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ON PERIODIC DYNAMICAL SYSTEMS∗∗∗

LU Wenlian∗ CHEN Tianping∗∗

Abstract

The authors investigate the existence and the global stability of periodic solution
for dynamical systems with periodic interconnections, inputs and self-inhibitions. The
model is very general, the conditions are quite weak and the results obtained are uni-
versal.
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§ 1 . Introduction

Recurrently connected neural networks, sometimes called Grossberg-Hopfield neural
networks, are described by the following differential equations

dui(t)
dt

= −diui(t) +
n∑

j=1

aijgj(uj(t)) + Ii (i = 1, · · · , n), (1.1)

where gj(x) are activation functions, di, aij are constants and Ii are constant inputs.
In practice, however, the interconnections contain asynchronous terms in general, and

the interconnection weights aij , bij , self-inhibition di and inputs Ii should depend on time,
often periodically. Therefore, we need to discuss the following dynamical systems with
time-varying delays

dui

dt
= −di(t)ui(t) +

n∑

j=1

aij(t)gj(uj(t))

+
n∑

j=1

bij(t)fj(uj(t− τij(t))) + Ii(t) (i = 1, 2, · · · , n), (1.2)
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or its particular case

dui

dt
= −di(t)ui(t) +

n∑

j=1

aij(t)gj(uj(t))

+
n∑

j=1

bij(t)fj(uj(t− τij)) + Ii(t) (i = 1, 2, · · · , n), (1.3)

and the systems with distributed delays

dui(t)
dt

= −di(t)ui(t) +
n∑

j=1

aij(t)gj(uj(t))

+
n∑

j=1

bij(t)
∫ ∞

0

kij(s)fj(uj(t− τij(t)− s))ds + Ii(t) (i = 1, 2, · · · , n), (1.4)

where di(t) > di > 0, aij(t), bij(t), τij(t) > 0, Ii(t) : R+ → R are continuously periodic
functions with period ω > 0, i, j = 1, 2, · · · , n. For references, see [1–4, 6, 7] and the papers
cited therein.

To unify models (1.2) and (1.4), we discuss the following general model

dui

dt
= −di(t)ui(t) +

n∑

j=1

aij(t)gj(uj(t))

+
n∑

j=1

∫ ∞

0

fj(uj(t− τij(t)− s))dsKij(t, s) + Ii(t) (i = 1, 2, · · · , n), (1.5)

where dsKij(t, s), for any fixed t ≥ 0, are Lebesgue-Stieljies measures and satisfy dsKij(t +
ω, s) = dsKij(t, s), di(t) > 0, aij(t), bij(t), Ii(t), τij(t) > 0 : R+ → R are continuously
periodic functions with period ω > 0.

The initial condition is

ui(s) = φi(s) for s ∈ (−∞, 0], (1.6)

where φi ∈ C(−∞, 0], i = 1, · · · , n.
It is easy to see that if dsKij(t, 0) = bij(t) and dsKij(t, s) = 0 for s 6= 0, then (1.5)

reduces to (1.2); In addition, if τij(t) = τij are constants, then it reduces to (1.3). Instead,
if dsKij(t, s) = bij(t)kij(s)ds, then (1.5) reduces to (1.4).

As a precondition, we assume that for the system (1.5), there exists a unique solution
with the initial condition (1.6) and the solution continuously depends on the initial data.

§ 2 . Main Results

For the convenience, throughout this letter, we make the following two assumptions.

Assumption 2.1. |gj(s)| ≤ Gj |s| + Cj, |fj(s)| ≤ Fj |s| + Dj, where Gj > 0, Fj > 0,
Cj and Dj are constants (j = 1, · · · , n).

Assumption 2.2. |gi(x + h) − g(x)| ≤ Gi|h| and |fi(x + h) − f(x)| ≤ Fi|h| (i =
1, · · · , n).
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Main Theorem. Suppose that Assumption 2.1 is satisfied. If there exist positive
constants ξ1, ξ2, · · · , ξn such that for all t > 0,

−ξidi(t) +
n∑

j=1

ξjGj |aij(t)|+
n∑

j=1

ξjFj

∫ ∞

0

|dsKij(t, s)| < −η < 0 (i = 1, 2, · · · , n), (2.1)

then the system (1.5) has at least an ω-periodic solution x(t). In addition, if Assumption
2.2 is satisfied and there exists a constant α such that for all t > 0,

−ξi(di(t)− α) +
n∑

j=1

ξjGj |aij(t)|

+
n∑

j=1

ξjFje
ατij(t)

∫ ∞

0

eαs|dsKij(t, s)| ≤ 0 (i = 1, 2, · · · , n), (2.2)

then for any solution u(t) = [u1(t), · · · , un(t)] of (1.5),

||u(t)− x(t)|| = O(e−αt), t →∞. (2.3)

Proof. Pick a constant M satisfying M > J
η , where

J = max
i

max
t

{ n∑

j=1

|aij(t)|Cj +
n∑

j=1

Dj

∫ ∞

0

|dsKij(t, s)|+ |Ii(t)|
}

. (2.4)

And let C = C((−∞, 0], Rn) be the Banach space with norm

‖φ‖ = sup
−∞<θ≤ω

‖φ(θ)‖{ξ,∞},

where

‖φ(θ)‖{ξ,∞} = max
i=1,··· ,n

ξ−1|φi(θ)|.

Denote

Ω = {x(θ) ∈ C : ‖x(θ)‖ ≤ M, ‖ẋ(θ)‖ ≤ N}, (2.5)

where

N = (α + β + γ)M + c

and

α = max
i

sup
t
|di(t)|ξ−1

i ,

β = max
i,j

sup
t
|aij(t)|ξ−1

i Gj ,

γ = max
i,j

sup
t

∫ ∞

0

|dsKij(t, s)|Fjξ
−1
i ,

c = max
i

sup
t
|Ii(t)|ξ−1

i .
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It is easy to check that Ω is a convex compact set.

Now, define a map T from Ω to C by

T : φ(θ) −→ x(θ + ω, φ),

where x(t) = x(t, φ) is the solution of the system (1.5) with the initial condition xi(θ) = φi(θ)
for θ ∈ (−∞, 0] and i = 1, · · · , n.

In the following, we will prove that TΩ ⊂ Ω, i.e. if φ ∈ Ω, then x ∈ Ω. To do that, we
define the following function

M(t) = sup
s∈(−∞,0]

‖x(t + s)‖{ξ,∞}, (2.6)

It is easy to see that

‖x(t)‖{ξ,∞} ≤ M(t). (2.7)

Therefore, what we need to do is to prove M(t) ≤ M for all t > 0.
Assume that t0 ≥ 0 is the smallest value such that

‖x(t0)‖{ξ,∞} = M(t0) = M, (2.8)

‖x(t)‖{ξ,∞} ≤ M if t < t0. (2.9)

Let i0 be an index such that

ξ−1
i0
|xi0(t)| = ‖x(t0)‖{ξ,∞}. (2.10)

Then direct calculation gives

{d|xi0(t)|
dt

}
t=t0

≤ sign(xi0(t0))
{
− di0(t0)xi0(t0) +

n∑

j=1

ai0j(t0)gj(xj)

+
n∑

j=1

∫ ∞

0

fj(xj(t0 − τi0j(t0)− s))dsKi0j(t0, s) + Ii0(t0)
}

≤ −di0(t0)|xi0(t0)|+
n∑

j=1

|ai0j(t)|Gj |xj(t0)|

+
n∑

j=1

Fj

∫ ∞

0

|xj(t0 − τi0j(t0)− s)||dsKi0j(t0, s)|+ J

≤
[
− di0(t0)ξi0 +

n∑

j=1

|ai0j(t0)|Gjξj

]
‖x(t0)‖{ξ,∞}

+
n∑

j=1

Fjξj

∫ ∞

0

‖x(t0 − τi0j(t0)− s)‖{ξ,∞}|dsKi0j(t0, s)|+ J

≤
[
− di0(t0)ξi0 +

n∑

j=1

|ai0j(t0)|Gjξj +
n∑

j=1

Fjξj

∫ ∞

0

|dsKi0j(t0, s)|
]
M(t0) + J

≤ −ηM(t0) + J = −ηM + J < 0, (2.11)

which means that ‖x(t)‖{ξ,∞} can never exceed M . Thus, ‖x(t)‖{ξ,∞} ≤ M(t) ≤ M for all
t > t0. Moreover, it is easy to see that ‖ẋ(θ + ω)‖ ≤ N . Therefore, TΩ ⊂ Ω.
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By Brouwer fixed point theorem, there exists φ∗ ∈ Ω such that Tφ∗ = φ∗. Hence
x(t, φ∗) = x(t, Tφ∗), i.e.,

x(t, φ∗) = x(t + ω, φ∗), (2.12)

which is an ω-periodic solution of the system (1.5).
Now, we prove that (2.2) implies (2.3).
Let ū(t) = [u(t)− x(t)], z(t) = eαtū(t). We have

dzi(t)
dt

= −(di(t)− α)zi(t) + eαt
{ n∑

j=1

aij(t)
[
gj(uj(t))− gj(xj(t))

]

+
n∑

j=1

∫ ∞

0

[
fj(uj(t− τij(t)− s))− fj(xj(t− τij(t)− s))

]
dsKij(t, s)

}
. (2.13)

Therefore
∣∣∣dzi(t)

dt

∣∣∣ ≤ −(di(t)− α)|zi(t)|+
n∑

j=1

|aij(t)|Gj |zj(t)|

+
n∑

j=1

Fje
ατij(t)

∫ ∞

0

eαs|zj(t− τij(t)− s)||dsKij(t, s)|

≤
[
− ξi(di(t)− α) +

n∑

j=1

ξj |aij(t)|Gj

]
‖z(t)‖ξ,∞

+
n∑

j=1

ξjFje
ατij(t)

∫ ∞

0

eαs‖zj(t− τij(t)− s)‖ξ,∞|dsKij(t, s)|. (2.14)

By the same approach used before, we can prove that z(t) is bounded. Then ū(t) = O(e−αt).
Main Theorem is proved.

In particular, let dsKij(t, 0) = bij(t) and dsKij(t, s) = 0, we have

Corollary 2.1. Suppose that Assumption 2.1 is satisfied. If there exist positive con-
stants ξ1, ξ2, · · · , ξn such that for all t > 0,

−ξidi(t) +
n∑

j=1

ξjGj |aij(t)|+
n∑

j=1

ξjFj |bij(t)| < 0 (i = 1, 2, · · · , n), (2.15)

in particular, if

−ξidi +
n∑

j=1

ξjGj |a∗ij |+
n∑

j=1

ξjFj |b∗ij | < 0 (i = 1, 2, · · · , n), (2.16)

then the system (1.2) or (1.3) has at least an ω-periodic solution x(t). In addition, if As-
sumption 2.2 is satisfied, and

(−di(t) + α)ξi +
n∑

j=1

ξjGj |aij(t)|+
n∑

j=1

ξjFj |bij(t)|eατij ≤ 0 (i = 1, 2, · · · , n), (2.17)

then for any solution u(t) = [u1(t), · · · , un(t)] of (1.2) or (1.3), we have

‖u(t)− x(t)‖ = O(e−αt), t →∞. (2.18)
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Instead, if dsKij(t, s) = bij(t)kij(s)ds, then we have

Corollary 2.2. Suppose that Assumption 2.1 is satisfied. If there exist positive con-
stants ξ1, ξ2, · · · , ξn such that for all t > 0, there hold

− ξidi(t) +
n∑

j=1

ξjGj |aij(t)|

+
n∑

j=1

ξjFj |bij(t)|
∫ ∞

0

|kij(s)|ds < −η < 0 (i = 1, 2, · · · , n), (2.19)

then the system (1.4) has at least an ω-periodic solution x(t). In addition, if Assumption
2.2 is satisfied and

− ξi(di(t)− α) +
n∑

j=1

ξjGj |aij(t)|

+
n∑

j=1

ξjFje
ατij(t)

∫ ∞

0

eαs|kij(t, s)|ds ≤ 0 (i = 1, 2, · · · , n), (2.20)

then for any solution u(t) = [u1(t), · · · , un(t)] of (1.4), we have

||u(t)− x(t)|| = O(e−αt), t →∞. (2.21)

§ 3 . Comparisons

In [7], by using the Mawhin continuation theory, the authors proved the following

Theorem A. Suppose that Assumption 2.1 is satisfied. If there are real constants
ε > 0, ξi > 0, 0 < αij < 1, 0 < βij < 1, i, j = 1, 2 · · · , n, such that

(−di + α)ξi + Gi

[
ξi|a∗ii|+

1
2

∑

j 6=i

ξj |a∗ji|2αji

]
+

1
2
ξi

∑

j 6=i

Gj |a∗ij |2(1−αij)

+
1
2
Fi

n∑

j=1

ξj |b∗ji|2βjieατji +
1
2
ξi

n∑

j=1

Fj |b∗ij |2(1−βij)eατij < 0 (i = 1, 2, · · · , n), (3.1)

where |a∗ij | = sup
0<t≤ω

|aij(t)| < +∞, |b∗ij | = sup
0<t≤ω

|bij(t)| < +∞, then the dynamical system

(1.3) has at least an ω-periodic solution v(t) = [v1(t), · · · , vn(t)]. Instead, if Assumption 2.2
is satisfied, then for any solution u(t) = [u1(t), · · · , un(t)] of (1.3),

‖u(t)− v(t)‖ = O(e−αt), t →∞. (3.2)

In [6], the following comparison theorem was given.

Theorem B. If the set of inequalities (3.1) holds, then there exist constants θi, i =
1, · · · , n, such that

(−di + α)θi +
n∑

j=1

θjGj |a∗ij |+
n∑

j=1

θjFj |b∗ij |eατij < 0. (3.3)
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But, the converse is not true.

Therefore, the conditions (3.1) are much more restrictive than (3.3). And Theorem A
is a special case of Corollary 2.1.

In [3], the authors claimed that they investigate model (1.2) with time-varying delays
under the assumption that τij(t) is periodic and 0 ≤ τ ′ij(t) < 1. However, if 0 < τ ′ij(t),
then τij(t) is not periodic. Thus, τij(t) must be constants. The model reduces to the model
(1.3). Therefore, they investigate only the model (1.3) with constant time delays, rather
than model (1.2) with time-varying delays.

Under Assumption 2.2 with gj(x) = fj(x) being increasing, they proved that if the
following inequalities

−di +
n∑

j=1

Gj(1 + diω)|a∗ij |+
n∑

j=1

Fj(1 + diω)|b∗ij | < 0 (i = 1, 2, · · · , n), (3.4)

and some other inequalities hold, then the dynamical system has at least a periodic solution.
It is clear that this result is also a special case of Corollary 2.1. Moreover, their

conditions are too strong.

§ 4 . Numerical Example

In this section, we give a numerical example to verify our Main Theorem. Consider a
delayed neural network with 3 neurons:

dx1

dt
= −

[
2.51 +

1
2

sin2(πt)
]
x1(t) + sin2(2πt) tanh(x1(t)) + cos2(2πt) tanh(x2(t))

+ sin2(πt) tanh(x3(t)) + e−1 sin2(4πt) arctan(x1(t− | sin(2πt)|))
+ e−1 cos2(4πt) arctan

(
x2

(
t− π

2
| cos(2πt)|

))

− e−1

2
cos2(πt) arctan(x3(t− 1)) + sin(2πt),

dx2

dt
= −[0.91 + 0.1 sin2(πt) + 0.5 sin2(4πt)]x2(t)− 0.5 sin2(2πt) tanh(x1(t))

+ 0.2 cos2(4πt) tanh(x2(t)) + 0.3 sin2(πt) tanh(x3(t))

− 0.7e−1 sin2(4πt) arctan(x1(t− | sin(2πt)|))
+ 0.5e−1 cos2(2πt) arctan

(
x2

(
t− π

2
| cos(2πt)|

))

+ 0.2e−1 cos2(πt) arctan(x3(t− 1)) + 2 cos(πt),

dx3

dt
= −[0.51 + 0.2 cos2(πt) + 0.2 sin2(2πt) + 0.1 sin2(4πt)]x3(t)

− 0.4 cos2(πt) tanh(x1(t)) + 0.3 sin2(2πt) tanh(x2(t))

+ 0.2 cos2(4πt) tanh(x3(t)) + 0.2e−1 sin2(πt) arctan(x1(t− | sin(2πt)|))
+ 0.1e−1 cos2(2πt) arctan

(
x2

(
t− π

2
| cos(2πt)|

))

+ 0.3e−1 sin2(4πt) arctan(x3(t− 1)) + 2 sin(2πt).

It is easy to see that the conditions (2.15) in Corollary 2.1 are satisfied. However, the
conditions (3.1) in Theorem A used in [7] and (3.4) used in [3] are not satisfied. Fig. 1 shows
that xi(t) (i = 1, 2, 3), converges to a periodic function, respectively.



462 LU, W. L. & CHEN, T. P.

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

2

3

4

5

6

7

8
The components of x(t)

Time

x
1
,x

2
,x

3

Fig. 1

§ 5 . Conclusions

In this paper, we address periodic dynamical systems. Under much weaker conditions,
the existence of periodic solution and its exponential stability are proved.
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