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SOME REMARKS ABOUT THE
R-BOUNDEDNESS**

BU SHANGQUAN*

Abstract

Let X,Y be UMD-spaces that have property (o), 1 < p < oo and let M be an
R-bounded subset in L£(X,Y). Tt is shown that {T(as,),c, : Mr, k(M1 — My) €
M for k € Z} is an R-bounded subset of L(L”(0,27; X), L”(0,2m;Y")), where T(s,), .,
denotes the LP-multiplier given by the sequence (Mpy)rez. This generalizes a result
of Venni [10]. The author uses this result to study the strongly LP-well-posedness of
evolution equations with periodic boundary condition. Analogous results for operator-
valued LP-multipliers on R are also given.
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Recent developments of operator-valued Fourier multipliers (on [0, 27] or R) show that
one can not expect to generalize the classical Fourier multiplier theorems to the operator-
valued case without using the notion of R-boundedness. More precisely, let X, Y be Banach
spaces and let 1 < p < oco. If (My)kez C L(X,Y) is an LP-multiplier, then the sequence
(Mp) ez must be R-bounded (see [1, Proposition 1.11]), where we denote by £(X,Y") the
set of all bounded linear operators from X to Y. Conversely if X,Y are UMD-spaces (see
[3] for the definition and further properties concerning this notion), 1 < p < oo and if
both (My)rez and (k(Mgy1 — My))kez are R-bounded, then the sequence (My)gez is an
LP-multiplier (see [1, Theorem 1.3]). One has the same phenomenon for operator-valued
Fourier multipliers on R (see e.g. [4] or [11]). Such kind of results can be applied to the
study of the strongly LP-well-posedness of evolution equations with Dirichlet or periodic
boundary conditions [1, 11].

In this paper we show that when X, Y are UMD-spaces, 1 < p < oo and assume
that M C L(X,Y) is R-bounded, then {T(rs,),., : Mg, k(M1 — My) € M (k € Z)} is
R-bounded in L(LP(0,27; X), LP(0,27;Y")), where T(y,),., denotes the bounded linear op-
erator from L?(0,27; X) to LP(0,2m;Y") defined by the multiplier (My)gez. This generalizes
our previous result (see [1, Theorem 1.3]) and a result of A. Venni, where A. Venni has only
considered the case X =Y and M = QI which is trivially R-bounded, where 2 is a bounded
subset of C and I denotes the identity of X (see [10]). We also establish similar results for
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operator-valued LP-multipliers on R. We then apply the obtained results to the study of the
strongly LP-well-posedness of evolution equations with different boundary conditions.

First we recall some notions. Let X be a complex Banach space and 1 < p < co. We
consider the Banach space L?(0,2m; X) with norm

I fllp == ([W ||f(t)\|pdt>%.

For f € L?(0,2m; X), we denote by

1
o

27
f(k) / e F (1)t

the k-th Fourier coefficient of f, where k € Z. For k € Z, v € X we let ex(t) = e*** and

m
(er@z)(t) =er(t)z (t € R). Then for z, € X, k=—m,—m+1,---,m, f= > exQ@uxy

k=—m

is the X-valued trigonometric polynomial given by f(t) = Y. e*'x; (t € R). Then
k=—m
f(k) =0 if |[k| > m. The space T(X) of all X-valued trigonometric polynomials is dense in
Lr(0,2m; X).
Let X,Y be Banach spaces and let £(X,Y") be the set of all bounded linear operators
from X to Y. If (My)rez C L(X,Y) is a sequence, we consider the associated linear mapping

M:T(X)— T(Y) given by
M(Zek ®.’£k) :Z€k®Mk$k.
k k

We say that the sequence (My)rez is an LP-multiplier, if there exists a constant C' such that
|50 e, < Seve
k P k P

for all X-valued trigonometric polynomials > e, ® xj. This is equivalent to say that there
k

exists a unique operator M € L(LP(0,27; X), LP(0,27;Y)) extending the operator M.
When X =Y = C, the classical Marcinkiewicz multiplier theorem states that when
(my)kez C C is such that

sup |my| < oo and sup E |41 — my| < oo,
kEZ JEN 23 <|k|<2i+1

then (my)rez is an LP-multiplier whenever 1 < p < oo. When (My)rez C L(X,Y), the
R-boundedness of the multiplier is required. Recall that a family 7 C £(X,Y) is called
Rademacher bounded (R-bounded, in short), if there exists ¢, > 0 such that

n
Z Vi B xj
j=1

for all 11,15, -+ , T, € T, 21,22, -+ ,z, € X and n € N, where 1 < ¢ < 0o and v; is the
j-th Rademacher functions on [0, 1] given by ~;(t) = sgn(sin(2"7t)) (see [7]). Note that for
j > 1and z € X, we denote by 7; ® « the X-valued function v;z (see [1,2,5,11,12]). By

H d e TﬁjH < ¢
i=1 !

q
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Kahane’s inequality (see [7, Theorem 1.e.13]), if such constant ¢, exists for some 1 < g < oo,
then there also exists such constant for all 1 < ¢ < co. We denote by R,(7) the smallest
constant cq. R4(7) is called the R-bounded of 7. It is known that R-boundedness is strictly
stronger than the boundedness in norm unless X is of cotype 2 and Y is of type 2 (see
[1, Proposition 1.13]).

The classical Marcinkiewicz multiplier theorem has been generalized in the operator-
valued case in the following way (see [1, Theorem 1.3]):

Theorem 1. Let X,Y be UMD-spaces and let (My)rez C L(X,Y). Assume that
both sets {My, : k € Z} and {k(Myy1 — My) : k € Z} are R-bounded, then (My)rez is an
LP-multiplier whenever 1 < p < co.

Notice that it has been shown that the R-boundedness of the sequence (My)kez is a
necessary condition for (My)gez to be an LP-multiplier (see [1, Proposition 1.11]).

We will use the subsequent geometric property of Banach spaces introduced by Pisier
[9] and later used by Clément-de Pagter-Sukochev-Witvliet [5] in the study of the interplay
between R-boundedness and unconditional Schauder decompositions. A Banach space X
has the property («), if there exists a constant C' > 0 such that

(/01 /01 H 421:1 i (t)y;(s) s zdtds) 1/2 < C’(/O1 /01 H ,Zn::1 ¥i ()75 (8)wi;

for all z;; € X, oj; = £1 (¢,j =1,2,--- ,n) and for all n € N,
An unconditional Schauder decomposition of a Banach space X is a family (Ay)k>0 of
bounded linear projections on X such that

(a) ApAr=0 if k#¢,

(b) § Aryr = x for all ¥ € X and for each permutation m : Ng — Ny, where
Ny = NU {0},

It is well known that when X is a UMD-space, 1 < p < oo, for k € N if we define

2dtds) i

Apf= Y em®f(m) and  Aof=eo® f(0), fe€LP(0,2m;X),

2k=1< |m| <2k

then (Ag)ken, is an unconditional Schauder decomposition of L?(0,27; X) (see [3] for a
proof).

We will use the following result of Clément-de Pagter-Sukochev-Witwiliet which gives
the interplay between unconditional Schauder decomposition and the R-boundedness (see
[5, Theorem 3.14]).

Theorem 2. Let X be a Banach space that has property («), let M C L(X) be an
R-bounded subset and let (Ay)g>0 be an unconditional Schauder decomposition of X. Then

S = {ZTkAk T €T, ATy = TpAp for all k> O}
k=0

is an R-bounded subset of L(X).

Notice that it has been shown by Clément-de Pagter-Sukochev-Witwiliet that if (T))x>0
C L(X) is R-bounded and if (Ag)g>0 is an unconditional Schauder decomposition of X

satisfying Tp A, = ATy for k > 0, then the sum Y T Ay converges and defines a bounded
k=0
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linear operator on X (see [5, Theorem 3.4]). One aim of this paper is to use Theorem 2 to
obtain the following result which may be considered as a generalization of Theorem 1.

Theorem 3. Let X,Y be UMD-spaces that have property («), let M be an R-bounded
subset in L(X,Y). Then {T(ar)pey + Mi, k(M1 — My) € M for k € Z} is an R-bounded
subset of L(LP(0,2m; X), LP(0,2m;Y)), where 1 < p < oo and T(ps,),., denotes the bounded
linear operator from LP(0,2m; X) to LP(0,27;Y) defined by the multiplier (My,)rez.

Proof. First assume that X =Y. Let Z = {f € LP(0,2m; X) : f(k) =0 for all k <
0}. Since X is a UMD-space, the Riesz projection from LP(0,27; X) to Z is bounded.
Hence to show the theorem, it suffices to show that {T(Mk)kez : M = 0 forall £ <
0 and My, k(M1 — My) € M for k € Z} is an R-bounded subset of L(LP(0,2m; X)).

Let (My)gez be such that My, = 0 for k < 0 and My, k(Mg — M) € M for all
k > 0. If A is a bounded linear operator on X, we denote by J4 the bounded linear operator
on L?(0,2m; X) defined by (Jaf)(t) = A(f(t)) for ¢t € [0,27] and f € LP(0,27; X). Then
it is easy to verify that both {Jag, : k € Z} and {k(Jn,., — Jn,) : k € Z} are subsets of
{Jnm : M € M} which is R-bounded by assumption and Fubini’s Theorem. Now the proof
of Theorem 1 given in [1] implies that

T(Mk)kez - Z JMQ"*1P277'71A" + Z JMQ"—1P2"*1ATL

n>1 n>1
2" —1

LD D DIV VA AP

nZl k:2"*1+1

_ (1) (2) (3)
- T(Mk)keZ + T(Mlc)kel + (My)kez’

where Py is the bounded linear projection on LP(0,27; X) defined by
Pk(zel ®$l) = Zel ® xy,
1€z 1>k
and (Ay)n>0 is the unconditional Schauder decomposition of L?(0,27; X) given by
Anf= > e®f(k) for n>1 and  Agf =eo® f(0).
2"*1§|k|<2"

Since {P; : | € Z} is R-bounded (see [1, Lemma 1.10]) and {Jp, : k € Z} is a subset
of {Jar : M € M} which is R-bounded, by Theorem 2,

(T s+ Tt e - Mi =0, n €N, for all k < 0 and My, k(M41—My) € M for k € Z}

is R-bounded. We should mention that when X has property () and 1 < p < oo, the space
L?(0,27; X) has also property («), and

MlMQZ{TSZ TEMl, SEMQ}

is R-bounded whenever M; and My are R-bounded subsets. For the R-boundedness of the
third part in the decomposition of T{y,),,, by Theorem 2 we need to show that the set
2m—1
> (Jme = Jage ) Pein €N, My =0 forall k<0
k=2n-141

and My, k(Myy1 — My) € M for ke Z}
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is R-bounded. This follows from the fact that the complex absolute convex hull of an
R-bounded subset is still R-bounded (see [5, Lemma 3.3]) and the trivial estimate

2n—1

> k<L

k=2n—141

Now we consider the general case. Since X,Y are UMD-spaces that have property («),
also X @Y is a UMD-space and has property («). Define M] € L(X ®Y) by

M (z,y) = (0, Myx).
It follows from the first part of the proof that
{T(p)en + My k(My+1 — My) € M for k € Z}
is R-bounded. Then this implies that
{Tmiyeer * My, k(Myyy — My) € M for k € Z}

is R-bounded. The proof is completed.

The above result can be also considered as a generalization of a result of A. Venni
[10, Theorem 3], where he has established the result in the case M = QI with Q a bounded
subset of C and I denotes the identity of X, in this case M is trivially R-bounded.

We have shown that each bounded subset in £(X,Y") is R-bounded if and only if X is
of cotype 2 and Y is of type 2 (see [1, Proposition 1.13]). One immediate application of this
result and Theorem 3 is the following

Corollary 1. Let X, Y be UMD-spaces that have property (o). Assume that X is of
cotype 2 and 'Y 1is of type 2. Then

{Tanes  Mi € LOCY), sup M| < 1, sup [k(Micer — M) < 1
S S

is R-bounded subset in L(LP(0,2m; X), LP(0,2m;Y)).

Next we give one application of Theorem 3 to the study of the strongly LP-well-
posedness of evolution equation with periodic boundary condition. Let X be a complex
Banach space and let 1 < p < co. We denote

per

HYP = {f € LP(0,27; X) : there exists g € LP(0,27; X) and x € X such that

f@)=z+ /Otg(s)ds for te[0,2n] and /027T g(s)ds = O}

the periodic Sobolev space. Each function in H;g; can be identified with a continuous
function and it is a.e. differentiable.

Now let A be a closed operator on X. For 1 < p < oo and f € LP(0,27; X), we consider
the problem

u'(t) = Au(t) + f(t), t € 0,27,
u (0) = u(2m).

P

per

By a strong LP-solution we understand a function u € H}2 such that u(t) € D(A) and
uw'(t) = Au(t) + f(t) for almost all t € [0,27]. We say that the problem P, is strongly
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LP-well-posed if such solution exists and is unique for each f € LP(0,27; X). In [1], the
following characterization based on Theorem 1 of the strongly LP-well-posedness for Ppe;
was given.

Theorem 4. Assume that X is a UMD-space and 1 < p < oo. Then the following
assertions are equivalent:

(1) The problem Py, is strongly LP-well-posed;

(ii) 9Z C o(A) and (kR(ik, A))kez is an LP-multiplier;

(iii) ¢Z C o(A) and the sequence (kR(ik, A))kez is R-bounded.

Let X be a complex Banach space and 1 < p < co. We denote by Rad,(X) the closure
of

{Z’Yj@fﬂj 1Ty GX,TLEN}
j=1
in L?(0,1; X). By Kahane’s inequality (see [7, Theorem 1.e.13]), Rad,(X) is independent
from the choice of 1 < p < oo and the norms induced by L”(0,1; X) on Rad,(X) are all
equivalent, so we will denote Rad,(X) simply by Rad(X) equipped with the norm induced
by L?(0,1; X). It is known that

o o0
Rad(X) = {Z’Yj ® x; : the series Z’yj ® x; converges in L*(0, 1;X)}

j=1 j=1

(see [2, Section 3]). Let A be a closed operator on X and assume that iZ C o(A). Define
the operator on Rad(X) by

D(A) = {Zyj ®uxj:x; € D(A), Z’yj ® ;ij converges in LQ(O, 1;X)},
j=1 j=1

0o 0o 1
j=1 j=1

It is straightforward to verify that A is a closed linear operator on Rad(X).
Another consequence of Theorem 3 is the following

Theorem 5. Let X be a UMD-space that has property (o) and let 1 < p < co. Assume
that A is a closed operator on X such that iZ C p(A). Then the problem Ppe, is strongly
LP-well-posed if and only if the problem Pper associated with the operator A is strongly
LP-well-posed.

Proof. Since X is a UMD-space that has property (o) and 1 < p < oo, the space
L?(0,1; X) is also a UMD-space and has property («). Hence Rad(X) is a UMD-space and
has property («).

First assume that the problem Py, is strongly LP-well-posed. Then by Theorem 1,
iZ C o(A) and {ik(ik — A)~! : k € Z} is R-bounded. It is easy to see that iZ C o(A) and

sup ||ik(ik — A) 7Y < Ro({ik(ik — A)™' 1 k € Z}) < 0.
keZ

For fixed k > 1, consider the multiplier on LP(0,27; X) defined by the sequence M} =
(My,n), where My, = in(in — %)*1 for kK > 1 and n € Z. It is clear that M, €
{im(im — A)~' :m € Z} := M and for k > 1 and n € Z,

n( My i1 — M) = ink(ink — A) " A(i(n + 1)k — A)~*
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is in MN = {ST : S € M,T € N} which is R-bounded (see [5, Lemma 3.3]), where

N = {A(im — A)~! : m € Z} is clearly R-bounded. By Theorem 3, if we denote by T}, the

bounded linear operator on LP(0,27; X) defined by the multiplier My, then {T} : k > 1} is

an R-bounded subset of L(L?(0,27; X)). Note that if ) e;®x; , are X-valued trigonometric
j

polynomials, one has

(o AN
Tk<;en®xn’k) :zn:en(@m(m—ﬁ) T k-
There exists C > 0 depending only on X, p and A such that
T (e | <O w(Een ome)]
sz:% k ane ® Tnk L?(0,1;LP(0,2m;X)) zk:% Xn:e © Tnk

On the other hand, by Fubini’s Theorem, we have

Z en ® in(in — A)~! ( Z% ® xn,k) ‘
n k

A

s (S om(n ) )
_ ;%@(;en@m(m_:)lxnm
= [ wen (X enew)|
O Swe e
:OHiemg:j%@m\

This shows that the sequence (in(in — A)~1),ez is an LP-multiplier. By Theorem 4, the
problem P, associated with A is strongly LP-well-posed.

Now assume that the problem Ppe, associated with A is strongly LP-well-posed, then
by Theorem 4 we have i € p(A). This implies that there exists C' > 0 such that for
> vk ® x € Rad(X),

k

L?(0,1;L7(0,27:X))

Lr(0,27;LP(0,1;X))

Lr(0,2m;LP(0,1;X))

Lr(0,1;LP(0,27;X))

Lr(0,1;LP(0,2m;X))

Lr(0,1;LP(0,27;X))

LP(0,2m;LP(0,1;X))

L?(0,1;Rad(X))

S
Lr(0,1;L7(0,2m; X)) ;Pyk k

|3 @ kit — 4) 1
k

= HZ(Z - A)l(;% ® ﬂfk)’

This means that the set {ik(ik—A)~! : k € Z} is R-bounded, so the problem P, is strongly
LP-well-posed by Theorem 4. The proof is completed.

Lr(0,1;Rad(X))

In the second part of this paper, we study the LP-multipliers on R. Let X be a Banach
space and consider the Banach space LP(R; X) for 1 < p < co. We denote by D(R; X) the
space of all X-valued C*°-functions with compact support. S(R; X) will be the X-valued
Schwartz space equipped with the locally convex topology generated by the seminorms

Ifle=sup (A+[e)*If@)x, keZ

zeR,a<lk
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and we let

S'(R; X) := L(S(R), X),

where S(R) denotes the C-valued Schwartz space. Let Y be another Banach space. Then
given M € Ll (R;£(X,Y)), we may define an operator T : F'D(R; X) — S'(R;Y) by
means of

To:=F 'MF¢  forall Fo € D(R;X),

where F denotes the Fourier transform. Since F~'D(R; X) is dense in LP(R; X), we see
that T is well defined on a dense subset of LP(R; X'). We say that M is an LP-multiplier if
T can be extended to a bounded linear operator from L?(R; X) to LP(R;Y).

It is known that the R-boundedness of the set {M(x) : x # 0} is necessary for the
function M € CH(R\ {0};£(X,Y)) to be a multiplier from LP(R;X) to LP(R;Y) (see
[4, Proposition 1]).

The following result is the operator-valued version of vector-valued Mikhlin theorem of
Bourgain [3], McConnell [8] and Zimmermann [13], it is due to Weis [11] (see [4] for another
proof).

Theorem 6. Suppose that X,Y are UMD-spaces, 1 < p < oo, let M € CHR\
{0}; L(X,Y)) be such that the subsets {M(z) : x # 0} and {xM'(z) : x # 0} are R-bounded.
Then M is an LP-multiplier from LP(R; X) to LP(R;Y).

Let X be a UMD-space, 1 < p < oo and let M € C*(R\ {0}; £(X)) such that both sets
{M(x):x # 0} and {zM'(x) : © # 0} are R-bounded. We will denote by T)s the associated
bounded linear operator on LP(R; X). The proof of Theorem 6 given by Clément and Priiss
in [4] combined with Theorem 2 gives the following result which is somehow the analogue
of our Theorem 3 in the case of LP-multipliers on R.

Theorem 7. Let X, Y be UMD-spaces that have property (a) and let 1 < p < oo.
Assume that M is an R-bounded subset of L(X,Y). Then the set {Tpy : M € CHR\
{0}; L(X,Y)), M(z),2M'(x) € M for x # 0} is R-bounded in L(LP(R; X), LP(R;Y)).

Proof. Since the Riesz projection on LP(R; X) is bounded as X is a UMD-space and
1 < p < oo, we only need to show that

{Tar = M € CH((0,00); L(X,Y)), M(z),zM'(z) € M for all z > 0}

is R-bounded.
Let M € C'((0,00); £L(X,Y)), and M(x),zM'(z) € M for all z > 0. Consider the
dyadic decomposition [27,271) (j € Z) of (0,00) and a fixed subdecomposition

Ak

k=12 + (1 —1)27F 27 4 1277F), 1=1,2,---,2F.

Consider the multiplier defined by
Mjp(t) = M(2 +1277%)  for t € A,
Let R be the Riesz projection and for p € R, let R, = €'’ Re™"*". Let
Aj = Ry — Ryjt1, JjEZ,

D;’il = R2-7+(l—1)2j_k - R2j+12j_k7 j € Zv I = 1727 e a2ka

2k
Pf, =Y "DF,, jEZ, 1=1,2,--- 2~
r=l



SOME REMARKS ABOUT THE R-BOUNDEDNESS 429

Then (A;) ez is an unconditional Schauder decomposition of LP(R; X) and
Q={P}: jE€Z 1=1.2,-- 2}

is R-bounded. By [4], we have

Ty, = % M(2)A; + % [Z;(M(Qj +727R) — M(27 + (r — 1)27'*’“))13]?;} A

By Theorem 2, the set
{ S M@)A;: M e CH((0,00); £(X,Y)), M(x),zM'(x) € M for all = > o}
JEZ
is R-bounded in £(LP(R; X), LP(R;Y)) and its R-bound is independent of j and k. To show
that the set

219

{ 3 [Z(M@j 2Ry M2 (r — 1)2%’“))}7;;] A, -

JEZ r=1
M € CY((0,00); L(X,Y)), M(z),2M'(z) € M for all z > o}

is R-bounded in £(L?(R; X), L?(R;Y")) and its R-bound is independent of j and k, it suffices
to find an R-bounded set N in L(LP(R; X), LP(R;Y")) such that

2k
> (M2 47278 = M(27 + (r — 1)277F))PF, e N

r=1
We remark that
M (27 472778y — M(27 + (r —1)277F)

1
d ) ) )
= / —M (27 + (r — 1)277F 4 5297%)ds
0 ds
1
= 2*’@/ QM (27 + (r —1)277F 4 5297 F)ds.
0

Hence if we let P = MQ ={TS: T € M,S € Q} which is R-bounded as both M and Q
are R-bounded. Then we can take N as the complex absolute convex hull of P.
We have shown that

{Tn,, : M € C'((0,00); L(X,Y)), M(z),zM'(z) € M for all = # 0}

is R-bounded and its R-bound is independent of j and k. Applying a similar argument as
in the second step of the proof of Theorem 1 in [4] and letting k — oo, this implies that
the set

{Tar: M € CH((0,00); L(X,Y)), M(z),zM'(z) € M for all z # 0}

is R-bounded. This completes the proof.

The above result can be also considered as a generalization of a result of Venni [10,
Theorem 9], where he has established the result in the case M = QI with Q a bounded
subset of C and I denotes the identity of X, in this case the set M is trivially R-bounded.
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Since each bounded subset in £(X,Y") is R-bounded if and only if X is of cotype 2 and
Y is of type 2 (see [1, Proposition 1.13]). One immediate application of Theorem 7 is the
following result which is the analogue of our Corollary 1 in the case of LP-multipliers on R.

Corollary 2. Let X,Y be UMD-spaces that have property (o). Assume that X is of
cotype 2 and Y is of type 2. Then

{TM : M € CHR\ {0}; L(X,Y)), sup ||M(x)|| <1, sup ||lzM'(z)|| < 1}
x#£0 z#0

is R-bounded in L(LP(R; X), LP(R;Y)).

In the last part, we give an application of Theorem 7. Let X be a complex Banach
space and let A be the generator of a bounded analytic Cy-semigroup 73 on X. Consider
the abstract Cauchy problem

u'(t) = Au(t) + f(¢), t €0, +00),
u(0) =0,

Pc

where f € LP(0,+o00; X) is given and 1 < p < co. We say that P, is strongly LP-well-posed if
for every f € LP(0, 00; X)), the mild solution given by the formulae u(t) = fg Ti—sf(s)ds (t €
(0, 400)) satisfies

[Aullp + [[W'[lp < ClI£ll

for some constant independent of f.

One important application of Theorem 6 is the interesting characterization of the
strongly LP-well-posedness of P. in term of R-boundedness: when X is a UMD-space, P, is
strongly LP-well-posed if and only if the set {is(is — A)~!:s € R\ {0}} is R-bounded (see
11]).

Now let (p;);>1 be a positive sequence. We introduce one operator A on Rad(X) in
the following way:

D(A) = {nyj ®uxj:x; € D(A), Z%— ® pjAx; converges in L (0, 1;X)},
j=1 j=1

A(Z’)’j ®:L’j) = Z’)’j ®ij.’Ej.
j=1 Jj=1

Then A is a densely defined closed operator. We can use similar method as in [2] to show
that if the problem P, is strongly LP-well-posed, then A generates a bounded analytic Cy-
semigroup on Rad(X). We have actually the following result.

Theorem 8. Let X be a UMD-space that has the property (o), 1 < p < co. Assume
that A is the generator of a bounded analytic Cy-semigroup on X and that the associated
problem P, is strongly LP-well-posed. Then the problem P. associated with A is strongly
LP-well-posed.

Proof. Since X is a UMD-space that has property (a) and 1 < p < oo, the space
L?(0,1; X) is also a UMD-space which has property (). Hence Rad(X) is a UMD-space
that has property ().
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For fixed k > 1, consider the multiplier on L?(0, 27; X) defined by the function My (x) =
prA(iz — prA)~! (z #0). Let M = {A(is — A)~! : s # 0}. Then M is R-bounded as the
problem P associated with A is strongly LP-well-posed. For = # 0, we have

Mi(z) = A(;—i - A)fl €M,

eMj(z) = =My (z) — My(z)* € =M — M2,

Since the set —M — M? is R-bounded, by Theorem 7, the set {Thy, : k > 1} is R-bounded
in £(LP(R; X)). Noting that for f € LP(R4; X ), we have

Tos, (F)(t) = / A=A £ () ds

0

By the R-boundedness of {Th, : k > 1}, there exists C > 0 such that for n € N and
fj € LP(R+;X) (.7 =1,2,--- ’n)v

LP(0,1;LP (R4 X))

T | <o|Xwer|
H;l% DTS5 01110y ;% ® f;

Note that the operator A is the generator of the bounded analytic Cy-semigroup on Rad(X)

defined by
+o0o

“+o0
72(2%‘ ® xj) =Y 7 ® Tp,eaj
j=1

j=1

N
Hence for F = ) v, ® f; € LP(R4+;Rad(X)), we have by Fubini’s Theorem,
i=1

j
/ HA/t e(t*S)Az]-'(s)ds‘
R, 0
1, o ¢ »
1St st o
j=

-1 L.

n
= H D v ©Twf
j=1

p
dt
Rad, (X)

e t
> vj(x)ij/ €(t_s)ijfj(S)dsHidtdm
i=1 0

L?(0,1;L7 (R4, X))

Lp(0,1:LP (R4 X))

= CIFIILs @ sraa(x)-
This shows that the problem P. associated with A is strongly LP-well-posed.

Now let (2,3, ) be a measure space and let 1 < p < co. Consider the Banach space
X = LP(Q,%,u). Let A be the generator of a bounded analytic semigroup 7" on X and let
(pj);j>1 be a positive sequence. We define an operator on LP(Q2, ¥, p; 1?(N)) by

D) = {(r: € D). (Slasan?) e @z, m
j=1
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A((fj)j=1) = (G;Af;) =1 (2)
Then A generates the bounded analytic semigroup 7 on LP(£, ¥, p; 1?(N)) defined by
T((fj)j=1) = (Tp,ef5)i=1-

We recall the well-known Khintchine’s inequality: there exists C7,Cs > 0 such that for
fj € LP(Q, X, 1), we have

(S, <[5 5l =S ),

One interesting consequence of Khintchine’s inequality is that Rad(X) can be identified in
a natural way with LP(Q, 3, u;12(N)). The above consideration and Theorem 8 imply the
following

Corollary 3. Let (Q,%, 1) be a measure space, let 1 < p < oo and let X = LP(Q, %, u).
Assume that A is the generator of a bounded analytic semigroup T on X, let (p;);j>1 be
a positive sequence and let A be the operator defined by (1) and (2). If the problem P,
associated with A is strongly LP-well-posed. Then the problem P. associated with A is
strongly LP-well-posed.
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