} =

∫

E1

Ex(f(YbTSn
))µ(dx)

=
∫

E1

µ(dx)
∫

Sn

nd−2|n2 − |x|2|
|y − x|d f(y)σn(dy)

=
∫

Sn

f(y)σn(dy)
∫

E1

nd−2|n2 − |x|2|
|y − x|d µ(dx)

=
∫

Sn

f(y)σn(dy)
∫

S1

nd−2|n2 − |C−1x|2|
|y − C−1x|d σ1(dx),

where µ is the distribution of Y (T̂E1) under P 0. For any y ∈ Sn, let

g(y) =
∫

S1

nd−2|n2 − |C−1x|2|
|y − C−1x|d σ1(dx).

Then E0[f(YbTSn
)] =

∫
Sn

f(y)g(y)σn(dy). Thus by Lemma 3.1, we get that for any arbitrary
f ∈ bB(Rd), ∫

Sn

f(y)σn(dy) =
∫

Sn

f(y)g(y)σn(dy).

It follows that g(y) = 1 for all y ∈ Sn.
Now let y0 = (n, 0, 0, · · · , 0). Then y0 ∈ Sn and

g(y0) =
∫

S1

nd−2|n2 − |C−1x|2|
|y0 − C−1x|d σ1(dx)

=
∫

S1

nd−2|n2 − |x|2 + |x|2 − |C−1x|2|
|y0 − C−1x|d σ1(dx)

=
∫

S1

nd−2|n2 − |x|2 + (x2
2 − (x2

λ2
)2) + · · ·+ (x2

d − (xd

λd
)2)

|(n− x1)
2 + x2

2 + · · ·+ x2
n + (x2

λ2
)2 − x2

2 + · · ·+ (xd

λd
)2 − x2

d|
d
2
σ1(dx)

>

∫

S1

nd−2|n2 − |x|2|
|(n− x1)

2 + x2
2 + · · ·+ x2

d|
d
2
σ1(dx)

=
∫

S1

nd−2|n2 − |x|2|
|y0 − x|d σ1(dx).
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But on the other hand, for any arbitrary f ∈ bB(Rd),

E0[f(YbTSn
)] = E0{(f(YbTSn

)) ◦ θbTS1
}

= E0{EY (bTS1 )[f(YbTSn
)]}

=
∫

S1

Ex(f(YbTSn
))σ1(dx)

=
∫

S1

σ1(dx)
∫

Sn

nd−2|n2 − |x|2|
|y − x|d f(y)σn(dy)

=
∫

Sn

f(y)σn(dy)
∫

S1

nd−2|n2 − |x|2|
|y − x|d σ1(dx)

which follows that
∫

S1

nd−2|n2 − |x|2|
|y − x|d σ1(dx) = 1 for any y ∈ Sn. Therefore

g(y0) >

∫

S1

nd−2|n2 − |x|2|
|y0 − x|d σ1(dx) = 1.

This is a contradiction which yields that P 0(XTS1
∈ dy) is not the uniform distribution on

S1. Similarly, for any r > 0, P 0(XTSr
∈ dy) is not the uniform distribution on the sphere

Sr.

Proposition 3.1. Suppose that υ = 0, γ = 0, and A 6= αI for any α > 0. Then
P 0(XTSr

∈ dy) is not the uniform distribution on the sphere Sr for any r > 0.

Proof. Since X is genuinely d-dimensional, A is a symmetric positive-definite d×d ma-
trix. Thus the eigenvalues of A, namely, λ1, λ2, . . . , λd are positive. Without loss of general-
ity, we can assume that λ1 = min{λi : 1 ≤ i ≤ d}. There is an orthogonal matrix Q such that
QAQT = diag{λ1, λ2, · · · , λd}. If λ1 = · · · = λd, then A = QT diag{λ1, λ2, · · · , λd}Q = λ1I
which contradicts our condition. Therefore there exists some 1 ≤ i0 ≤ d such that λi0 > λ1.
For any t > 0, let Yt = QXt√

λ1
. Then for any z ∈ Rd, P̂Y1(z) = exp{− 1

2λ1
〈QT z,AQT z〉} =

exp{− 1
2 〈z, Bz〉}, where B = diag{1, λ2

λ1
, λ3

λ1
, . . . , λd

λ1
}. Consequently, {Yt} is a Lévy process

on Rd with generating triplet (B, 0, 0). For any r > 0, let TSr and T̂Sr denote the hitting
times of Sr for {Xt} and for {Yt} respectively. By Lemma 3.2, for any r > 0, P 0(YbTSr

∈ dy)
is not the uniform distribution on Sr. Since Q is an orthogonal matrix, |x| = |Qx| holds for
all x ∈ Rd. Thus for any r > 0,

TSr = inf{t > 0 : |Xt| = r} = inf
{

t > 0 : |Yt| = r√
λ1

}
= T̂S

r/
√

λ1
.

Hence XTSr
=
√

λ1Q
T YbTS

r/
√

λ1

and from the fact that Q is an orthogonal matrix it follows

that P 0(XTSr
∈ dy) is not the uniform distribution on Sr.

Lemma 3.3. If υ = 0 and γ = 0, then P 0(TSr > a) > 0 for any r > 0 and any a > 0.

Proof. Since X is genuinely d-dimensional, A is a symmetric positive-definite d × d
matrix. There is a symmetric positive-definite d × d matrix B such that A = B2. Let
Yt = B−1Xt. Then {Yt} is the standard Brownian motion on Rd. There is a positive
constant c > 0 such that |Xt| = |BYt| < c|Yt| holds for all t ≥ 0. For any r > 0, let TY

Sr
be

the first hitting time of Sr for {Yt}. Then TScr ≥ TY
Sr

for all r > 0 holds. Therefore we need
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only to show that P 0(TY
Sr

> a) > 0 for any r > 0 and any a > 0. By [2], this is true when
the dimension d ≥ 3. Now we can suppose that {Yt} is the Brownian motion on R3. Then
{Y1(t)} and {(Y1(t), Y2(t))} are the Brownian motion on R1 and on R2 respectively. Since
|Y1(t)| ≤ |Y (t)| and |(Y1(t), Y2(t))| ≤ |Y (t)| for all t > 0, our statement is also true when
d = 1 or d = 2.

Now we come to our main result in this section.

Theorem 3.1. Let X = {Ω,F , P x, Xt} be a genuinely d-dimensional Lévy Process on
Rd with generating triplet (A, υ, γ). Then P 0(XTBc

r
∈ dy) is the uniform distribution on Sr

for all r > 0 if and only if υ = 0, γ = 0 and A = αI for some α > 0 (that is , X is a scaled
Brownian motion).

Proof. The sufficiency can be deduced by the rotational invariance of Brownian
motion directly. Now we prove the necessity. Suppose that P 0(XTBc

r
∈ dy) is the uniform

distribution on Sr for all r > 0. By Corollary 2.2, we get υ = 0. Thus X is a continuous
Lévy process. So P 0[TBc

r
= TSr ] = 1 and then P 0(XTSr

∈ dy) is the uniform distribution on
Sr for all r > 0. If γ = 0, then from Proposition 3.1, it follows that A = αI for some α > 0.
Thus we need only to show that γ = 0.

Let H = A(Rd). It is easily seen that γ = γ1 + γ2 for some γ1 ∈ H and γ2 ∈ H⊥. If
H 6= Rd, then γ2 6= 0 since otherwise {Xt} is not genuinely d-dimensional. Let Yt = Xt−γ2t.
Then {Yt} is a Lévy process on Rd with generating triplet (A, 0, γ1). Since the linear space
generated by supp PY1 is H, P 0(Yt ∈ H, t > 0) = 1. Note that Xt = Yt + γ2t. We have
P 0(〈Xt, γ2〉 > 0, t > 0) = 1. Hence P 0(XTSr

∈ {z : 〈z, γ2〉 > 0}) = 1 for any r > 0. It
follows that P 0(XTSr

∈ dy) is not the uniform distribution on Sr. Therefore A(Rd) = Rd,
that is, A is symmetric positive-definite.

Without loss of generality, we may assume that γ = (1, 0, · · · , 0). Let Yt := Xt − tγ
for t ≥ 0. Then {Yt} is a symmetric Lévy Process with generating triplet (A, 0, 0). Let
S+

1 = {x ∈ S1 : x1 > 0}, S−1 = {x ∈ S1 : x1 ≤ 0}, B◦+
1 = {x ∈ B◦

1 : x1 > 0} and
B◦−

1 = {x ∈ B◦
1 : x1 ≤ 0}. Let TX = inf{t > 0 : Xt ∈ S1} and TY = inf{t > 0 : Yt ∈ S1}.

Since {x ∈ S1 : x1 = 0} is a polar set for {Yt}, P 0(YTY
∈ S+

1 ) = P 0(YTY
∈ S−1 ) = 1

2 .
If YTX (ω) ∈ B◦+

1 , then XTX (ω) = YTX (ω) + (TX(ω), 0, · · · , 0) ∈ S+
1 . If YTX (ω) ∈ B◦−

1

and TX(ω) < TY (ω), then XTX
(ω) ∈ S+

1 . Otherwise XTX
(ω) ∈ S−1 and then

|YTX
(ω)| = |XTX

(ω)− (TX(ω), 0, · · · , 0)| > |XTX
(ω)| = 1.

It follows that TX(ω) ≥ TY (ω) which is a contradiction. Therefore XTX
(ω) ∈ S+

1 whenever
TX(ω) < TY (ω).

If YTY
(ω) ∈ S+

1 , then

|XTY
(ω)| = |YTY

(ω) + (TY (ω), 0, · · · , 0)| > |YTY
(ω)| = 1.

Thus TX(ω) < TY (ω) and then XTX
(ω) ∈ S+

1 . Hence

P 0(XTX ∈ S+
1 , YTY ∈ S+

1 ) = P 0(YTY ∈ S+
1 ) =

1
2
.

By Lemma 3.3, we have P 0(TY > 2) > 0. It follows that

P 0(TY > 2, YTY
∈ S−1 ) =

1
2
P 0(TY > 2) > 0.

If YTY
∈ S−1 and TY > 2, then

|XTY
| = |YTY

+ (TY , 0, · · · , 0)| ≥ TY − |YTY
| = TY − 1 > 1
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and hence TX < TY . It implies that

P 0(XTX
∈ S+

1 , YTY
∈ S−1 ) ≥ P 0(XTX

∈ S+
1 , YTY

∈ S−1 , TY > 2)

= P 0(XTX
∈ S+

1 , YTY
∈ S−1 , TY > 2, TX < TY )

= P 0(YTY
∈ S−1 , TY > 2, TX < TY )

= P 0(YTY
∈ S−1 , TY > 2) > 0.

Therefore we have

P 0(XTX
∈ S+

1 ) = P 0(XTX
∈ S+

1 , YTY
∈ S+

1 ) + P 0(XTX
∈ S+

1 , YTY
∈ S−1 )

=
1
2

+ P 0(XTX
∈ S+

1 , YTY
∈ S−1 ) >

1
2
.

This contradicts the fact that that P 0(XTX
∈ dy) is the uniform distribution on S1. Conse-

quently, γ = 0. That completes the proof.

Actually it is shown that a continuous Lévy process is a (scaled) Brownian motion if
and only if the first exit distribution of X leaving some (then all) ball from the center is
uniformly distributed on the sphere.
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