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Abstract

This paper deals with the mixed initial-boundary value problem of Dirichlet type for
the nonlinear elastodynamic system outside a star-shaped domain. The almost global
existence of solution with small initial data to this problem is proved and a lower bound
for the lifespan of solutions is given.
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§ 1 . Introduction

It is well known that the displacement u = (u1, u2, u3) = u(t, x) of an isotropic, ho-
mogeneous hyperelastic material without the action of external force satisfies the following
quasilinear hyperbolic system (cf. [2, 13])

Lu = ∂2
t u− c2

24u− (c2
1 − c2

2)∇divu = F (∇u,∇2u), (1.1)

where F = (F 1, F 2, F 3),

F i(∇u,∇2u) =
3∑

j,l,m=1

Clm
ij (∇u)∂l∂muj , i = 1, 2, 3 (1.2)

with

Clm
ij (∇u) =

3∑

h,n=1

Clmn
ijh ∂nuh, ∇ =

( ∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
, (1.3)

and c1, c2 are given by the Lamé constants λ, µ:

c2
1 = λ + 2µ, c2

2 = µ. (1.4)

We assume that µ > 0, λ + µ > 0.
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In this paper, we consider the almost global existence of classical solutions with small
initial data to the above system outside a star-shaped domain. There have been many results
on the almost global existence of solutions for nonlinear wave equations. By using Lorentz
invariance of the wave operator, F. John and S. Klainerman proved in [5] the almost global
existence of classical solutions to the initial value problem of nonlinear wave equations.
Later, the same result was shown by S. Klainerman and T. C. Sideris [12] without relying
on Lorentz invariance. Recently, M. Keel, H. F. Smith and C. D. Sogge [9, 10] showed the
almost global existence of classical solutions with small initial data for the Cauchy problem
of semilinear and quasilinear wave equations respectively in a simpler way. Furthermore,
they extended this result to the exterior problem and proved the almost global existence of
solutions to the Dirichlet initial-boundary value problem for the semilinear and quasilinear
wave equations outside a star-shaped domain, respectively (cf. [9, 10]). They also showed in
[8] the global existence of solutions to this problem in the case satisfying the null condition
(on the null condition, for example, see [14, 17]).

For the nonlinear elastodynamic system some results have been obtained only for the
Cauchy problem. Combining the methods in [5] and [11] and applying the estimates on the
fundamental solution of the linear elastic operator, F. John [4] proved the almost global
existence of solutions to the initial value problem for the nonlinear elastodynamic system.
Without relying on the estimations on the fundamental solution of the linear elastic operator
and the Lorentz invariance, S. Klainerman and T. C. Sideris [12] showed the same result
by applying energy estimates and Klainerman-Sobolev inequalities. In [19], we derived the
same result by using an approach similar to that in [10].

In this paper, we discuss the almost global existence of solutions to the exterior prob-
lem outside an obstacle for the nonlinear elastodynamic system by applying the estimates
similar to those in [10]. The key steps in the proof are pointwise estimates and weighted L2

estimates. In order to get the pointwise estimates, we apply the exponential decay of local
energy given by B. V. Kapitonov for the linear elastodynamic system (cf. [6, 7]). For getting
the weighted L2 estimates, we use the decomposition of linear elastic waves into longitudinal
and transverse waves.

§ 2 . Preliminaries and Main Results

The time-space gradient is denoted by

∂ = (∂0, ∂1, ∂2, ∂3) = (∂0,∇), ∂u = u′,

where
∂0 = ∂t =

∂

∂t
, ∂i =

∂

∂xi
(i = 1, 2, 3).

We also use the vector fields
Ω̃ = ΩI + U,

where Ω = (Ω1, Ω2,Ω3) = x ∧∇ are the angular momentum operators with

U1 =

0@ 0 0 0
0 0 1
0 −1 0

1A, U2 =

0@ 0 0 −1
0 0 0
1 0 0

1A, U3 =

0@ 0 1 0
−1 0 0
0 0 0

1A.

Set

Z = {∂tI, ∂1I, ∂2I, ∂3I, Ω̃} = {∂I, Ω̃} = {Z0, Z1, · · · , Z6},
S = t∂t + r∂r = t∂t + x · ∇x.
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It is obvious that
[L, Zα] = 0, [S, L] = −2L. (2.1)

By Proposition 2.1 in [1], we know that

Clm
ij (∇u) = Cml

ij (∇u) = Clm
ji (∇u). (2.2)

Assuming that the obstacle K is a smooth, closed and strictly star-shaped domain
with respect to the origin, we consider the initial-boundary value problem of the quasilinear
elastodynamic system





Lu = F (∇u,∇2u), (t, x) ∈ R+ × R3\K,

u(t, ·)|∂K = 0,

u(0, ·) = f, ∂tu(0, ·) = g.

(2.3)

Suppose that the compatibility conditions are satisfied. Let Jk(u) = {∂α
x u | 0 ≤ |α| ≤

k} denote the set of all spatial derivatives of u up to order k. For any given integer m,
if u is a Hm solution of (2.3), then ∂k

t u at t = 0 can be uniquely defined by Jkf and
Jk−1g (0 ≤ k ≤ m − 1). Setting ∂k

t u(0, ·) = ψk(Jkf, Jk−1g), the compatibility conditions
for problem (2.3) with (f, g) ∈ Hm × Hm−1 are just the requirement that ψk = 0 on
∂K (0 ≤ k ≤ m− 1). Moreover, (f, g) ∈ C∞ satisfies the compatibility conditions of infinite
order if these conditions hold for all m.

Our main result is the following

Theorem 2.1. Assume that (f, g) ∈ C∞(R3 \K) satisfies the compatibility conditions
of infinite order. Then there are a number ε0 > 0 and an integer N > 0 such that for any
given ε with 0 < ε < ε0, if

∑

|α|≤N

‖(〈x〉∂x)αf‖L2(R3\K) +
∑

|α|≤N−1

‖(〈x〉∂x)αg‖L2(R3\K) ≤ ε, (2.4)

where 〈x〉 = (1+|x|2) 1
2 , then problem (2.3) admits a unique solution u ∈ C∞([0, Tε)×R3\K)

with
Tε = exp

( c

ε

)
,

where c is a positive constant.

In order to prove the above theorem, we need the almost global existence of solutions
to the Cauchy problem for the elastodynamic system and some relevant estimates. The
following results (Theorem 2.2) and estimates (Lemma 2.1–Lemma 2.5), given in [19], are
needed in what follows.

Theorem 2.2. There are a number ε0 > 0 and an integer N > 0 such that for any
given ε with 0 < ε < ε0 and any given data (f, g) ∈ C∞(R3) satisfying

∑

|α|≤N

‖(〈x〉∂x)αf‖L2(R3) +
∑

|α|≤N−1

‖(〈x〉∂x)αg‖L2(R3) ≤ ε, (2.5)

the problem {
Lu = F (∇u,∇2u), (t, x) ∈ R+ × R3,

u(0, x) = f(x), ∂tu(0, x) = g(x)
(2.6)
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admits a unique solution u(t, x) ∈ C∞([0, Tε)× R3) with

Tε = exp
( c

ε

)
,

where c is a positive constant.

Lemma 2.1. The Cauchy problem
{

Lu = F (t, x), (t, x) ∈ R+ × R3,

u(0, ·) = ∂tu(0, ·) = 0
(2.7)

can be decomposed into the following two Cauchy problems of wave equations
{

∂2
t u1 − c2

14u1 = F1,

t = 0 : u1 = 0, ∂tu1 = 0
and

{
∂2

t u2 − c2
24u2 = F2,

t = 0 : u2 = 0, ∂tu2 = 0,

where u = u1 + u2, F = F1 + F2 and

‖F1‖L2(R3) ≤ C‖F‖L2(R3), ‖F2‖L2(R3) ≤ C‖F‖L2(R3),

here and henceforth C denotes a positive constant.

Lemma 2.2. Suppose that u solves
{

Lu = F (t, x), (t, x) ∈ R+ × R3,

u(0, x) = f(x), ∂tu(0, x) = g(x).
(2.8)

Then

(1 + t)−
1
2 ‖u′‖L2([0,t]×R3) ≤ C‖u′(0, ·)‖L2(R3) + C

∫ t

0

‖F (s, ·)‖L2(R3)ds, (2.9)

‖u′‖L2{[0,t],|x|<1} ≤ C‖u′(0, ·)‖L2(R3) + C

∫ t

0

‖F (s, ·)‖L2(R3)ds, (2.10)

‖u‖L2([0,t],|x|<1) ≤ C‖u′(0, ·)‖L2(R3) + C

∫ t

0

‖F (s, ·)‖L2(R3)ds. (2.11)

Lemma 2.3. Suppose that u solves problem (2.8). Then

(ln(2 + t))−
1
2 ‖(1 + |x|)− 1

2 u′‖L2([0,t]×R3)≤C‖u′(0, ·)‖L2(R3) + C

∫ t

0

‖F (s, ·)‖L2(R3)ds. (2.12)

Lemma 2.4. Suppose that u solves problem (2.7). Then

|x| |u(t, x)| ≤ C

∫ t

0

(∫ r+c1(t−τ)

|r−c1(t−τ)|
+

∫ r+c2(t−τ)

|r−c2(t−τ)|

)
sup
|θ|=1

|F (τ, ρθ)|ρdρds

+ C

∫ t

0

∫ c1

c2

∫ r+l(t−τ)

|r−l(t−τ)|
sup
|θ|=1

|F (τ, ρθ)|ρdρdlds

≤ C

∫ t

0

∫ r+c1(t−s)

min
i=1,2

|r−ci(t−s)|
sup
|θ|=1

|F (s, ρθ)|ρdρds. (2.13)
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Lemma 2.5. Suppose that u solves problem (2.7). Then

t|u(t, x)| ≤ C

∫ t

0

∫

R3

∑

|α|≤2,m≤1

|SmΩ̃αF (s, y)|dyds

|y| . (2.14)

From the proof of the almost global existence of Cauchy problem in [19], we know that
if N ≥ 9 and estimate (2.5) holds, then the solution u to problem (2.6) satisfies

sup
0≤t≤Tε

∑

|α|+m≤N,m≤1

‖〈x〉− 1
2 SmZαu′(t, ·)‖L2(R3)

+ (ln(2 + t))−
1
2

∑

|α|+m≤N−1,m≤1

‖SmZαu′‖L2([0,Tε]×R3) ≤ Cε. (2.15)

In what follows, we need also the following local existence theorem for the exterior
problem (see [18]) and the exponential decay of local energy for the linear elastodynamic
system given by B. V. Kapitonov [7] (also cf. [6]).

Theorem 2.3. Assume that (f, g) ∈ C∞(R3\K) satisfies the compatibility conditions
of infinite order and s ≥ 14 is an integer. There exists T > 0 such that problem (2.3) has a
unique solution u on [0, T ]× R3\K satisfying

sup
0≤t≤T

s+1∑

j=0

‖∂j
t u(t, ·)‖Hs+1−j(R3\K) ≤ C(‖f‖Hs+1(R3\K) + ‖g‖Hs(R3\K)).

For the proof of Theorem 2.3, see [18].
Suppose that u is the solution to the following problem




Lu(t, x) = 0, (t, x) ∈ R+ × R3\K,

u(t, ·)|∂K = 0,

u(0, x) = ϕ(x), ∂tu(0, x) = ψ(x),

(2.16)

where the supports of ϕ and ψ are contained in a ball with radius a, centered at the origin.
Let

E(u,D, t) =
1
2

∫

D

(|∂tu|2 + c2
2|∇u|2 + (c2

1 − c2
2)(divu)2)dx.

Theorem 2.4. (cf. [7]) Let D ⊂ R3\K be an arbitrary domain lying in a ball with
radius d, centered at the origin. Then there exist positive constants β(a) and C(a, d) such
that

E(u,D, t) ≤ Ce−βtE(u,R3\K, 0) for t > (a + d)c−1
2 .

For the proof of Theorem 2.4, see [6] or [7].

We also need the following consequences of Sobolev’s lemma and the embedding theo-
rem on the spherical surface.

Lemma 2.6. Suppose h ∈ C∞(R3). Then for R > 1 we have

‖h‖L∞( R
2 ≤|x|≤R) ≤ CR−1

∑

|α|+|γ|≤2

‖Ω̃α∂γ
xh‖L2( R

4 ≤|x|≤2R).

Lemma 2.7. Suppose h ∈ C∞(R3). Then

sup
|θ|=1

|h(ρθ)| ≤ C
∑

|α|≤2

∫

S2
|(Ω̃αh)(ρθ)|dθ. (2.17)

The proof of Lemma 2.6 and Lemma 2.7 can be found in [11] and [3], respectively.
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§ 3 . Pointwise Estimates for the Linear Elastodynamic
Operator Outside an Obstacle

In this section we consider the exterior problem for the linear elastodynamic system




Lu(t, x) = F (t, x), (t, x) ∈ R+ × R3\K,

u(t, x) = 0, x ∈ ∂K,

u(t, x) = 0, t ≤ 0.

(3.1)

We will prove the following pointwise estimate.

Theorem 3.1. Suppose that u = u(t, x) ∈ C∞ solves problem (3.1). Then, for |α| =
N > 1, we have

t|∂αu(t, x)| ≤ C

∫ t

0

∑

|γ|+j≤N+3
j≤1

‖Sj∂γF (s·)‖L2(R3\K:|x|≤4)ds

+ C

∫ t

0

∫

R3\K

∑

|γ|≤N+3
j≤1,|β|≤2

|SjZβ∂γF (s, y)|dyds

|y| . (3.2)

Without loss of generality we assume that K ⊂ {x ∈ R3 : |x| < 1}. As a first step, we
prove the following

Lemma 3.1. Suppose that u = u(t, x) ∈ C∞ solves problem (3.1). Then, for |α| =
N > 1, we have

t|∂αu(t, x)| ≤ C

∫ t

0

∫

R3\K

∑

|γ|≤2,j≤1

|SjZγ∂αF (s, y)|dyds

|y|
+ C sup

|y|≤2,0≤s≤t

(1 + s)(|∂αu′(s, y)|+ |∂αu(s, y)|). (3.3)

Proof. Estimate (3.3) is obvious when |x| < 2.
Let ρ ∈ C∞(R) be a cut function satisfying

ρ(r) =

{
1, r ≥ 2,

0, r ≤ 1.

Then w(t, x) = ρ(|x|)∂αu(t, x), as a function defined in R3, solves the following problem
{

Lw = ρ∂αF + G,

w(t, x) = 0, t ≤ 0,

where

G = −c2
2(4ρ)∂αu− 2c2

2∇ρ · ∇∂αu− (c2
1 − c2

2)∇(∇ρ · ∂αu)− (c2
1 − c2

2)(∇ρ)div∂αu.

Set w = w1 + w0, where w1 and w0 solve the following problems
{

Lw1 = ρ∂αF,

w1(t, x) = 0, t ≤ 0
and

{
Lw0 = G,

w0(t, x) = 0, t ≤ 0,
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respectively. By Lemma 2.5, we conclude that

t|w1(t, x)| ≤ C

∫ t

0

∫

R3\K

∑

|γ|≤2,j≤1

|SjZγ∂αF |dyds

|y| .

On the other hand, by Lemma 2.4, we can get

|w0(t, x)| ≤ C
1
|x|

1
1 + min

i
|cit− |x| | sup

c1t−|x|−2
c1

≤s≤ (c2t−|x|)+2
c2

(1 + s)(|∂αu′|+ |∂αu|). (3.4)

This yields that (3.3) still holds when |x| ≥ 2.

Lemma 3.2. Suppose that u ∈ C∞ solves problem (3.1) and u(t, x) = 0 when t < 0.
Suppose furthermore that F (t, x) = 0 when |x| > a, where a is a constant. Then for any
given constant d > 1, there are positive constants C(a, d) and c(a) such that

‖u′(t, ·)‖L2(R3\K:|x|<d) ≤ C

∫ t

0

e−c(t−s)‖F (s, ·)‖L2(R3\K)ds. (3.5)

Moreover, for any fixed nonnegative integer M , we have
∑

|α|+j≤M
j≤1

‖(t∂t)j∂αu′(t, ·)‖L2(R3\K:|x|<d)

≤ C
∑

|α|+j≤M−1
j≤1

‖(t∂t)j∂αF (t, ·)‖L2(R3\K)

+ C

∫ t

0

e−
c
2 (t−s)

∑

|α|+j≤M
j≤1

‖(s∂s)j∂αF (s, ·)‖L2(R3\K)ds, (3.6)

∑

|α|+j≤M
j≤1

‖(t∂t)j∂αu′(t, ·)‖L2(R3\K:|x|<d)

≤ C
∑

|α|+j≤M−1
j≤1

‖Sj∂αF (t, ·)‖L2(R3\K)

+ C

∫ t

0

e−
c
2 (t−s)

∑

|α|+j≤M
j≤1

‖Sj∂αF (s, ·)‖L2(R3\K)ds. (3.7)

Proof. Estimate (3.5) is an immediate consequence of Theorem 2.4. Estimate (3.7)
follows from (3.6). Applying the elliptic regularity, we can prove (3.6) by induction.

Proof of Theorem 3.1. By Lemma 3.1, we need only to show that the last term on
the right hand side of (3.3) can be dominated by the right hand side of (3.2).

First we discuss the case: F (s, y) ≡ 0 when |y| > 4.

By Sobolev’s lemma we get from (3.7) that for |α| = N ,
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t sup
|x|<2

|∂αu(t, x)| ≤ C

∫ t

0

∑

|γ|+j≤N+2
j≤1

‖Sj∂γF (s, ·)‖L2(R3\K:|x|≤4)ds

+ C

∫ t

0

∫ s

0

e−
c
2 (s−τ)

∑

|γ|+j≤N+2
j≤1

‖Sj∂γF (τ, ·)‖L2(R3\K:|x|≤4)dτds. (3.8)

Therefore

t sup
|x|<2

|∂αu(t, x)| ≤ the first term on the right hand side of (3.2).

Now we deal with the second case: F (s, y) ≡ 0 when |y| < 3.

Suppose that u0 solves the following Cauchy problem
{

Lu0 = F, (t, x) ∈ R+ × R3,

u0(t, x) = 0, t ≤ 0.
(3.9)

Let η ∈ C∞0 (R3) be a cut function satisfying

η(x) =

{
1, |x| < 2,

0, |x| ≥ 3.

Set ũ = (η − 1)u0 + u. Then ũ solves the following problem




Lũ = G, (t, x) ∈ R+ × R3\K,

ũ|∂K = 0,

ũ(t, x) = 0, t ≤ 0,

(3.10)

where

G = −c2
2(4η)u0 − 2c2

2∇η · ∇u0 − (c2
1 − c2

2)∇(∇η · u0)− (c2
1 − c2

2)∇ηdivu0

vanishes unless 2 < |x| < 3. Hence by the result in the first case, we obtain

t sup
|x|<2

|∂αu(t, x)| ≤ C

∫ t

0

∑

|γ|≤N+3
j≤1

‖Sj∂γu0(s, ·)‖L∞(2≤|x|≤4)ds. (3.11)

Set w = Sj∂γu0 (j ≤ 1). By Lemma 2.4 and Lemma 2.7, for problem (3.9) we get

∑

j≤1

‖Sj∂γu0(s, ·)‖L∞(2≤|x|≤4)

≤ C sup
2≤r≤4

∑

j≤1

[ ∫ s

0

(∫ r+c1(s−τ)

|r−c1(s−τ)|
+

∫ r+c2(s−τ)

|r−c2(s−τ)|

)
sup
|θ|=1

|Sj∂γF (τ, ρθ)|ρdρdτ
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+
∫ s

0

∫ c1

c2

∫ r+l(s−τ)

|r−l(s−τ)|
sup
|θ|=1

|Sj∂γF (τ, ρθ)|ρdρdldτ
]

≤ C sup
2≤r≤4

∑

|β|≤2,j≤1

[ ∫ s

0

( ∫

|c1(s−τ)−|y||≤4

+
∫

|c2(s−τ)−|y||≤4

)
|Sj∂γΩ̃βF (τ, y)|dydτ

|y|

+
∫ s

0

∫ c1

c2

∫

|l(s−τ)−|y||≤4

|Sj∂γΩ̃βF (τ, y)|dydldτ

|y|
]
. (3.12)

Let Λs(l) = {(τ, y) : 0 ≤ τ ≤ s, |l(s− τ)− |y|| ≤ 4} (c2 ≤ l ≤ c1). It is easy to see that there
exists a constant s0 independent of l ∈ [c2, c1], such that Λs(l)∩Λs′(l) = ∅ when |s−s′| > s0.
Then, by (3.11) and (3.12), we conclude that

t sup
|x|<2

|∂αu(t, x)| ≤ C
∑

|γ|≤N+3
|β|≤2,j≤1

∫ t

0

∫

R3\K
|SjΩ̃β∂γF (s, y)|dyds

|y| .

The proof of Theorem 3.1 is completed.

§ 4 . Weighted L2
t;x Estimates for the Linear Elastodynamic

Operator Outside a Star-shaped Obstacle

In this section, we prove the following

Theorem 4.1. Suppose that u = u(t, x) ∈ C∞ solves problem (3.1). Then

(ln(2 + t))−
1
2

∑

|α|≤N

‖〈x〉− 1
2 ∂αu′‖L2([0,t]×R3\K)

≤ C

∫ t

0

∑

|α|≤N

‖L∂αu(s, ·)‖L2(R3\K)ds

+ C
∑

|α|≤N−1

‖L∂αu‖L2([0,t]×R3\K), ∀ t ≥ 0. (4.1)

Moreover

(ln(2 + t))−
1
2

∑

|α|+m≤N
m≤1

‖〈x〉− 1
2 Sm∂αu′‖L2([0,t]×R3\K)

≤ C

∫ t

0

∑

|α|+m≤N
m≤1

‖LSm∂αu(s, ·)‖L2(R3\K)ds

+ C
∑

|α|+m≤N−1
m≤1

‖LSm∂αu‖L2([0,t]×R3\K), ∀ t ≥ 0 (4.2)

and

(ln(2 + t))−
1
2

∑

|α|+|γ|+m≤N
m≤1

‖〈x〉− 1
2 SmΩ̃γ∂αu′‖L2([0,t]×R3\K)

≤ C

∫ t

0

∑

|α|+|γ|+m≤N
m≤1

‖LSmΩ̃γ∂αu(s, ·)‖L2(R3\K)ds
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+ C
∑

|α|+|γ|+m≤N−1
m≤1

‖LSmΩ̃γ∂αu‖L2([0,t]×R3\K), ∀ t ≥ 0. (4.3)

We first consider the estimates in a bounded domain (|x| < 2).

Proposition 4.1. Suppose that u solves problem (3.1). Then we have

‖u′‖L2([0,t]×R3\K:|x|<2) ≤ C

∫ t

0

‖Lu(s, ·)‖L2(R3\K)ds, ∀ t ≥ 0 (4.4)

and for any given natural number N ,
∑

|α|≤N

‖∂αu′‖L2([0,t]×R3\K:|x|<2)

≤ C

∫ t

0

∑

m≤N

‖L∂m
s u(s, ·)‖L2(R3\K)ds + C

∑

|α|≤N−1

‖L∂αu‖L2([0,t]×R3\K), ∀ t ≥ 0. (4.5)

Proof. By the elliptic regularity, the estimate (4.5) is a consequence of (4.4).

First we discuss the case: F (s, y) ≡ 0 when |y| > 6.

Using Schwarz inequality and estimate (3.5), we can prove
∫ t

0

‖u′(τ, ·)‖2L2(R3\K:|x|<2)dτ ≤ C
( ∫ t

0

‖F (s, ·)‖L2(R3\K)ds
)2

, ∀ t ≥ 0, (4.6)

which completes the proof of (4.4).

Now we deal with the Case: F (s, y) ≡ 0 when |y| < 4.

From the proof of (4.6), we have

‖u′‖L2([0,t]×R3\K:|x|<2) ≤ C‖F‖L2([0,t]×R3\K), if F (s, y) ≡ 0 when |y| > 4. (4.7)

Let η ∈ C∞(R3) be a cut function satisfying

η(x) =

{
1, |x| ≤ 2,

0, |x| ≥ 4.

Assume that u0 solves Cauchy problem (3.9) and ũ = (η − 1)u0 + u. Then ũ solves the
following problem 




Lũ = F̃ ,

ũ|∂K = 0,

ũ(t, x) = 0, t ≤ 0,

where

F̃ = −c2
2(4η)u0 − 2c2

2∇xη · ∇xu0 − (c2
1 − c2

2)∇(∇η · u0)− (c2
1 − c2

2)∇ηdivu0.

Noting ũ = u when |x| < 2, and F̃ (s, y) ≡ 0 when |y| > 4, it follows from estimates (4.7),
(2.10) and (2.11) that

‖u′‖L2([0,t]×R3\K:|x|<2) ≤ C‖u′0‖L2([0,t]×R3\K:|x|<4) + C‖u0‖L2([0,t]×R3\K:|x|<4)

≤ C

∫ t

0

‖Lu‖L2(R3\K)ds, ∀ t ≥ 0.

Repeating the proof of Proposition 4.1 and using (3.7), we obtain the following
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Proposition 4.2. Suppose that u = u(t, x) ∈ C∞ solves problem (3.1). Then
∑

|α|+m≤N
m≤1

‖Sm∂αu′‖L2([0,t]×R3\K:|x|<2)

≤ C

∫ t

0

∑

|α|+m≤N
m≤1

‖LSm∂αu(s, ·)‖L2(R3\K)ds

+ C
∑

|α|+m≤N−1
m≤1

‖LSm∂αu‖L2([0,t]×R3\K), ∀ t ≥ 0, (4.8)

∑

|α|+|γ|+m≤N
m≤1

‖SmΩ̃γ∂αu′‖L2([0,t]×R3\K:|x|<2)

≤ C

∫ t

0

∑

|α|+|γ|+m≤N
m≤1

‖LSmΩ̃γ∂αu(s, ·)‖L2(R3\K)ds

+ C
∑

|α|+|γ|+m≤N−1
m≤1

‖LSmΩ̃γ∂αu‖L2([0,t]×R3\K), ∀ t ≥ 0. (4.9)

Proof of Theorem 4.1. First we prove estimate (4.1). Noting estimate (4.5), (4.1)
holds if, instead of R3\K, the domain is in {|x| < 2}.

Let β ∈ C∞(R3) be a cut function satisfying

β(x) =

{
1, |x| ≥ 2,

0, |x| ≤ 1.

Then w = βu solves
{

Lw = βLu− c2
2(4β)u− 2c2

2∇β · ∇u− (c2
1 − c2

2)∇(∇β · u)− (c2
1 − c2

2)(∇β)divu,

w(t, x) = 0, t ≤ 0.

Set w = w1 + w2, where w1 and w2 satisfy
{

Lw1 = βLu,

w1(t, x) = 0, t ≤ 0

and
{

Lw2 = −c2
2(4β)u− 2c2

2∇β · ∇u− (c2
1 − c2

2)∇(∇β · u)− (c2
1 − c2

2)(∇β)divu = H,

w2(t, x) = 0, t ≤ 0,

respectively. By Lemma 2.3, we have

(ln(2 + t))−
1
2

∑

|α|≤N

‖〈x〉− 1
2 ∂αw′1‖L2([0,t]×R3\K:|x|>2)

≤ C
∑

|α|≤N

∫ t

0

‖∂α(βLu)‖L2(R3)ds ≤ C
∑

|α|≤N

∫ t

0

‖L∂αu‖L2(R3\K)ds, ∀ t ≥ 0. (4.10)
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Decomposing w2 and H as u and F in Lemma 2.1, we have

w2 = v1 + v2, H = H1 + H2,

and
‖H1‖L2(R3) ≤ C‖H‖L2(R3), ‖H2‖L2(R3) ≤ C‖H‖L2(R3).

Noting the fact that the support of H is contained in {1 < |x| < 2}, by the proof of Theorem
6.3 in [10] we conclude that

(
(ln(2 + t))−

1
2

∑

|α|≤N

‖〈x〉− 1
2 ∂αv′1‖L2([0,t]×R3\K:|x|>2)

)2

≤ C
∑

|α|≤N

‖∂αH1‖2L2([0,t]×R3) ≤ C
∑

|α|≤N

‖∂αH‖2L2([0,t]×R3\K:1≤|x|<2), ∀ t ≥ 0.

Similarly, we have
(
(ln(2 + t))−

1
2

∑

|α|≤N

‖〈x〉− 1
2 ∂αv′2‖L2([0,t]×R3\K:|x|>2)

)2

≤ C
∑

|α|≤N

‖∂αH‖2L2([0,t]×R3\K:1≤|x|<2), ∀ t ≥ 0.

Thus, noting (4.5) and Lemma 2.2, we get

ln(2 + t))−
1
2

∑

|α|≤N

‖〈x〉− 1
2 ∂αw′2‖L2([0,t]×R3\K:|x|>2)

≤C

∫ t

0

∑

|α|≤N

‖L∂αu(s, ·)‖L2(R3\K)ds+C
∑

|α|≤N−1

‖L∂αu‖L2([0,t]×R3\K), ∀ t ≥ 0. (4.11)

The estimates (4.10) and (4.11) finish the proof of (4.1).

In a similar way, we can obtain estimates (4.2) and (4.3).

§ 5 . L2
x Estimates Outside an Obstacle

Suppose that v is a sufficiently smooth function such that

‖∇v‖L∞([0,T ]×R3\K) ≤ δ, (5.1)

‖∂∇v‖L1
t L∞x ([0,T ]×R3\K) ≤ C0, (5.2)

where C0 is a positive constant, δ > 0 is a sufficiently small constant. Let L be the following
linear differential operator

L = L−
∑

l,m

Clm(∇v)∂l∂m. (5.3)

In this section we consider the mixed initial-boundary value problem of Dirichlet type




Lw = G, (t, x) ∈ R+ × R3\K,

w|∂K = 0,

w(t, x) = 0, t ≤ 0.

(5.4)
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Set

Q0 = |∂0w|2 + c2
2|∇w|2 + (c2

1 − c2
2)(divw)2 +

3∑

l,m=1

(∂lw)T Clm(∇v)∂mw,

Qj = −2c2
2(∂0w)T (∂jw)− 2(c2

1 − c2
2)divw∂0wj − 2

3∑

k=1

(∂0w)T Cjk(∇v)∂kw (j = 1, 2, 3),

q =
3∑

l,m=1

{(∂lw)T ∂0C
lm(∇v)∂mw − 2(∂0w)T ∂lC

lm(∇v)∂mw}.

By the symmetry of Clm(∇v), we have

3∑
α=0

∂αQα(∂w) = 2(∂0w)TLw + q. (5.5)

It is easy to see from (5.1) that there exist positive constants ν, µ depending only on c1, c2

and λ, such that
ν|w′|2 ≤ Q0 ≤ µ|w′|2. (5.6)

Integrating (5.5) over [0, T ]× R3 \ K and applying Gronwall’s inequality, we get

‖w′(t, ·)‖L2(R3\K) ≤ C

∫ t

0

‖G‖L2(R3\K)ds, 0 ≤ t ≤ T. (5.7)

In general, we have the following

Theorem 5.1. Suppose that v satisfies (5.1) and (5.2), and w solves problem (5.4).
Then for any given nonnegative integer N , there is a positive constant C such that

∑

|α|≤N

‖∂αw′(t, ·)‖L2(R3\K) ≤ C

∫ t

0

∑

m≤N

‖L∂m
s w(s, ·)‖L2(R3\K)ds

+ C
∑

|α|≤N−1

‖L∂αw(t, ·)‖L2(R3\K), 0 ≤ t ≤ T. (5.8)

Proof. We can prove (5.8) by induction. The details are omitted.

§ 6 . L2
x Estimates Involving Operators SjΩ̃∂� Outside an Obstacle

Suppose that w solves problem (5.4). Let P = P (t, x,D) be a differential operator.
Suppose furthermore that Pw is not necessary to vanish on ∂K. In this section we will give
some rough L2 estimates for Pw.

Proposition 6.1. Suppose that Pw(0, ·) = ∂tPw(0, ·) = 0. Suppose furthermore that
there is an integer M and a positive constant C0 such that

|(Pw)′(t, x)|≤C0t
∑

|α|≤M−1

|∂t∂
αw′(t, x)|+ C0

∑

|α|≤M

|∂αw′(t, x)|, x ∈ ∂K, ∀ t ≥ 0. (6.1)
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Then

‖(Pw)′(t, ·)‖L2(R3\K) ≤ C

∫ t

0

‖LPw(s, ·)‖L2(R3\K)ds

+ C

∫ t

0

∑

|α|+j≤M+1
j≤1

‖LSj∂αw(s, ·)‖L2(R3\K)ds

+ C
∑

|α|+j≤M
j≤1

‖LSj∂αw‖L2([0,t]×R3\K), ∀ t ≥ 0. (6.2)

Proof. It is easy to see that
∫

R3\K
Q0(t, x)dx−

∫

R3\K
Q0(0, x)dx−

∫

[0,t]×∂K

3∑

j=1

Qjnjdσ

= 2
∫

[0,t]×R3\K
(∂0Pw)TLPwdsdx +

∫

[0,t]×R3\K
qdsdx, (6.3)

where

Q0 = |∂0Pw|2 + c2
2|∇Pw|2 + (c2

1 − c2
2)(divPw)2 +

3∑

l,m=1

(∂lPw)T Clm(∇v)∂mPw,

Qj = −2c2
2(∂0Pw)T (∂jPw)− 2(c2

1 − c2
2)divPw∂0Pwj − 2

3∑

k=1

(∂0Pw)T Cjk(∇v)∂kPw,

q =
3∑

l,m=1

{(∂lPw)T ∂0C
lm(∇u)∂mPw − 2(∂0Pw)T ∂lC

lm(∇v)∂mPw},

in which v satisfies (5.1) and (5.2). Then by applying Gronwall’s inequality and the trace
theorem, we can get (6.2) from (6.3).

Obviously, P = SjΩ̃µ∂α (j ≤ 1) satisfies (6.1). As an immediate corollary of Proposi-
tion 6.1 we have the following

Theorem 6.1. Assume that w solves problem (5.4). Then, for M = 1, 2, · · · ,

∑

|µ|+|α|+j≤M
j≤1

‖(SjΩ̃µ∂αw)′(t, ·)‖L2(R3\K)

≤ C

∫ t

0

∑

|µ|+|α|+j≤M
j≤1

‖LSjΩ̃µ∂αw(s, ·)‖L2(R3\K)ds

+ C

∫ t

0

∑

|α|+j≤M+1
j≤1

‖LSj∂αw(s, ·)‖L2(R3\K)ds

+ C
∑

|α|+j≤M
j≤1

‖LSj∂αw(s, ·)‖L2([0,t]×R3\K), ∀ t ≥ 0. (6.4)
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§ 7 . L2
x Estimates Involving Sm∂� Outside a Star-shaped Obstacle

In this section we assume furthermore that

‖∇v‖L∞(R3\K) ≤
δ

1 + t
, (7.1)

where δ is a sufficiently small positive constant. Suppose that w solves (5.4). Noting that
K is a star-shaped domain, we can get better estimates for Sw.

Proposition 7.1. Suppose that (7.1) holds and w solves problem (5.4). Then

‖(Sw)′(t, ·)‖L2(R3\K) ≤ C

∫ t

0

‖LSw(s, ·)‖L2(R3\K)ds + C

∫ t

0

∑

|α|≤2

‖L∂αw(s, ·)‖L2(R3\K)ds

+ C
∑

|α|≤1

‖L∂αw‖L2([0,t]×R3\K), ∀ t ≥ 0. (7.2)

Proof. Similarly to (6.3), we have

∫

R3\K
Q0(t, x)dx−

∫

R3\K
Q0(0, x)dx−

∫

[0,t]×∂K

3∑

j=1

Qjnjdσ

= 2
∫

[0,t]×R3\K
(∂0Sw)TLSwdsdx +

∫

[0,t]×R3\K
qdsdx, (7.3)

where

Q0 = |∂0Sw|2 + c2
2|∇Sw|2 + (c2

1 − c2
2)(divSw)2 +

3∑

l,m=1

(∂lSw)T Clm(∇u)∂mSw,

Qj = −2c2
2(∂0Sw)T (∂jSw)− 2(c2

1 − c2
2)divSw∂0Swj − 2

3∑

k=1

(∂0Sw)T Cjk(∇u)∂kSw,

q =
3∑

l,m=1

{(∂lSw)T ∂0C
lm(∇u)∂mSw − 2(∂0Sw)T ∂lC

lm(∇u)∂mSw}.

Now we deal with the last term on the left hand side of (7.3). Noticing that when (s, x) ∈
R+ × ∂K, w satisfies the Dirichlet boundary condition, we have

∂sSw = 〈x, ~n〉∂n∂sw,

where ∂nw = 〈~n,∇x〉w. Similarly

3∑

j=1

nj∂jSw = s∂n∂sw + ∂n(〈x,∇x〉w) on R+ × ∂K.

Therefore we have

−
3∑

j=1

Qjnj = 2c2
2

3∑

k=1

〈x, ~n〉s(∂n∂swk)2 + 2c2
2

3∑

k=1

〈x, ~n〉∂n∂swk∂n(〈x,∇〉wk)

+ 2(c2
1 − c2

2)div(s∂sw)
3∑

j=1

〈x, ~n〉∂n∂swjnj
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+ 2(c2
1 − c2

2)div(〈x,∇〉w)
3∑

j=1

〈x, ~n〉∂n∂swjnj

+ 2
3∑

k=1

(〈x, ~n〉∂n∂sw)T
3∑

j=1

Cjk(∇v)(s∂k∂sw + ∂k(〈x,∇〉w))nj

= N1 + N2 + N3 + N4 + N5.

Obviously
|N2|+ |N4| ≤ C

∑

1≤|α|≤2

|∂αw|2 on R+ × ∂K.

Moreover, noting (7.1), we have

|N5| ≤ C
∑

1≤|α|≤2

|∂αw|2 on R+ × ∂K.

To estimate N3 we need the following

Lemma 7.1. Suppose that w is a vector field vanishing on ∂K. Then

divw = λ∂n〈w,~n〉 on ∂K,

where λ is a positive function.

Proof. Introduce orthogonal curvilinear coordinate system xi = xi(q1, q2, q3) such
that

~e3 = ~n on ∂K,

where ~e1, ~e2, ~e3 denote unit coordinate vectors of this system. Set

w = w̄1~e1 + w̄2~e2 + w̄3~e3.

Then
divw =

1
H1H2H3

(∂q1(H2H3w̄1) + ∂q2(H3H1w̄2) + ∂q3(H1H2w̄3)),

where H1, H2 and H3 are Lamé coefficients of the curvilinear coordinate system with

Hi =
∣∣∣ ∂x

∂qi

∣∣∣, i = 1, 2, 3.

Since ∂q1 and ∂q2 are tangential derivatives on ∂K, we have

∂q1(H2H3w̄1) = ∂q2(H3H1w̄2) = 0.

Therefore
divw =

1
H3

∂w̄3

∂q3
on ∂K.

Since
∂w̄3

∂q3
= ∂n〈w,~n〉 on ∂K,

Lemma 7.1 is valid with λ = 1
H3

.

Continuation of the Proof of Proposition 7.1. By Lemma 7.1, we have

N3 = 2(c2
1 − c2

2)λs〈x, ~n〉(∂s∂n〈w,~n〉)2.
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Noting that K is star-shaped, namely, 〈x, ~n〉 > 0, ∀x ∈ ∂K, it follows from (7.3) that
∫

R3\K
Q0(t, x)dx ≤ 2

∫

[0,t]×R3\K
(∂0Sw)TLSwdsdx +

∫

[0,t]×R3\K
qdsdx

+ C

∫

[0,t]×∂K

∑

1≤|α|≤2

|∂αw|2dσ. (7.4)

So we conclude that

‖(Sw)′(t, ·)‖L2(R3\K) ≤ C

∫ t

0

‖LSw(s, ·)‖L2(R3\K)ds + C
(∫

[0,t]×∂K

∑

1≤|α|≤2

|∂αw|2dσ
) 1

2
.(7.5)

By (4.5) and a trace argument, we have

(∫

[0,t]×∂K

∑

1≤|α|≤2

|∂αw|2dσ
) 1

2

≤ C

∫ t

0

∑

|α|≤2

‖L∂αw(s, ·)‖L2(R3\K)ds + C
∑

|α|≤1

‖L∂αw‖L2([0,t]×R3\K). (7.6)

Then (7.2) follows immediately from (7.5) and (7.6).

Repeating the procedure in the proof of Theorem 5.1 and using Proposition 7.1, we get
the following

Theorem 7.1. Suppose that (7.1) holds and w solves (5.4). Then for any given
nonnegative integer N , we have

∑

|α|+m≤N
m≤1

‖Sm∂αw′(t, ·)‖L2(R3\K)

≤ C

∫ t

0

∑

|α|+m≤N
m≤1

‖LSm∂αw(s, ·)‖L2(R3\K)ds + C
∑

|α|+m≤N−1
m≤1

‖LSm∂αw(t, ·)‖L2(R3\K)

+ C

∫ t

0

∑

|α|≤N+1

‖L∂αw(s, ·)‖L2(R3\K)ds + C
∑

|α|≤N

‖L∂αw‖L2([0,t]×R3\K), ∀ t ≥ 0. (7.7)

§ 8 . Main L2 Estimates Outside a Star-shaped Obstacle

Assuming that v satisfies (5.2) and (7.1), we have the following

Proposition 8.1. Let w ∈ C∞ solve (5.4). Then, for any given integer N ≥ 0, we
have

∑

|α|≤N+4

‖∂αw′(t, ·)‖L2(R3\K) +
∑

|α|+m≤N+2
m≤1

‖Sm∂αw′(t, ·)‖L2(R3\K)

+
∑

|α|+|µ|+m≤N
m≤1

‖SmΩ̃µ∂αw′(t, ·)‖L2(R3\K)
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≤ C

∫ t

0

( ∑

|α|≤N+4

‖L∂αw(s, ·)‖L2(R3\K) +
∑

|α|+m≤N+2
m≤1

‖LSm∂αw(s, ·)‖L2(R3\K)

+
∑

|α|+|µ|+m≤N
m≤1

‖LSmΩ̃µ∂αw(s, ·)‖L2(R3\K)

)
ds

+ C
∑

|α|≤N+3

‖L∂αw(t, ·)‖L2(R3\K) + C
∑

|α|+m≤N+1
m≤1

‖LSm∂αw(t, ·)‖L2(R3\K)

+ C
∑

|α|≤N+2

‖L∂αw‖L2([0,t]×R3\K) + C
∑

|α|+m≤N
m≤1

‖LSm∂αw‖L2([0,t]×R3\K), ∀ t ≥ 0. (8.1)

Proof. We denote the left hand side of (8.1) by I + II + III, and the right hand side

by RHS. Since L = L+
3∑

l,m=1

Clm(∇v)∂l∂m, by Theorem 5.1 we have

I ≤ RHS + C

3∑

l,m=1

∑

|α|≤N+3

‖Clm(∇v)∂l∂m∂αw(t, ·)‖L2(R3\K). (8.2)

Similarly, by Theorem 7.1 and Theorem 6.1 we get the estimates of II and III respectively.
Noting (7.1), if δ is small enough, then an application of Gronwall’s inequality implies

that

I + II + III ≤ RHS + C

∫ t

0

(
sup
x∈R3

j,k

|Cjk(∇v)|
)

(I + II)ds.

This completes the proof of Proposition 8.1.

Repeating the proof of Proposition 8.1 and applying the weighted L2 estimates of linear
elastodynamic operator (Theorem 4.1), we get the following

Theorem 8.1. Suppose that w solves problem (5.4). Then for any given integer N ≥ 0,
we have

∑

|α|≤N+4

‖∂αw′(t, ·)‖L2(R3\K) +
∑

|α|+m≤N+2
m≤1

‖Sm∂αw′(t, ·)‖L2(R3\K)

+
∑

|α|+|µ|+m≤N
m≤1

‖SmΩ̃µ∂αw′(t, ·)‖L2(R3\K)

+ (ln(2 + t))−
1
2

( ∑

|α|≤N+3

‖〈x〉− 1
2 ∂αw′‖L2([0,t]×R3\K)

+
∑

|α|+m≤N+1
m≤1

‖〈x〉− 1
2 Sm∂αw′‖L2([0,t]×R3\K)

+
∑

|α|+|µ|+m≤N−1
m≤1

‖〈x〉− 1
2 SmΩ̃µ∂αw′‖L2([0,t]×R3\K)

)
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≤ C

∫ t

0

( ∑

|α|≤N+4

‖L∂αw(s, ·)‖L2(R3\K) +
∑

|α|+m≤N+2
m≤1

‖LSm∂αw(s, ·)‖L2(R3\K)

+
∑

|α|+|µ|+m≤N
m≤1

‖LSmΩ̃µ∂αw(s, ·)‖L2(R3\K)

)
ds

+ C
∑

|α|≤N+3

‖L∂αw(t, ·)‖L2(R3\K) + C
∑

|α|+m≤N+1
m≤1

‖LSm∂αw(t, ·)‖L2(R3\K)

+ C
∑

|α|≤N+2

‖L∂αw‖L2([0,t]×R3\K) + C
∑

|α|+m≤N
m≤1

‖LSm∂αw‖L2([0,t]×R3\K)

+ C
∑

|α|+|µ|+m≤N−2
m≤1

‖LSmΩ̃µ∂αw‖L2([0,t]×R3\K), ∀ t ≥ 0. (8.3)

§ 9 . Almost Global Existence for Nonlinear Elastodynamic System
Outside a Star-shaped Domain

In this section, we give the proof of the main result (Theorem 2.1). We will apply the
above estimates and the local existence theorem to getting the almost global existence of
solution and the lower bound of the lifespan of solution by an iterative procedure.

Suppose that the integer N ≥ 14 and we shall take N = 14 in what follows. Thus,
we assume that the initial data satisfies (2.4) for N = 14. Then Theorem 2.3 (also see [18])
implies that if ε > 0 is small enough, problem (2.3) admits a local solution in 0 < t < 1,
such that

sup
0≤t≤1

( ∑

|α|≤14

‖∂αu′(t, ·)‖L2(R3\K) +
∑

|α|+m≤12
m≤1

‖Sm∂αu′(t, ·)‖L2(R3\K)

+
∑

|α|+m+|µ|≤10
m≤1

‖SmΩ̃µ∂αu′(t, ·)‖L2(R3\K)

)

+
∑

|α|≤13

‖〈x〉− 1
2 ∂αu′(t, ·)‖L2([0,1]×R3\K)

+
∑

|α|+m≤11
m≤1

‖〈x〉− 1
2 Sm∂αu′(t, ·)‖L2([0,1]×R3\K)

+
∑

|α|+m+|µ|≤9
m≤1

‖〈x〉− 1
2 SmΩ̃µ∂αu′(t, ·)‖L2([0,1]×R3\K) ≤ Cε. (9.1)

In fact, by Theorem 2.3, estimate (9.1) holds when x is in a bounded region. By the finiteness
of the propagation speed and the estimates for the Cauchy problem we can derive the above
estimate outside a bounded region.

Let η(t) ∈ C∞(R) be a cut function satisfying
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η(t) =





1, t ≤ 1
2
,

0, t > 1.

Set u0 = ηu, w = u − u0 = (1 − η)u, where u is the local solution. Because of w = 0
when t ≤ 1

2 , we shall prove the almost global existence of w instead of u by iteration. Thus,
problem (2.3) is transformed into the following problem on w:





Lw = (1− η)F (∇(u0 + w),∇2(u0 + w))− [L, η](u0 + w),

w|∂K = 0,

w(t, x) = 0, t ≤ 0.

(9.2)

Set w0 = 0 and define wk, k = 1, 2, · · · , inductively by




Lwk = (1− η)F (∇(u0 + wk−1),∇2(u0 + wk))− [L, η](u0 + wk) = Fk,

wk|∂K = 0,

wk(t, x) = 0, t ≤ 0.

(9.3)

Let

Mk(T ) = sup
0≤t≤T

( ∑

|α|≤14

‖∂αw′k(t, ·)‖L2(R3\K) +
∑

|α|+m≤12
m≤1

‖Sm∂αw′k(t, ·)‖L2(R3\K)

+
∑

|α|+|µ|+m≤10
m≤1

‖SmΩ̃µ∂αw′k(t, ·)‖L2(R3\K) + (1 + t)
∑

|α|≤2

‖∂αwk(t, ·)‖L∞(R3\K)

)

+ (ln(2 + T ))−
1
2

( ∑

|α|≤13

‖〈x〉− 1
2 ∂αw′k‖L2([0,T ]×R3\K)

+
∑

|α|+m≤11
m≤1

‖〈x〉− 1
2 Sm∂αw′k‖L2([0,T ]×R3\K)

+
∑

|α|+|µ|+m≤9
m≤1

‖〈x〉− 1
2 SmΩ̃µ∂αw′k‖L2([0,T ]×R3\K)

)
. (9.4)

Now we show inductively that these exists a positive constant C1 such that for suffi-
ciently small ε > 0,

Mk(Tε) ≤ C1ε, k = 0, 1, 2, · · · (9.5)

provided that the constant c occurring in Tε = e
c
ε is sufficiently small. Obviously, (9.5)

holds when k = 0. Suppose that Mk−1(Tε) ≤ C1ε. We shall show that (9.5) holds for k. To
do this, we first prove that

Mk(Tε) ≤ Cε2 + CC1ε
2 + CεMk(Tε) + CC1εMk(Tε)

+ CC1cMk(Tε) + C

∫ Tε

0

χ[0,1]Mk(s)ds. (9.6)
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By Theorem 3.1, (9.1), the inductive hypothesis and a straightforward application of
the argument in [19], the fourth term in the expression to Mk(Tε) can be controlled by the
right hand side of (9.6). The other terms in Mk(Tε) can be dominated by the right hand
side of (8.3) with N = 10 and w = wk. Write the right hand side of (8.3) as

A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8.

A1 + A2 + A3 can be dominated by the right hand side of (9.6) by using the argument in
[19]. Moreover, it is easy to see that A4 + A5 can be also dominated by the right hand side
of (9.6). Now, we deal with A6 + A7 + A8.

When t > 1, we have

∫ Tε

1

∑

|α|≤12

|L∂αwk|2ds ≤ C

∫ Tε

1

( ∑

|β|≤6

‖∂βw′k−1‖L∞(R3\K)

)2( ∑

|α|≤13

‖∂αw′k‖L2(R3\K)

)2

ds

+ C

∫ Tε

1

( ∑

|β|≤6

‖∂βw′k‖L∞(R3\K)

)2( ∑

|α|≤13

‖∂αw′k−1‖L2(R3\K)

)2

ds

= B1 + B2.

By Lemma 2.6, we conclude that

B1 ≤ CC1ε ln(Tε)Mk(Tε) ≤ CC1cMk(Tε).

Similarly, we have B2 ≤ CC1cMk(Tε). When t < 1, applying the estimate on the local
solution (then on u0) and the inductive hypothesis, we can show that A6 can be dominated
by the right hand side of (9.6). Similarly, we have

A7 + A8 ≤ the right hand side of (9.6).

Thus, estimate (9.6) holds. By Gronwall’s inequality, from (9.6) we get

Mk(Tε) ≤ Cε2 + CC1ε
2 + CεMk(Tε) + CC1εMk(Tε) + CC1cMk(Tε). (9.7)

Hence, if c is sufficiently small (independent of ε), there exists a positive constant C1 such
that

Mk(Tε) ≤ C1ε

for sufficiently small ε > 0. Then we get (9.5). Applying the argument in [19], we can show
that

sup
0≤t≤Tε

‖w′k(t, x)− w′k−1(t, x)‖L2(R3\K)

≤ 1
2

sup
0≤t≤Tε

‖w′k−1(t, x)− w′k−2(t, x)‖L2(R3\K), k = 2, 3, · · · .

Hence, {wk(t, x)} converges in the energy norm. Suppose that its limit is w(t, x). Then u =
u0 +w is a solution to problem (2.3). If the initial data f, g ∈ C∞ satisfy the compatibility
conditions of infinite order, then from Theorem 2.3 we know that u ∈ C∞([0, Tε]× R3\K).
This proves Theorem 2.1.

Acknowledgement. The authors would like to thank Professor Li Tatsien for helpful
discussion and suggestions.



454 XIN, J. & QIN, T. H.

References

[ 1 ] Agemi, R., Global existence of nonlinear elastic waves, Invent. Math., 142(2000), 225–250.

[ 2 ] Ciarlet, P. G., Mathematical Elasticity, Three-Dimensional Elasticity, Vol. I, North-Holland, Amester-
dam, 1988.
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