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POSITIVE PERIODIC SOLUTIONS OF FIRST
AND SECOND ORDER ORDINARY

DIFFERENTIAL EQUATIONS∗∗

LI Yongxiang∗

Abstract

In this paper the existence results of positive ω-periodic solutions are obtained for
second order ordinary differential equation −u′′(t) = f(t, u(t)) (t ∈ R), and also for first
order ordinary differential equation u′(t) = f(t, u(t)) (t ∈ R), where f : R × R+ → R
is a continuous function which is ω-periodic in t. The discussion is based on the fixed
point index theory in cones.
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§ 1 . Introduction

The existence problems of periodic solutions for nonlinear ordinary differential equa-
tions, especially second order ordinary differential equations, have attracted many authors’
attention and concern (see [1–10]). Many theorems and methods of nonlinear functional
analysis have been applied to these problems. These theorems and methods are mainly the
upper and lower solutions method and monotone iterative technique (see [1–4]), the contin-
uation method of topological degree (see [5–7]), variational method and critical point theory
(see [8–10]), etc.

In recent years the fixed point theorems of cone mapping, especially the fixed point
theorem of Krasnoselskii’s cone expansion or compression type, have been availably applied
to the two-point boundary value problems of second order ordinary differential equations,
and some results of existence and multiplicity of positive solutions have been obtained (see
[11–14]). Lately, the present author [15] has also applied the Krasnoselskii’s fixed point
theorem to the periodic boundary value problems of second order nonlinear ordinary differ-
ential equations, and obtained existence results of positive periodic solutions. In this paper,
we will use more precise theory of the fixed point index in cones to discuss the existence of
positive periodic solutions of second order ordinary differential equation

−u′′(t) = f(t, u(t)), t ∈ R, (1.1)
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and first order ordinary differential equation

u′(t) = f(t, u(t)), t ∈ R, (1.2)

where f : R × R+ → R is a continuous function which is ω-periodic in t, and which is
not necessarily positive. We obtain the optimal conditions on the nonlinear term f so that
Equation (1.1) and Equation (1.2) have a positive periodic solution. Our new existence
result for Equation (1.1) is an improvement of the result in [15].

To be convenient, we introduce the following notations

f
0

= lim inf
u→0+

min
t∈[0,ω]

(f(t, u)/u), f0 = lim sup
u→0+

max
t∈[0,ω]

(f(t, u)/u),

f∞ = lim inf
u→+∞

min
t∈[0,ω]

(f(t, u)/u), f∞ = lim sup
u→+∞

max
t∈[0,ω]

(f(t, u)/u).

The main results of this paper are

Theorem 1.1. Suppose that f(t, u) ∈ C(R×R+) and is ω-periodic in t. If one of the
following conditions is satisfied

(H1) −∞ < f
0
, f0 < 0 < f∞,

(H2) −∞ < f∞, f∞ < 0 < f
0
,

then the second order ordinary differential equation (1.1) has at least one positive ω-periodic
solution.

Theorem 1.2. Suppose that f(t, u) ∈ C(R× R+) and is ω-periodic in t. If condition
(H1) or condition (H2) is satisfied, then the first order ordinary differential equation (1.2)
has at least one positive ω-periodic solution.

Remark 1.1. Noting that 0 is an eigenvalue of associated linear eigenvalue problems
of Equation (1.1) or Equation (1.2) with periodic boundary condition, if one inequality
concerning comparison with 0 in (H1) or (H2) of Theorem 1.1 or Theorem 1.2 is not true,
the existence of periodic solution to Equation (1.1) or Equation (1.2) can not be guaranteed.
Hence, the 0 is the optimal value in conditions (H1) and (H2).

§ 2 . Preliminaries

If (H1) or (H2) is satisfied, it is easy to prove that f(t, u)/u is lower-bounded for
t ∈ [0, ω] and u ≥ 0. By the periodicity of f(t, u) in t, there exists M > 0 such that

f(t, u) ≥ −Mu, ∀t ∈ R, u ≥ 0. (2.1)

Let f1(t, u) = f(t, u) + Mu, then f1(t, u) ≥ 0 for t ∈ R, u ≥ 0. Thus Equation (1.1) is
equivalent to

−u′′(t) + Mu(t) = f1(t, u(t)), t ∈ R, (2.2)

and Equation (1.2) is equivalent to

u′(t) + Mu(t) = f1(t, u(t)), t ∈ R. (2.3)

In the following, we mainly consider the second order differential equation (2.2), and
the first order differential equation (2.3) can be dealt with in a similar way. Let r2(t) be
unique solution of linear second order boundary value problem

{
−u′′(t) + Mu(t) = 0, 0 ≤ t ≤ ω,

u(0) = u(ω), u′(0) = u′(ω)− 1,
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which is explicitly given by

r2(t) =
cosh β(t− ω

2 )

2β sinh βω
2

, 0 ≤ t ≤ ω, (2.4)

where β =
√

M .
Let Cω(R) denote the Banach space of all continuous ω-periodic function u(t) with

norm ‖u‖ = max
0≤t≤ω

|u(t)|. Let C+
ω (R) be the cone of all nonnegative functions in Cω(R). For

h ∈ Cω(R), we consider the associated linear differential equation of Equation (2.2),

−u′′(t) + Mu(t) = h(t), t ∈ R. (2.5)

We have

Lemma 2.1. Let h ∈ Cω(R). The linear equation (2.5) has a unique ω-periodic solu-
tion u(t) which is given by

u(t) =
∫ t

t−ω

r2(t− s)h(s) ds, t ∈ R. (2.6)

Proof. Making Derivation to Equation (2.6) and using the boundary condition of
r2(t), we obtain that

u′′(t) = (r′(0)− r′(ω))h(t) +
∫ t

t−ω

r2
′′(t− s)h(s) ds

= −h(t)−M

∫ t

t−ω

r2(t− s)h(s) ds

= −h(t)−Mu(t) .

Therefore, u(t) satisfies the equation (2.5). Let τ = s + ω , it follows from (2.6) that

u(t) =
∫ t+ω

t

r2(t + ω − τ)h(τ − ω) dτ

=
∫ t+ω

t

r2(t + ω − τ)h(τ) dτ = u(t + ω).

Hence, u(t) is a ω-periodic solution of Equation (2.5). From the maximum principle for
second order periodic boundary value problems (see [2]), it is easy to see that u(t) is the
unique ω-periodic solution of Equation (2.5).

Remark 2.1. Let h ∈ Cω(R). Then the linear first order differential equation

u′(t) + Mu(t) = h(t), t ∈ R (2.7)

has a unique ω-periodic solution u(t) given by

u(t) =
∫ t

t−ω

r1(t− s)h(s) ds, t ∈ R,

where r1(t) is the unique solution of linear first order boundary value problem
{

u′(t) + Mu(t) = 0, 0 ≤ t ≤ ω,

u(0) = u(ω) + 1,
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which is expressed by

r1(t) =
e−Mt

1− e−Mt
, 0 ≤ t ≤ ω.

By Lemma 2.1, if h ∈ C+
ω (R) and h(t) 6≡ 0, then the ω-periodic solution of Equation

(2.5) u(t) > 0 for every t ∈ R , and we term it the positive ω-periodic solution.
We now define a mapping A : C+

ω (R) → C+
ω (R) by

(Au)(t) =
∫ t

t−ω

r2(t− s)f1(s, u(s)) ds. (2.8)

By Lemma 2.1, positive ω-periodic solution of Equation (1.1) is equivalent to nontrivial fixed
point of A. We will find the non-zero fixed point by using the fixed point index theory in
cones. Choosing the sub-cone K of C+

ω (R) by

K = {u ∈ C+
ω (R) | u(t) ≥ δ‖u‖, ∀t ∈ R },

where δ =
(
cosh βω

2

)−1, we have

Lemma 2.2. A(K) ⊂ K , and A : K → K is completely continuous.

Proof. From (2.4) it is easy to see that

1
2β sinh βω

2

≤ r2(t) ≤
cosh βω

2

2β sinh βω
2

, 0 ≤ t ≤ ω. (2.9)

Let u ∈ K. From (2.8) and the latter inequality above we have

(Au)(t) ≤ cosh βω
2

2β sinh βω
2

∫ t

t−ω

f1(s, u(s)) ds

=
cosh βω

2

2β sinh βω
2

∫ ω

0

f1(s, u(s)) ds,

and therefore

‖Au‖ ≤ cosh βω
2

2β sinh βω
2

∫ ω

0

f1(s, u(s)) ds.

Using (2.8) and the former inequality of (2.9), we obtain that

(Au)(t) ≥ 1
2β sinh βω

2

∫ t

t−ω

f1(s, u(s)) ds

=
1

2β sinh βω
2

∫ ω

0

f1(s, u(s)) ds

≥
(
cosh

βω

2

)−1

‖Au‖,

which implies Au ∈ K. Thus A(K) ⊂ K .
Obviously, A : K → K is continuous. Let D ⊂ K be a bounded set. For every u ∈ D,

since

(Au)′ (t) =
∫ t

t−ω

r2
′(t− s)f1(s, u(s)) ds,
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it follows that {(Au)′ | u ∈ D } is a bounded set. Consequently, A(D) is an equicontin-
uous and bounded family of functions. Thus, by Arzela-Ascoli’s theorem, A : K → K is
completely continuous.

We recall some concepts and conclusions on the fixed point index in [16], which will be
used in the proof of Theorem 1.1 and Theorem 1.2. Let E be a Banach space and K ⊂ E
be a closed convex cone in E. Assume Ω is a bounded open subset of E with boundary ∂Ω,
and K ∩ Ω 6= ∅ . Let A : K ∩ Ω → K be a completely continuous mapping. If Au 6= u for
any u ∈ K ∩ ∂Ω, then the fixed point index i (A,K ∩ Ω,K) has definition. One important
fact is that if i (A, K ∩ Ω,K) 6= 0, then A has a fixed point in K ∩ Ω.

For r > 0, let Kr = {u ∈ K | ‖u‖ < r}, and ∂Kr = {u ∈ K | ‖u‖ = r}, which is the
relative boundary of Kr in K. The following two lemmas are needed in our argument.

Lemma 2.3. (cf. [16]) Let A : K → K be completely continuous mapping. If λAu 6= u
for every u ∈ ∂Kr and 0 < λ ≤ 1, then i (A,Kr,K) = 1.

Lemma 2.4. (cf. [16]) Let A : K → K be completely continuous mapping. Suppose
that the following two conditions are satisfied:

( i ) inf
u∈∂Kr

‖Au‖ > 0.

(ii) λAu 6= u for every u ∈ ∂Kr and λ ≥ 1.
Then, i (A,Kr,K) = 0.

§ 3 . Proof of the Main Results

In this section we only prove Theorem 1.1, and Theorem 1.2 can be proved in a com-
pletely analogical way.

Proof of Theorem 1.1. We show respectively that the mapping A defined by (2.8)
has a non-zero fixed point in both cases that (H1) and (H2) are satisfied.

Case (i) Assume (H1) is satisfied. From the assumption of f0 < 0 and the definition
of f0 , there exist ε ∈ (0, M) and r0 > 0, such that

f(t, u) ≤ −ε u, ∀ t ∈ [0, ω], 0 ≤ u ≤ r0. (3.1)

Let r ∈ (0, r0), we now prove that A satisfies the hypothesis of Lemma 2.3 in Kr , namely
λAu 6= u for every u ∈ ∂Kr and 0 < λ ≤ 1 . In fact, if there exist u0 ∈ ∂Kr and 0 < λ0 ≤ 1
such that λ0 Au0 = u0 , then by the definition of A and Lemma 2.1, u0(t) satisfies the
differential equation

−u0
′′(t) + Mu0(t) = λ0 f1(t, u0(t)), t ∈ R. (3.2)

From (3.1), (3.2) and the definition of f1, it follows that

−u0
′′(t) + Mu0(t) ≤ λ0(Mu0(t)− ε u0(t) ) ≤ (M − ε)u0(t).

Integrating the both sides of this inequality from 0 to ω and using the periodicity of u0(t),
we get

M

∫ ω

0

u0(t) dt ≤ (M − ε)
∫ ω

0

u0(t) dt.

By the definition of K, u0(t) ≥ δ‖u0‖ = δ r, and therefore
∫ ω

0
u0(t) dt > 0 . It follows that

M ≤ M − ε , which is a contradiction. Hence by Lemma 2.3, we have

i (A, Kr, K) = 1. (3.3)
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On the other hand, since f∞ > 0, there exist ε > 0 and H > 0 such that

f(t, u) ≥ ε u, ∀ t ∈ [0, ω], u ≥ H. (3.4)

Choose R > max{H
δ , r0}, then 0 < r < R < +∞. Let u ∈ ∂KR. Since u(t) ≥ δ‖u‖ > H for

every t ∈ R, from (2.9), (3.4) and the definition of K it follows that

‖Au‖ ≥ (Au)(ω) =
∫ ω

0

r2(ω − s) f1(s, u(s)) ds

≥ 1
2β sinh βω

2

∫ ω

0

f1(s, u(s)) ds

≥ M + ε

2β sinh βω
2

∫ ω

0

u(s) ds

≥ (M + ε) δ ω

2β sinh βω
2

‖u‖.

(3.5)

Hence inf
u∈∂KR

‖Au‖ > 0, namely the hypothesis (i) of Lemma 2.4 is satisfied. Next we show

that if R is large enough, then λAu 6= u for every u ∈ ∂KR and λ ≥ 1. In fact, if there
exist u0 ∈ ∂KR and λ0 ≥ 1 such that λ0 Au0 = u0, then u0(t) satisfies the equation (3.2).
Set C = max

0≤t≤ω, 0≤u≤H
(|f(t, u)|+ εH). Then it is clear from (3.4) to see that

f(t, u) ≥ ε u− C, ∀ t ∈ R, u ≥ 0.

From this and (3.2) it follows that

−u0
′′(t) + Mu0(t) ≥ f1(t, u0(t)) ≥ (M + ε)u0(t)− C.

Integrating this inequality from 0 to ω , we get

M

∫ ω

0

u0(t) dt ≥ (M + ε)
∫ ω

0

u0(t) dt− Cω,

which implies that ∫ ω

0

u0(t) dt ≤ Cω

ε
. (3.6)

Since u0 ∈ K , by the definition of K, u0(t) ≥ δ‖u0‖, which implies that
∫ ω

0
u0(t) dt ≥

ωδ ‖u0‖. Thus from (3.6) it follows that

‖u0‖ ≤ 1
δω

∫ ω

0

u0(t) dt ≤ C

δ ε
. (3.7)

Let R > max{H
δ , r0,

C
δε}. Then for every u ∈ ∂KR and λ ≥ 1, λAu 6= u . Hence the

hypothesis (ii) of Lemma 2.4 is also satisfied. By Lemma 2.4, we obtain that

i (A, KR, K) = 0. (3.8)

From (3.3), (3.8) and the additivity of fixed point index, we have

i (A, KR \Kr, K) = i(A, KR, K)− i(A, Kr, K) = −1.

Therefore A has a fixed point in KR \ Kr , which is the positive ω-periodic solution of
Equation (1.1).
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Case (ii) Assume (H2) is satisfied. Since f
0

> 0, there exist ε > 0 and η > 0 such
that

f(t, u) ≥ ε u, ∀ t ∈ [0, ω], 0 ≤ u ≤ η. (3.9)

Let r ∈ (0, η). Then for every u ∈ ∂Kr , through the argument analogous to (3.5), we have

‖Au‖ ≥ (M + ε) δ ω

2β sinh βω
2

‖u‖.

Hence inf
u∈∂Kr

‖Au‖ > 0 . we now show that λ Au 6= u for every u ∈ ∂Kr and λ ≥ 1 . In fact,

if there exist u0 ∈ ∂Kr and λ0 ≥ 1 such that λ0 Au0 = u0, then u0(t) satisfies the equation
(3.2), and from (3.2) and (3.9) it follows that

−u0
′′(t) + Mu0(t) ≥ f1(t, u0(t)) ≥ (M + ε)u0(t).

Integrating this inequality from 0 to ω, we get

M

∫ ω

0

u0(t) dt ≥ (M + ε)
∫ ω

0

u0(t) dt.

Since
∫ ω

0
u0(t) dt > 0, from the above inequality we see that M ≥ M + ε, which is a

contradiction. Hence A satisfies the hypotheses of Lemma 2.4 in Kr. By Lemma 2.4,

i (A, Kr, K) = 0. (3.10)

Since f∞ < 0 , there exist ε ∈ (0, M) and H > 0 such that

f(t, u) ≤ −ε u, ∀ t ∈ [0, ω], u ≥ H.

Set C = max
0≤t≤ω, 0≤u≤H

(|f(t, u)|+ εH). It is clear that

f(t, u) ≤ −ε u + C, ∀ t ∈ R, u ≥ 0. (3.11)

If 0 < λ0 ≤ 1 and u0 ∈ K satisfy λ0 Au0 = u0 , then (3.2) is valid. From (3.2) and (3.11),
it follows that

−u0
′′(t) + Mu0(t) ≤ f1(t, u0(t)) ≤ (M − ε)u0(t) + C.

Integrating this inequality, we get
∫ ω

0

u0(t) dt ≤ Cω

ε
.

Noticing
∫ ω

0
u0(t) dt ≥ ωδ ‖u0‖ , we see that u0 satisfies (3.7). Choose R > max{ C

δε , η}, then
λAu 6= u for any u ∈ ∂KR and 0 < λ ≤ 1. Therefore, A satisfies the hypothesis of Lemma
2.3 in KR. By Lemma 2.3,

i (A, KR, K) = 1. (3.12)

From (3.10) and (3.12), it follows that

i (A, KR \Kr, K) = i(A, KR, K)− i(A, Kr, K) = 1.

Therefore A has a fixed point in KR \ Kr , which is the positive ω-periodic solution of
Equation (1.1).

The proof is completed.
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Example 3.1. Consider the second order differential equation

−u′′ = a1(t)u + a2(t)u2 + · · ·+ an(t)un, t ∈ R, (3.13)

where n ≥ 2, ai(t) ∈ Cω(R), i = 1, 2, · · · , n. If a1(t) < 0, an(t) > 0, for t ∈ [0, ω], then
f(t, u) = a1(t)u + a2(t)u2 + · · · + an(t)un satisfies the condition (H1) of Theorem 1.1. By
Theorem 1.1, Equation (3.13) has at least one positive ω-periodic solution.

Example 3.2. Consider the following differential equation

−u′′ = a(t)
√

u − b(t)u + h(t), t ∈ R,

where a(t), b(t), h(t) ∈ Cω(R) , and a(t), b(t), h(t) > 0 for t ∈ [0, ω] . It is easy to verify
that the condition (H2) is satisfied. By Theorem 1.1, this equation has at least one positive
ω-periodic solution.
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