SOME REMARKS ABOUT THE *R*-BOUNDEDNESS**

BU SHANGQUAN*

Abstract

Let X, Y be UMD-spaces that have property (α) , $1 and let <math>\mathcal{M}$ be an R-bounded subset in $\mathcal{L}(X, Y)$. It is shown that $\{T_{(M_k)_k \in \mathbb{Z}} : M_k, k(M_{k+1} - M_k) \in \mathcal{M} \text{ for } k \in \mathbb{Z}\}$ is an R-bounded subset of $\mathcal{L}(L^p(0, 2\pi; X), L^p(0, 2\pi; Y))$, where $T_{(M_k)_{k \in \mathbb{Z}}}$ denotes the L^p -multiplier given by the sequence $(M_k)_{k \in \mathbb{Z}}$. This generalizes a result of Venni [10]. The author uses this result to study the strongly L^p -well-posedness of evolution equations with periodic boundary condition. Analogous results for operator-valued L^p -multipliers on \mathbb{R} are also given.

 Keywords Operator-valued Fourier multiplier, Maximal regularity, Rademacher boundedness
 2000 MR Subject Classification 42A45, 42C99, 46B20, 47D06

Recent developments of operator-valued Fourier multipliers (on $[0, 2\pi]$ or \mathbb{R}) show that one can not expect to generalize the classical Fourier multiplier theorems to the operatorvalued case without using the notion of *R*-boundedness. More precisely, let *X*, *Y* be Banach spaces and let $1 . If <math>(M_k)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$ is an L^p -multiplier, then the sequence $(M_k)_{k \in \mathbb{Z}}$ must be *R*-bounded (see [1, Proposition 1.11]), where we denote by $\mathcal{L}(X, Y)$ the set of all bounded linear operators from *X* to *Y*. Conversely if *X*, *Y* are UMD-spaces (see [3] for the definition and further properties concerning this notion), 1 and if $both <math>(M_k)_{k \in \mathbb{Z}}$ and $(k(M_{k+1} - M_k))_{k \in \mathbb{Z}}$ are *R*-bounded, then the sequence $(M_k)_{k \in \mathbb{Z}}$ is an L^p -multiplier (see [1, Theorem 1.3]). One has the same phenomenon for operator-valued Fourier multipliers on \mathbb{R} (see e.g. [4] or [11]). Such kind of results can be applied to the study of the strongly L^p -well-posedness of evolution equations with Dirichlet or periodic boundary conditions [1, 11].

In this paper we show that when X, Y are UMD-spaces, 1 and assume $that <math>\mathcal{M} \subset \mathcal{L}(X,Y)$ is R-bounded, then $\{T_{(M_k)_{k\in\mathbb{Z}}} : M_k, k(M_{k+1} - M_k) \in \mathcal{M} \ (k \in \mathbb{Z})\}$ is R-bounded in $\mathcal{L}(L^p(0, 2\pi; X), L^p(0, 2\pi; Y))$, where $T_{(M_k)_{k\in\mathbb{Z}}}$ denotes the bounded linear operator from $L^p(0, 2\pi; X)$ to $L^p(0, 2\pi; Y)$ defined by the multiplier $(M_k)_{k\in\mathbb{Z}}$. This generalizes our previous result (see [1, Theorem 1.3]) and a result of A. Venni, where A. Venni has only considered the case X = Y and $\mathcal{M} = \Omega I$ which is trivially R-bounded, where Ω is a bounded subset of \mathbb{C} and I denotes the identity of X (see [10]). We also establish similar results for

Manuscript received October 8, 2002.

^{*}Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China.

E-mail: sbu@math.tsinghua.edu.cn

^{**}Project supported by the National Natural Science Foundation of China (No.10271064) and the Excellent Young Teachers Program of the Ministry of Education of China.

BU, S. Q.

operator-valued L^p -multipliers on \mathbb{R} . We then apply the obtained results to the study of the strongly L^p -well-posedness of evolution equations with different boundary conditions.

First we recall some notions. Let X be a complex Banach space and $1 \le p < \infty$. We consider the Banach space $L^p(0, 2\pi; X)$ with norm

$$||f||_p := \left(\int_0^{2\pi} ||f(t)||^p dt\right)^{\frac{1}{p}}.$$

For $f \in L^p(0, 2\pi; X)$, we denote by

$$\hat{f}(k) := \frac{1}{2\pi} \int_0^{2\pi} e^{-ikt} f(t) dt$$

the k-th Fourier coefficient of f, where $k \in \mathbb{Z}$. For $k \in \mathbb{Z}$, $x \in X$ we let $e_k(t) = e^{ikt}$ and $(e_k \otimes x)(t) = e_k(t)x$ $(t \in \mathbb{R})$. Then for $x_k \in X$, $k = -m, -m + 1, \cdots, m$, $f = \sum_{k=-m}^{m} e_k \otimes x_k$ is the X-valued trigonometric polynomial given by $f(t) = \sum_{k=-m}^{m} e^{ikt}x_k$ $(t \in \mathbb{R})$. Then $\hat{f}(k) = 0$ if |k| > m. The space $\mathcal{T}(X)$ of all X-valued trigonometric polynomials is dense in $L^p(0, 2\pi; X)$.

Let X, Y be Banach spaces and let $\mathcal{L}(X, Y)$ be the set of all bounded linear operators from X to Y. If $(M_k)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$ is a sequence, we consider the associated linear mapping $M : \mathcal{T}(X) \to \mathcal{T}(Y)$ given by

$$M\Big(\sum_k e_k \otimes x_k\Big) = \sum_k e_k \otimes M_k x_k.$$

We say that the sequence $(M_k)_{k \in \mathbb{Z}}$ is an L^p -multiplier, if there exists a constant C such that

$$\left\|\sum_{k} e_{k} \otimes M_{k} x_{k}\right\|_{p} \leq C \left\|\sum_{k} e_{k} \otimes x_{k}\right\|_{p}$$

for all X-valued trigonometric polynomials $\sum_{k} e_k \otimes x_k$. This is equivalent to say that there exists a unique operator $\widetilde{M} \in \mathcal{L}(L^p(0, 2\pi; X), L^p(0, 2\pi; Y))$ extending the operator M.

When $X = Y = \mathbb{C}$, the classical Marcinkiewicz multiplier theorem states that when $(m_k)_{k \in \mathbb{Z}} \subset \mathbb{C}$ is such that

$$\sup_{k \in \mathbb{Z}} |m_k| < \infty \quad \text{and} \quad \sup_{j \in \mathbb{N}} \sum_{2^j \le |k| < 2^{j+1}} |m_{k+1} - m_k| < \infty,$$

then $(m_k)_{k\in\mathbb{Z}}$ is an L^p -multiplier whenever $1 . When <math>(M_k)_{k\in\mathbb{Z}} \subset \mathcal{L}(X,Y)$, the *R*-boundedness of the multiplier is required. Recall that a family $\mathcal{T} \subset \mathcal{L}(X,Y)$ is called Rademacher bounded (*R*-bounded, in short), if there exists $c_q \geq 0$ such that

$$\left\|\sum_{j=1}^{n} \gamma_{j} \otimes T_{j} x_{j}\right\|_{q} \leq c_{q} \left\|\sum_{j=1}^{n} \gamma_{j} \otimes x_{j}\right\|_{q}$$

for all $T_1, T_2, \dots, T_n \in \mathcal{T}$, $x_1, x_2, \dots, x_n \in X$ and $n \in \mathbb{N}$, where $1 \leq q < \infty$ and γ_j is the *j*-th Rademacher functions on [0, 1] given by $\gamma_j(t) = \operatorname{sgn}(\sin(2^n \pi t))$ (see [7]). Note that for $j \geq 1$ and $x \in X$, we denote by $\gamma_j \otimes x$ the X-valued function $\gamma_j x$ (see [1, 2, 5, 11, 12]). By

Kahane's inequality (see [7, Theorem 1.e.13]), if such constant c_q exists for some $1 \leq q < \infty$, then there also exists such constant for all $1 \leq q < \infty$. We denote by $R_q(\mathcal{T})$ the smallest constant c_q . $R_q(\mathcal{T})$ is called the *R*-bounded of \mathcal{T} . It is known that *R*-boundedness is strictly stronger than the boundedness in norm unless X is of cotype 2 and Y is of type 2 (see [1, Proposition 1.13]).

The classical Marcinkiewicz multiplier theorem has been generalized in the operatorvalued case in the following way (see [1, Theorem 1.3]):

Theorem 1. Let X, Y be UMD-spaces and let $(M_k)_{k \in \mathbb{Z}} \subset \mathcal{L}(X, Y)$. Assume that both sets $\{M_k : k \in \mathbb{Z}\}$ and $\{k(M_{k+1} - M_k) : k \in \mathbb{Z}\}$ are R-bounded, then $(M_k)_{k \in \mathbb{Z}}$ is an L^p -multiplier whenever 1 .

Notice that it has been shown that the *R*-boundedness of the sequence $(M_k)_{k\in\mathbb{Z}}$ is a necessary condition for $(M_k)_{k\in\mathbb{Z}}$ to be an L^p -multiplier (see [1, Proposition 1.11]).

We will use the subsequent geometric property of Banach spaces introduced by Pisier [9] and later used by Clément-de Pagter-Sukochev-Witvliet [5] in the study of the interplay between *R*-boundedness and unconditional Schauder decompositions. A Banach space X has the property (α) , if there exists a constant $C \geq 0$ such that

$$\left(\int_{0}^{1}\int_{0}^{1}\left\|\sum_{i,j=1}^{n}\alpha_{ij}\gamma_{i}(t)\gamma_{j}(s)x_{ij}\right\|^{2}dtds\right)^{1/2} \leq C\left(\int_{0}^{1}\int_{0}^{1}\left\|\sum_{i,j=1}^{n}\gamma_{i}(t)\gamma_{j}(s)x_{ij}\right\|^{2}dtds\right)^{1/2}$$

for all $x_{ij} \in X$, $\alpha_{ij} = \pm 1$ $(i, j = 1, 2, \dots, n)$ and for all $n \in \mathbb{N}$.

An unconditional Schauder decomposition of a Banach space X is a family $(\Lambda_k)_{k\geq 0}$ of bounded linear projections on X such that

(a) $\Delta_k \Delta_\ell = 0$ if $k \neq \ell$,

(b) $\sum_{k=0}^{\infty} \Delta_{\pi(k)} x = x$ for all $x \in X$ and for each permutation $\pi : \mathbb{N}_0 \to \mathbb{N}_0$, where $\mathbb{N}_0 = \mathbb{N} \cup \{0\}.$

It is well known that when X is a UMD-space, $1 , for <math>k \in \mathbb{N}$ if we define

$$\Delta_k f = \sum_{2^{k-1} \le |m| < 2^k} e_m \otimes \hat{f}(m) \quad \text{and} \quad \Delta_0 f = e_0 \otimes \hat{f}(0), \quad f \in L^p(0, 2\pi; X)$$

then $(\Delta_k)_{k \in \mathbb{N}_0}$ is an unconditional Schauder decomposition of $L^p(0, 2\pi; X)$ (see [3] for a proof).

We will use the following result of Clément-de Pagter-Sukochev-Witwiliet which gives the interplay between unconditional Schauder decomposition and the R-boundedness (see [5, Theorem 3.14]).

Theorem 2. Let X be a Banach space that has property (α) , let $\mathcal{M} \subset \mathcal{L}(X)$ be an R-bounded subset and let $(\Delta_k)_{k\geq 0}$ be an unconditional Schauder decomposition of X. Then

$$\mathcal{S} = \left\{ \sum_{k=0}^{\infty} T_k \Delta_k : T_k \in \mathcal{T}, \ \Delta_k T_k = T_k \Delta_k \text{ for all } k \ge 0 \right\}$$

is an R-bounded subset of $\mathcal{L}(X)$.

Notice that it has been shown by Clément-de Pagter-Sukochev-Witwiliet that if $(T_k)_{k\geq 0}$ $\subset \mathcal{L}(X)$ is *R*-bounded and if $(\Delta_k)_{k\geq 0}$ is an unconditional Schauder decomposition of *X* satisfying $T_k\Delta_k = \Delta_kT_k$ for $k\geq 0$, then the sum $\sum_{k=0}^{\infty}T_k\Delta_k$ converges and defines a bounded BU, S. Q.

linear operator on X (see [5, Theorem 3.4]). One aim of this paper is to use Theorem 2 to obtain the following result which may be considered as a generalization of Theorem 1.

Theorem 3. Let X, Y be UMD-spaces that have property (α) , let \mathcal{M} be an R-bounded subset in $\mathcal{L}(X,Y)$. Then $\{T_{(M_k)_{k\in\mathbb{Z}}}: M_k, k(M_{k+1} - M_k) \in \mathcal{M} \text{ for } k \in \mathbb{Z}\}$ is an R-bounded subset of $\mathcal{L}(L^p(0, 2\pi; X), L^p(0, 2\pi; Y))$, where $1 and <math>T_{(M_k)_{k\in\mathbb{Z}}}$ denotes the bounded linear operator from $L^p(0, 2\pi; X)$ to $L^p(0, 2\pi; Y)$ defined by the multiplier $(M_k)_{k\in\mathbb{Z}}$.

Proof. First assume that X = Y. Let $Z = \{f \in L^p(0, 2\pi; X) : \hat{f}(k) = 0 \text{ for all } k \leq 0\}$. Since X is a UMD-space, the Riesz projection from $L^p(0, 2\pi; X)$ to Z is bounded. Hence to show the theorem, it suffices to show that $\{T_{(M_k)_{k\in\mathbb{Z}}} : M_k = 0 \text{ for all } k \leq 0 \text{ and } M_k, k(M_{k+1} - M_k) \in \mathcal{M} \text{ for } k \in \mathbb{Z}\}$ is an R-bounded subset of $\mathcal{L}(L^p(0, 2\pi; X))$.

Let $(M_k)_{k\in\mathbb{Z}}$ be such that $M_k = 0$ for $k \leq 0$ and $M_k, k(M_{k+1} - M_k) \in \mathcal{M}$ for all $k \geq 0$. If A is a bounded linear operator on X, we denote by J_A the bounded linear operator on $L^p(0, 2\pi; X)$ defined by $(J_A f)(t) = A(f(t))$ for $t \in [0, 2\pi]$ and $f \in L^p(0, 2\pi; X)$. Then it is easy to verify that both $\{J_{M_k} : k \in \mathbb{Z}\}$ and $\{k(J_{M_{k+1}} - J_{M_k}) : k \in \mathbb{Z}\}$ are subsets of $\{J_M : M \in \mathcal{M}\}$ which is R-bounded by assumption and Fubini's Theorem. Now the proof of Theorem 1 given in [1] implies that

$$T_{(M_k)_{k\in\mathbb{Z}}} = \sum_{n\geq 1} J_{M_{2^{n-1}}} P_{2^{n-1}} \Delta_n + \sum_{n\geq 1} J_{M_{2^{n-1}}} P_{2^{n-1}} \Delta_n$$
$$+ \sum_{n\geq 1} \Big[\sum_{k=2^{n-1}+1}^{2^n-1} (J_{M_k} - J_{M_{k-1}}) P_k \Big] \Delta_n$$
$$= T_{(M_k)_{k\in\mathbb{Z}}}^{(1)} + T_{(M_k)_{k\in\mathbb{Z}}}^{(2)} + T_{(M_k)_{k\in\mathbb{Z}}}^{(3)},$$

where P_k is the bounded linear projection on $L^p(0, 2\pi; X)$ defined by

$$P_k\Big(\sum_{l\in\mathbb{Z}}e_l\otimes x_l\Big)=\sum_{l\geq k}e_l\otimes x_l,$$

and $(\Delta_n)_{n>0}$ is the unconditional Schauder decomposition of $L^p(0, 2\pi; X)$ given by

$$\Delta_n f = \sum_{2^{n-1} \le |k| < 2^n} e_k \otimes \hat{f}(k) \quad \text{for } n \ge 1 \qquad \text{and} \qquad \Delta_0 f = e_0 \otimes \hat{f}(0).$$

Since $\{P_l : l \in \mathbb{Z}\}$ is *R*-bounded (see [1, Lemma 1.10]) and $\{J_{M_k} : k \in \mathbb{Z}\}$ is a subset of $\{J_M : M \in \mathcal{M}\}$ which is *R*-bounded, by Theorem 2,

$$\{T_{(M_k)_{k\in\mathbb{Z}}}^{(1)} + T_{(M_k)_{k\in\mathbb{Z}}}^{(2)} : M_k = 0, \ n \in \mathbb{N}, \text{ for all } k \le 0 \text{ and } M_k, k(M_{k+1} - M_k) \in \mathcal{M} \text{ for } k \in \mathbb{Z}\}$$

is *R*-bounded. We should mention that when X has property (α) and $1 , the space <math>L^p(0, 2\pi; X)$ has also property (α), and

$$\mathcal{M}_1\mathcal{M}_2 = \{TS: T \in \mathcal{M}_1, S \in \mathcal{M}_2\}$$

is *R*-bounded whenever \mathcal{M}_1 and \mathcal{M}_2 are *R*-bounded subsets. For the *R*-boundedness of the third part in the decomposition of $T_{(M_k)_{k\in\mathbb{Z}}}$, by Theorem 2 we need to show that the set

$$\left\{\sum_{k=2^{n-1}+1}^{2^{n}-1} (J_{M_{k}} - J_{M_{k-1}})P_{k} : n \in \mathbb{N}, \ M_{k} = 0 \text{ for all } k \le 0$$

and $M_{k}, k(M_{k+1} - M_{k}) \in \mathcal{M}$ for $k \in \mathbb{Z}\right\}$

is R-bounded. This follows from the fact that the complex absolute convex hull of an R-bounded subset is still R-bounded (see [5, Lemma 3.3]) and the trivial estimate

$$\sum_{k=2^{n-1}+1}^{2^n-1} 1/k \le 1$$

Now we consider the general case. Since X, Y are UMD-spaces that have property (α) , also $X \oplus Y$ is a UMD-space and has property (α) . Define $M'_k \in \mathcal{L}(X \otimes Y)$ by

$$M'_k(x,y) = (0, M_k x).$$

It follows from the first part of the proof that

$$\{T_{(M'_k)_{k\in\mathbb{Z}}}: M_k, k(M_{k+1} - M_k) \in \mathcal{M} \text{ for } k \in \mathbb{Z}\}\$$

is R-bounded. Then this implies that

$$\{T_{(M_k)_{k\in\mathbb{Z}}}: M_k, k(M_{k+1} - M_k) \in \mathcal{M} \text{ for } k \in \mathbb{Z}\}\$$

is *R*-bounded. The proof is completed.

The above result can be also considered as a generalization of a result of A. Venni [10, Theorem 3], where he has established the result in the case $\mathcal{M} = \Omega I$ with Ω a bounded subset of \mathbb{C} and I denotes the identity of X, in this case \mathcal{M} is trivially R-bounded.

We have shown that each bounded subset in $\mathcal{L}(X, Y)$ is *R*-bounded if and only if X is of cotype 2 and Y is of type 2 (see [1, Proposition 1.13]). One immediate application of this result and Theorem 3 is the following

Corollary 1. Let X, Y be UMD-spaces that have property (α). Assume that X is of cotype 2 and Y is of type 2. Then

$$\left\{ T_{(M_k)_{k\in\mathbb{Z}}} : M_k \in \mathcal{L}(X,Y), \ \sup_{k\in\mathbb{Z}} \|M_k\| \le 1, \ \sup_{k\in\mathbb{Z}} \|k(M_{k+1} - M_k)\| \le 1 \right\}$$

is R-bounded subset in $\mathcal{L}(L^p(0, 2\pi; X), L^p(0, 2\pi; Y))$.

Next we give one application of Theorem 3 to the study of the strongly L^p -wellposedness of evolution equation with periodic boundary condition. Let X be a complex Banach space and let $1 \le p < \infty$. We denote

$$H_{\text{per}}^{1,p} = \left\{ f \in L^p(0,2\pi;X) : \text{ there exists } g \in L^p(0,2\pi;X) \text{ and } x \in X \text{ such that} \right.$$
$$f(t) = x + \int_0^t g(s)ds \quad \text{ for } t \in [0,2\pi] \quad \text{ and } \quad \int_0^{2\pi} g(s)ds = 0 \right\}$$

the periodic Sobolev space. Each function in $H_{\text{per}}^{1,p}$ can be identified with a continuous function and it is a.e. differentiable.

Now let A be a closed operator on X. For $1 \le p < \infty$ and $f \in L^p(0, 2\pi; X)$, we consider the problem

$$P_{per} \qquad \begin{cases} u'(t) = Au(t) + f(t), & t \in [0, 2\pi], \\ u(0) = u(2\pi). \end{cases}$$

By a strong L^p -solution we understand a function $u \in H^{1,p}_{per}$ such that $u(t) \in D(A)$ and u'(t) = Au(t) + f(t) for almost all $t \in [0, 2\pi]$. We say that the problem P_{per} is strongly

 L^p -well-posed if such solution exists and is unique for each $f \in L^p(0, 2\pi; X)$. In [1], the following characterization based on Theorem 1 of the strongly L^p -well-posedness for P_{per} was given.

Theorem 4. Assume that X is a UMD-space and 1 . Then the following assertions are equivalent:

- (i) The problem P_{per} is strongly L^p -well-posed;
- (ii) $i\mathbb{Z} \subset \varrho(A)$ and $(kR(ik, A))_{k\in\mathbb{Z}}$ is an L^p -multiplier;
- (iii) $i\mathbb{Z} \subset \varrho(A)$ and the sequence $(kR(ik, A))_{k \in \mathbb{Z}}$ is R-bounded.

Let X be a complex Banach space and $1 \le p < \infty$. We denote by $\operatorname{Rad}_p(X)$ the closure of

$$\left\{\sum_{j=1}^n \gamma_j \otimes x_j : x_j \in X, n \in \mathbb{N}\right\}$$

in $L^p(0, 1; X)$. By Kahane's inequality (see [7, Theorem 1.e.13]), $\operatorname{Rad}_p(X)$ is independent from the choice of $1 \leq p < \infty$ and the norms induced by $L^p(0, 1; X)$ on $\operatorname{Rad}_p(X)$ are all equivalent, so we will denote $\operatorname{Rad}_p(X)$ simply by $\operatorname{Rad}(X)$ equipped with the norm induced by $L^2(0, 1; X)$. It is known that

$$\operatorname{Rad}(X) = \left\{ \sum_{j=1}^{\infty} \gamma_j \otimes x_j : \text{ the series } \sum_{j=1}^{\infty} \gamma_j \otimes x_j \text{ converges in } L^2(0,1;X) \right\}$$

(see [2, Section 3]). Let A be a closed operator on X and assume that $i\mathbb{Z} \subset \varrho(A)$. Define the operator on $\operatorname{Rad}(X)$ by

$$\mathcal{D}(\mathcal{A}) = \Big\{ \sum_{j=1}^{\infty} \gamma_j \otimes x_j : x_j \in D(\mathcal{A}), \ \sum_{j=1}^{\infty} \gamma_j \otimes \frac{1}{j} A x_j \text{ converges in } L^2(0,1;X) \Big\},$$
$$\mathcal{A}\Big(\sum_{j=1}^{\infty} \gamma_j \otimes x_j \Big) = \sum_{j=1}^{\infty} \gamma_j \otimes \frac{1}{j} A x_j.$$

It is straightforward to verify that \mathcal{A} is a closed linear operator on $\operatorname{Rad}(X)$.

Another consequence of Theorem 3 is the following

Theorem 5. Let X be a UMD-space that has property (α) and let $1 . Assume that A is a closed operator on X such that <math>i\mathbb{Z} \subset \varrho(A)$. Then the problem P_{per} is strongly L^p -well-posed if and only if the problem P_{per} associated with the operator \mathcal{A} is strongly L^p -well-posed.

Proof. Since X is a UMD-space that has property (α) and $1 , the space <math>L^2(0,1;X)$ is also a UMD-space and has property (α) . Hence $\operatorname{Rad}(X)$ is a UMD-space and has property (α) .

First assume that the problem P_{per} is strongly L^p -well-posed. Then by Theorem 1, $i\mathbb{Z} \subset \varrho(A)$ and $\{ik(ik - A)^{-1} : k \in \mathbb{Z}\}$ is *R*-bounded. It is easy to see that $i\mathbb{Z} \subset \varrho(A)$ and

$$\sup_{k \in \mathbb{Z}} \|ik(ik - \mathcal{A})^{-1}\| \le R_2(\{ik(ik - A)^{-1} : k \in \mathbb{Z}\}) < \infty.$$

For fixed $k \ge 1$, consider the multiplier on $L^p(0, 2\pi; X)$ defined by the sequence $M_k = (M_{k,n})$, where $M_{k,n} = in(in - \frac{A}{k})^{-1}$ for $k \ge 1$ and $n \in \mathbb{Z}$. It is clear that $M_{k,n} \in \{im(im - A)^{-1} : m \in \mathbb{Z}\} := \mathcal{M}$ and for $k \ge 1$ and $n \in \mathbb{Z}$,

$$n(M_{k,n+1} - M_{k,n}) = ink(ink - A)^{-1}A(i(n+1)k - A)^{-1}$$

426

is in $\mathcal{MN} := \{ST : S \in \mathcal{M}, T \in \mathcal{N}\}$ which is *R*-bounded (see [5, Lemma 3.3]), where $\mathcal{N} := \{A(im - A)^{-1} : m \in \mathbb{Z}\}$ is clearly *R*-bounded. By Theorem 3, if we denote by T_k the bounded linear operator on $L^p(0, 2\pi; X)$ defined by the multiplier M_k , then $\{T_k : k \geq 1\}$ is an *R*-bounded subset of $\mathcal{L}(L^p(0, 2\pi; X))$. Note that if $\sum_j e_j \otimes x_{j,k}$ are *X*-valued trigonometric

polynomials, one has

$$T_k\Big(\sum_n e_n \otimes x_{n,k}\Big) = \sum_n e_n \otimes in\Big(in - \frac{A}{k}\Big)^{-1} x_{n,k}.$$

There exists $C \ge 0$ depending only on X, p and A such that

$$\left\|\sum_{k}\gamma_{k}T_{k}\left(\sum_{n}e_{n}\otimes x_{n,k}\right)\right\|_{L^{p}(0,1;L^{p}(0,2\pi;X))}\leq C\left\|\sum_{k}\gamma_{k}\left(\sum_{n}e_{n}\otimes x_{n,k}\right)\right\|_{L^{p}(0,1;L^{p}(0,2\pi;X))}$$

On the other hand, by Fubini's Theorem, we have

$$\begin{split} & \left\|\sum_{n} e_{n} \otimes in(in-\mathcal{A})^{-1} \left(\sum_{k} \gamma_{k} \otimes x_{n,k}\right)\right\|_{L^{p}(0,2\pi;L^{p}(0,1;X))} \\ &= \left\|\sum_{n} e_{n} \otimes \left(\sum_{k} \gamma_{k} \otimes in\left(in-\frac{\mathcal{A}}{k}\right)^{-1} x_{n,k}\right)\right\|_{L^{p}(0,2\pi;L^{p}(0,1;X))} \\ &= \left\|\sum_{k} \gamma_{k} \otimes \left(\sum_{n} e_{n} \otimes in\left(in-\frac{\mathcal{A}}{k}\right)^{-1} x_{n,k}\right)\right\|_{L^{p}(0,1;L^{p}(0,2\pi;X))} \\ &= \left\|\sum_{k} \gamma_{k} \otimes T_{k} \left(\sum_{n} e_{n} \otimes x_{n,k}\right)\right\|_{L^{p}(0,1;L^{p}(0,2\pi;X))} \\ &\leq C \left\|\sum_{k} \gamma_{k} \otimes \sum_{n} e_{n} \otimes x_{n,k}\right\|_{L^{p}(0,1;L^{p}(0,2\pi;X))} \\ &= C \left\|\sum_{n} e_{n} \otimes \sum_{k} \gamma_{k} \otimes x_{n,k}\right\|_{L^{p}(0,2\pi;L^{p}(0,1;X))}. \end{split}$$

This shows that the sequence $(in(in - \mathcal{A})^{-1})_{n \in \mathbb{Z}}$ is an L^p -multiplier. By Theorem 4, the problem P_{per} associated with \mathcal{A} is strongly L^p -well-posed.

Now assume that the problem P_{per} associated with \mathcal{A} is strongly L^p -well-posed, then by Theorem 4 we have $i \in \rho(\mathcal{A})$. This implies that there exists $C \geq 0$ such that for $\sum_{k=1}^{n} \gamma_k \otimes x_k \in \operatorname{Rad}(X)$,

$$\left\|\sum_{k} \gamma_{k} \otimes ik(ik-A)^{-1} x_{k}\right\|_{L^{p}(0,1;\operatorname{Rad}(X))}$$

= $\left\|i(i-\mathcal{A})^{-1}\left(\sum_{k} \gamma_{k} \otimes x_{k}\right)\right\|_{L^{p}(0,1;L^{p}(0,2\pi;X))} \leq C \left\|\sum_{k} \gamma_{k} \otimes x_{k}\right\|_{L^{p}(0,1;\operatorname{Rad}(X))}$

This means that the set $\{ik(ik-A)^{-1} : k \in \mathbb{Z}\}$ is *R*-bounded, so the problem P_{per} is strongly L^p -well-posed by Theorem 4. The proof is completed.

In the second part of this paper, we study the L^p -multipliers on \mathbb{R} . Let X be a Banach space and consider the Banach space $L^p(\mathbb{R}; X)$ for $1 . We denote by <math>\mathcal{D}(\mathbb{R}; X)$ the space of all X-valued C^{∞} -functions with compact support. $\mathcal{S}(\mathbb{R}; X)$ will be the X-valued Schwartz space equipped with the locally convex topology generated by the seminorms

$$||f||_{k} = \sup_{x \in \mathbb{R}, \alpha \le k} (1 + |x|)^{k} ||f^{(\alpha)}(x)||_{X}, \qquad k \in \mathbb{Z}$$

and we let

$$\mathcal{S}'(\mathbb{R};X) := \mathcal{L}(\mathcal{S}(\mathbb{R}),X),$$

where $\mathcal{S}(\mathbb{R})$ denotes the \mathbb{C} -valued Schwartz space. Let Y be another Banach space. Then given $M \in L^1_{loc}(\mathbb{R}; \mathcal{L}(X, Y))$, we may define an operator $T : \mathcal{F}^{-1}\mathcal{D}(\mathbb{R}; X) \to \mathcal{S}'(\mathbb{R}; Y)$ by means of

$$T\phi := \mathcal{F}^{-1}M\mathcal{F}\phi \quad \text{for all } \mathcal{F}\phi \in \mathcal{D}(\mathbb{R};X),$$

where \mathcal{F} denotes the Fourier transform. Since $\mathcal{F}^{-1}\mathcal{D}(\mathbb{R};X)$ is dense in $L^p(\mathbb{R};X)$, we see that T is well defined on a dense subset of $L^p(\mathbb{R};X)$. We say that M is an L^p -multiplier if T can be extended to a bounded linear operator from $L^p(\mathbb{R};X)$ to $L^p(\mathbb{R};Y)$.

It is known that the *R*-boundedness of the set $\{M(x) : x \neq 0\}$ is necessary for the function $M \in C^1(\mathbb{R} \setminus \{0\}; \mathcal{L}(X, Y))$ to be a multiplier from $L^p(\mathbb{R}; X)$ to $L^p(\mathbb{R}; Y)$ (see [4, Proposition 1]).

The following result is the operator-valued version of vector-valued Mikhlin theorem of Bourgain [3], McConnell [8] and Zimmermann [13], it is due to Weis [11] (see [4] for another proof).

Theorem 6. Suppose that X, Y are UMD-spaces, $1 , let <math>M \in C^1(\mathbb{R} \setminus \{0\}; \mathcal{L}(X, Y))$ be such that the subsets $\{M(x) : x \neq 0\}$ and $\{xM'(x) : x \neq 0\}$ are R-bounded. Then M is an L^p -multiplier from $L^p(\mathbb{R}; X)$ to $L^p(\mathbb{R}; Y)$.

Let X be a UMD-space, $1 and let <math>M \in C^1(\mathbb{R} \setminus \{0\}; \mathcal{L}(X))$ such that both sets $\{M(x) : x \neq 0\}$ and $\{xM'(x) : x \neq 0\}$ are *R*-bounded. We will denote by T_M the associated bounded linear operator on $L^p(\mathbb{R}; X)$. The proof of Theorem 6 given by Clément and Prüss in [4] combined with Theorem 2 gives the following result which is somehow the analogue of our Theorem 3 in the case of L^p -multipliers on \mathbb{R} .

Theorem 7. Let X, Y be UMD-spaces that have property (α) and let 1 . $Assume that <math>\mathcal{M}$ is an R-bounded subset of $\mathcal{L}(X,Y)$. Then the set $\{T_M : M \in C^1(\mathbb{R} \setminus \{0\}; \mathcal{L}(X,Y)), M(x), xM'(x) \in \mathcal{M} \text{ for } x \neq 0\}$ is R-bounded in $\mathcal{L}(L^p(\mathbb{R};X), L^p(\mathbb{R};Y))$.

Proof. Since the Riesz projection on $L^p(\mathbb{R}; X)$ is bounded as X is a UMD-space and 1 , we only need to show that

$$\{T_M: M \in C^1((0,\infty); \mathcal{L}(X,Y)), M(x), xM'(x) \in \mathcal{M} \text{ for all } x > 0\}$$

is R-bounded.

Let $M \in C^1((0,\infty); \mathcal{L}(X,Y))$, and $M(x), xM'(x) \in \mathcal{M}$ for all x > 0. Consider the dyadic decomposition $[2^j, 2^{j+1})$ $(j \in \mathbb{Z})$ of $(0,\infty)$ and a fixed subdecomposition

$$A_{j,l}^k = [2^j + (l-1)2^{j-k}, 2^j + l2^{j-k}), \qquad l = 1, 2, \cdots, 2^k.$$

Consider the multiplier defined by

$$M_{j,k}(t) = M(2^j + l2^{j-k}) \quad \text{for } t \in A_{j,l}^k$$

Let R be the Riesz projection and for $\rho \in \mathbb{R}$, let $R_{\rho} = e^{i\rho \cdot} R e^{-i\rho \cdot}$. Let

$$\Delta_{j} = R_{2^{j}} - R_{2^{j+1}}, \qquad j \in \mathbb{Z},$$

$$D_{j,l}^{k} = R_{2^{j} + (l-1)2^{j-k}} - R_{2^{j} + l2^{j-k}}, \qquad j \in \mathbb{Z}, \ l = 1, 2, \cdots, 2^{k},$$

$$P_{j,l}^{k} = \sum_{r=l}^{2^{k}} D_{j,r}^{k}, \qquad j \in \mathbb{Z}, \ l = 1, 2, \cdots, 2^{k}.$$

428

Then $(\Delta_j)_{j\in\mathbb{Z}}$ is an unconditional Schauder decomposition of $L^p(\mathbb{R}; X)$ and

$$Q = \{P_{j,l}^k : j \in \mathbb{Z}, l = 1, 2, \cdots, 2^k\}$$

is R-bounded. By [4], we have

$$T_{M_{j,k}} = \sum_{j \in \mathbb{Z}} M(2^j) \Delta_j + \sum_{j \in \mathbb{Z}} \left[\sum_{r=1}^{2^k} (M(2^j + r2^{j-k}) - M(2^j + (r-1)2^{j-k})) P_{j,r}^k \right] \Delta_j.$$

By Theorem 2, the set

$$\left\{\sum_{j\in\mathbb{Z}} M(2^j)\Delta_j : M\in C^1((0,\infty);\mathcal{L}(X,Y)), M(x), xM'(x)\in\mathcal{M} \text{ for all } x>0\right\}$$

is R-bounded in $\mathcal{L}(L^p(\mathbb{R}; X), L^p(\mathbb{R}; Y))$ and its R-bound is independent of j and k. To show that the set

$$\left\{ \sum_{j\in\mathbb{Z}} \left[\sum_{r=1}^{2^k} (M(2^j + r2^{j-k}) - M(2^j + (r-1)2^{j-k})) P_{j,r}^k \right] \Delta_j : M \in C^1((0,\infty); \mathcal{L}(X,Y)), M(x), xM'(x) \in \mathcal{M} \text{ for all } x > 0 \right\}$$

is *R*-bounded in $\mathcal{L}(L^p(\mathbb{R}; X), L^p(\mathbb{R}; Y))$ and its *R*-bound is independent of j and k, it suffices to find an *R*-bounded set \mathcal{N} in $\mathcal{L}(L^p(\mathbb{R}; X), L^p(\mathbb{R}; Y))$ such that

$$\sum_{r=1}^{2^{k}} (M(2^{j} + r2^{j-k}) - M(2^{j} + (r-1)2^{j-k}))P_{j,r}^{k} \in \mathcal{N}.$$

We remark that

$$M(2^{j} + r2^{j-k}) - M(2^{j} + (r-1)2^{j-k})$$

= $\int_{0}^{1} \frac{d}{ds} M(2^{j} + (r-1)2^{j-k} + s2^{j-k}) ds$
= $2^{-k} \int_{0}^{1} 2^{j} M'(2^{j} + (r-1)2^{j-k} + s2^{j-k}) ds$.

Hence if we let $\mathcal{P} = \mathcal{M}\mathcal{Q} = \{TS : T \in \mathcal{M}, S \in \mathcal{Q}\}$ which is *R*-bounded as both \mathcal{M} and \mathcal{Q} are *R*-bounded. Then we can take \mathcal{N} as the complex absolute convex hull of \mathcal{P} .

We have shown that

$$\{T_{M_{j,k}}: M \in C^1((0,\infty); \mathcal{L}(X,Y)), M(x), xM'(x) \in \mathcal{M} \text{ for all } x \neq 0\}$$

is *R*-bound and its *R*-bound is independent of j and k. Applying a similar argument as in the second step of the proof of Theorem 1 in [4] and letting $k \to \infty$, this implies that the set

$$\{T_M: M \in C^1((0,\infty); \mathcal{L}(X,Y)), M(x), xM'(x) \in \mathcal{M} \text{ for all } x \neq 0\}$$

is R-bounded. This completes the proof.

The above result can be also considered as a generalization of a result of Venni [10, Theorem 9], where he has established the result in the case $\mathcal{M} = \Omega I$ with Ω a bounded subset of \mathbb{C} and I denotes the identity of X, in this case the set \mathcal{M} is trivially R-bounded.

BU, S. Q.

Since each bounded subset in $\mathcal{L}(X, Y)$ is *R*-bounded if and only if X is of cotype 2 and Y is of type 2 (see [1, Proposition 1.13]). One immediate application of Theorem 7 is the following result which is the analogue of our Corollary 1 in the case of L^p -multipliers on \mathbb{R} .

Corollary 2. Let X, Y be UMD-spaces that have property (α). Assume that X is of cotype 2 and Y is of type 2. Then

$$\left\{ T_M : M \in C^1(\mathbb{R} \setminus \{0\}; \mathcal{L}(X, Y)), \sup_{x \neq 0} \|M(x)\| \le 1, \sup_{x \neq 0} \|xM'(x)\| \le 1 \right\}$$

is R-bounded in $\mathcal{L}(L^p(\mathbb{R};X), L^p(\mathbb{R};Y))$.

In the last part, we give an application of Theorem 7. Let X be a complex Banach space and let A be the generator of a bounded analytic C_0 -semigroup T_t on X. Consider the abstract Cauchy problem

$$\mathbf{P}_{\rm c} \qquad \begin{cases} u'(t) = Au(t) + f(t), \qquad t \in [0, +\infty), \\ u(0) = 0, \end{cases}$$

where $f \in L^p(0, +\infty; X)$ is given and $1 . We say that <math>P_c$ is strongly L^p -well-posed if for every $f \in L^p(0, \infty; X)$, the mild solution given by the formulae $u(t) = \int_0^t T_{t-s} f(s) ds$ $(t \in (0, +\infty))$ satisfies

$$||Au||_p + ||u'||_p \le C ||f||_p$$

for some constant independent of f.

One important application of Theorem 6 is the interesting characterization of the strongly L^p -well-posedness of \mathcal{P}_c in term of *R*-boundedness: when *X* is a UMD-space, \mathcal{P}_c is strongly L^p -well-posed if and only if the set $\{is(is - A)^{-1} : s \in \mathbb{R} \setminus \{0\}\}$ is *R*-bounded (see [11]).

Now let $(p_j)_{j\geq 1}$ be a positive sequence. We introduce one operator \mathcal{A} on $\operatorname{Rad}(X)$ in the following way:

$$\mathcal{D}(\mathcal{A}) = \Big\{ \sum_{j=1}^{\infty} \gamma_j \otimes x_j : x_j \in D(\mathcal{A}), \ \sum_{j=1}^{\infty} \gamma_j \otimes p_j A x_j \text{ converges in } L^p(0,1;X) \Big\},$$
$$\mathcal{A}\Big(\sum_{j=1}^{\infty} \gamma_j \otimes x_j \Big) = \sum_{j=1}^{\infty} \gamma_j \otimes p_j A x_j.$$

Then \mathcal{A} is a densely defined closed operator. We can use similar method as in [2] to show that if the problem P_c is strongly L^p -well-posed, then \mathcal{A} generates a bounded analytic C_0 semigroup on $\operatorname{Rad}(X)$. We have actually the following result.

Theorem 8. Let X be a UMD-space that has the property (α) , $1 . Assume that A is the generator of a bounded analytic <math>C_0$ -semigroup on X and that the associated problem P_c is strongly L^p -well-posed. Then the problem P_c associated with \mathcal{A} is strongly L^p -well-posed.

Proof. Since X is a UMD-space that has property (α) and $1 , the space <math>L^2(0,1;X)$ is also a UMD-space which has property (α). Hence $\operatorname{Rad}(X)$ is a UMD-space that has property (α).

For fixed $k \ge 1$, consider the multiplier on $L^p(0, 2\pi; X)$ defined by the function $M_k(x) = p_k A(ix - p_k A)^{-1}$ $(x \ne 0)$. Let $\mathcal{M} = \{A(is - A)^{-1} : s \ne 0\}$. Then \mathcal{M} is *R*-bounded as the problem P_c associated with *A* is strongly L^p -well-posed. For $x \ne 0$, we have

$$M_k(x) = A \left(\frac{ix}{p_k} - A\right)^{-1} \in \mathcal{M},$$
$$xM'_k(x) = -M_k(x) - M_k(x)^2 \in -\mathcal{M} - \mathcal{M}^2.$$

Since the set $-\mathcal{M} - \mathcal{M}^2$ is *R*-bounded, by Theorem 7, the set $\{T_{M_k} : k \ge 1\}$ is *R*-bounded in $\mathcal{L}(L^p(\mathbb{R}; X))$. Noting that for $f \in L^p(\mathbb{R}_+; X)$, we have

$$T_{M_k}(f)(t) = \int_0^t p_k A e^{(t-s)p_k A} f(s) ds.$$

By the *R*-boundedness of $\{T_{M_k} : k \geq 1\}$, there exists $C \geq 0$ such that for $n \in \mathbb{N}$ and $f_j \in L^p(\mathbb{R}_+; X)$ $(j = 1, 2, \cdots, n)$,

$$\left\|\sum_{j=1}^{n}\gamma_{j}\otimes T_{M_{k}}f_{j}\right\|_{L^{p}(0,1;L^{p}(\mathbb{R}_{+};X))}\leq C\left\|\sum_{j=1}^{n}\gamma_{j}\otimes f_{j}\right\|_{L^{p}(0,1;L^{p}(\mathbb{R}_{+};X))}$$

Note that the operator \mathcal{A} is the generator of the bounded analytic C_0 -semigroup on $\operatorname{Rad}(X)$ defined by

$$\mathcal{T}_t\Big(\sum_{j=1}^{+\infty}\gamma_j\otimes x_j\Big)=\sum_{j=1}^{+\infty}\gamma_j\otimes T_{p_jt}x_j.$$

Hence for $\mathcal{F} = \sum_{j=1}^{N} \gamma_j \otimes f_j \in L^p(\mathbb{R}_+; \operatorname{Rad}(X))$, we have by Fubini's Theorem,

$$\begin{split} &\int_{\mathbb{R}_{+}} \left\| \mathcal{A} \int_{0}^{t} e^{(t-s)\mathcal{A}_{2}} \mathcal{F}(s) ds \right\|_{\mathrm{Rad}_{p}(X)}^{p} dt \\ &= \int_{\mathbb{R}_{+}} \int_{0}^{1} \left\| \sum_{j=1}^{\infty} \gamma_{j}(x) p_{j} \mathcal{A} \int_{0}^{t} e^{(t-s)p_{j}\mathcal{A}} f_{j}(s) ds \right\|_{X}^{p} dx dt \\ &= \int_{0}^{1} \int_{\mathbb{R}_{+}} \left\| \sum_{j=1}^{\infty} \gamma_{j}(x) p_{j} \mathcal{A} \int_{0}^{t} e^{(t-s)p_{j}\mathcal{A}} f_{j}(s) ds \right\|_{X}^{p} dt dx \\ &= \left\| \sum_{j=1}^{n} \gamma_{j} \otimes T_{M_{k}} f_{j} \right\|_{L^{p}(0,1;L^{p}(\mathbb{R}_{+},X))} \\ &\leq C \right\| \sum_{j=1}^{n} \gamma_{j} \otimes f_{j} \right\|_{L^{p}(0,1;L^{p}(\mathbb{R}_{+},X))} \\ &= C \| \mathcal{F} \|_{L^{p}(\mathbb{R}_{+};\mathrm{Rad}(X))}^{p}. \end{split}$$

This shows that the problem P_c associated with \mathcal{A} is strongly L^p -well-posed.

Now let (Ω, Σ, μ) be a measure space and let $1 . Consider the Banach space <math>X = L^p(\Omega, \Sigma, \mu)$. Let A be the generator of a bounded analytic semigroup T on X and let $(p_j)_{j\geq 1}$ be a positive sequence. We define an operator on $L^p(\Omega, \Sigma, \mu; l^2(\mathbb{N}))$ by

$$\mathcal{D}(\mathcal{A}) = \Big\{ (f_j)_{j\geq 1} : f_j \in D(\mathcal{A}), \ \Big(\sum_{j=1}^{\infty} |q_j \mathcal{A} f_j|^2 \Big)^{1/2} \in L^p(\Omega, \Sigma, \mu) \Big\},\tag{1}$$

$$\mathcal{A}((f_j)_{j\geq 1}) = (q_j A f_j)_{j\geq 1}.$$
(2)

Then \mathcal{A} generates the bounded analytic semigroup \mathcal{T} on $L^p(\Omega, \Sigma, \mu; l^2(\mathbb{N}))$ defined by

$$\mathcal{T}((f_j)_{j\geq 1}) = (T_{p_j t} f_j)_{j\geq 1}.$$

We recall the well-known Khintchine's inequality: there exists $C_1, C_2 > 0$ such that for $f_j \in L^p(\Omega, \Sigma, \mu)$, we have

$$C_1 \left\| \left(\sum_{j \ge 1} |f_j|^2 \right)^{1/2} \right\|_p \le \left\| \sum_{j \ge 1} \gamma_j \otimes f_j \right\|_{\operatorname{Rad}(X)} \le C_2 \left\| \left(\sum_{j \ge 1} |f_j|^2 \right)^{1/2} \right\|_p.$$

One interesting consequence of Khintchine's inequality is that $\operatorname{Rad}(X)$ can be identified in a natural way with $L^p(\Omega, \Sigma, \mu; l^2(\mathbb{N}))$. The above consideration and Theorem 8 imply the following

Corollary 3. Let (Ω, Σ, μ) be a measure space, let $1 and let <math>X = L^p(\Omega, \Sigma, \mu)$. Assume that A is the generator of a bounded analytic semigroup T on X, let $(p_j)_{j\geq 1}$ be a positive sequence and let \mathcal{A} be the operator defined by (1) and (2). If the problem P_c associated with A is strongly L^p -well-posed. Then the problem P_c associated with \mathcal{A} is strongly L^p -well-posed.

References

- Arendt, W. & Bu, S., The operator-valued Marcinkiewicz multiplier theorem and maximal regularity, Math. Z., 240:2(2002), 311–343.
- [2] Arendt, W. & Bu, S., Tools for maximal regularity, Math. Proc. Cambridge Philo. Soc., 134(2003), 317–336.
- [3] Bourgain, J., Vector valued singular integrals and the H¹-BMO duality, in Probability Theory and Harmonic Analysis, Burkholder (ed.), Marcel Dekker, New York, 1986, 1–19.
- [4] Ph. Clément & Prüss, J., An operator-valued transference principle and maximal regularity on vectorvalued L_p-spaces, in Evolution Equations and Their Applications in Physics and Life Sciences, Lumer & Weis (eds.), Marcel Dekker, 2000.
- [5] Ph. Clément, de Pagter, B., Sukochev, F. A. & Witvliet, M., Schauder decomposition and multiplier theorems, *Studia Math.*, 138(2000), 135–163.
- [6] Dore, G., L^p-regularity for abstract differential equations, in Functional Analysis and Related Topics, H. Komatsu (ed.), Springer LNM 1540, 1993, 25–38.
- [7] Lindenstrauss, J. & Tzafriri, L., Classical Banach Spaces II, Springer, Berlin, 1996.
- [8] McConnell, T. R., On Fourier multiplier transformations of Banach-valued functions, Trans. A.M.S., 285(1984), 739–757.
- [9] Pisier, G., Some results on Banach spaces without local unconditional structure, Compositio Math., 37(1978), 3–19.
- [10] Venni, A., Marcinkiewicz and Mihlin multiplier theorems, and *R*-boundedness, Evolution Equations: Applications to Physics, Industry, Life Sciences and Economics, Levio Terme, 2000, 403–413, Progr. Nonlinear Differential Equations Appl, 55, Birkhauser, Basel, 2003.
- [11] Weis, L., Operator-valued Fourier multiplier theorems and maximal L_p -regularity, Math. Ann., **319**(2001), 735–758.
- [12] Weis, L., A new approach to maximal L_p -regularity, in Evolution Equations and Their Applications in Physics and Life Sciences, Lumer & Weis (eds.), Marcel Dekker, 2000.
- [13] Zimmermann, F., On vector-valued Fourier multiplier theorems, Studia Math., 93(1989), 201–222.