ON PERIODIC DYNAMICAL SYSTEMS***

LU WENLIAN* CHEN TIANPING**

Abstract

The authors investigate the existence and the global stability of periodic solution for dynamical systems with periodic interconnections, inputs and self-inhibitions. The model is very general, the conditions are quite weak and the results obtained are universal.

Keywords Neural network, Dynamical systems, Periodic solution, Global convergence

2000 MR Subject Classification 34K13, 34K25, 34K60

§1. Introduction

Recurrently connected neural networks, sometimes called Grossberg-Hopfield neural networks, are described by the following differential equations

$$\frac{du_i(t)}{dt} = -d_i u_i(t) + \sum_{j=1}^n a_{ij} g_j(u_j(t)) + I_i \qquad (i = 1, \cdots, n),$$
(1.1)

where $g_j(x)$ are activation functions, d_i , a_{ij} are constants and I_i are constant inputs.

In practice, however, the interconnections contain asynchronous terms in general, and the interconnection weights a_{ij} , b_{ij} , self-inhibition d_i and inputs I_i should depend on time, often periodically. Therefore, we need to discuss the following dynamical systems with time-varying delays

$$\frac{du_i}{dt} = -d_i(t)u_i(t) + \sum_{j=1}^n a_{ij}(t)g_j(u_j(t)) + \sum_{j=1}^n b_{ij}(t)f_j(u_j(t-\tau_{ij}(t))) + I_i(t) \qquad (i=1,2,\cdots,n),$$
(1.2)

Manuscript received March 25, 2004.

^{*}Laboratory of Nonlinear Mathematics Science, Institute of Mathematics, Fudan University, Shanghai 200433, China.

^{**}Laboratory of Nonlinear Mathematics Science, Institute of Mathematics, Fudan University, Shanghai 200433, China. **E-mail:** tchen@fudan.edu.cn

^{***}Project supported by the National Natural Science Foundation of China (No.69982003, No.60074005) and the Graduate Innovation Foundation of Fudan University.

or its particular case

$$\frac{du_i}{dt} = -d_i(t)u_i(t) + \sum_{j=1}^n a_{ij}(t)g_j(u_j(t)) + \sum_{j=1}^n b_{ij}(t)f_j(u_j(t-\tau_{ij})) + I_i(t) \qquad (i = 1, 2, \cdots, n),$$
(1.3)

and the systems with distributed delays

$$\frac{du_i(t)}{dt} = -d_i(t)u_i(t) + \sum_{j=1}^n a_{ij}(t)g_j(u_j(t)) + \sum_{j=1}^n b_{ij}(t) \int_0^\infty k_{ij}(s)f_j(u_j(t-\tau_{ij}(t)-s))ds + I_i(t) \qquad (i=1,2,\cdots,n), \quad (1.4)$$

where $d_i(t) > d_i > 0$, $a_{ij}(t), b_{ij}(t), \tau_{ij}(t) > 0, I_i(t) : \mathbf{R}^+ \to \mathbf{R}$ are continuously periodic functions with period $\omega > 0$, $i, j = 1, 2, \dots, n$. For references, see [1–4, 6, 7] and the papers cited therein.

To unify models (1.2) and (1.4), we discuss the following general model

$$\frac{du_i}{dt} = -d_i(t)u_i(t) + \sum_{j=1}^n a_{ij}(t)g_j(u_j(t))
+ \sum_{j=1}^n \int_0^\infty f_j(u_j(t - \tau_{ij}(t) - s))d_s K_{ij}(t, s) + I_i(t) \qquad (i = 1, 2, \cdots, n), \quad (1.5)$$

where $d_s K_{ij}(t,s)$, for any fixed $t \ge 0$, are Lebesgue-Stieljies measures and satisfy $d_s K_{ij}(t + \omega, s) = d_s K_{ij}(t,s)$, $d_i(t) > 0$, $a_{ij}(t), b_{ij}(t), I_i(t), \tau_{ij}(t) > 0$: $\mathbf{R}^+ \to \mathbf{R}$ are continuously periodic functions with period $\omega > 0$.

The initial condition is

$$u_i(s) = \phi_i(s) \qquad \text{for } s \in (-\infty, 0], \tag{1.6}$$

where $\phi_i \in C(-\infty, 0], i = 1, \cdots, n$.

It is easy to see that if $d_s K_{ij}(t,0) = b_{ij}(t)$ and $d_s K_{ij}(t,s) = 0$ for $s \neq 0$, then (1.5) reduces to (1.2); In addition, if $\tau_{ij}(t) = \tau_{ij}$ are constants, then it reduces to (1.3). Instead, if $d_s K_{ij}(t,s) = b_{ij}(t)k_{ij}(s)ds$, then (1.5) reduces to (1.4).

As a precondition, we assume that for the system (1.5), there exists a unique solution with the initial condition (1.6) and the solution continuously depends on the initial data.

§2. Main Results

For the convenience, throughout this letter, we make the following two assumptions.

Assumption 2.1. $|g_j(s)| \le G_j |s| + C_j$, $|f_j(s)| \le F_j |s| + D_j$, where $G_j > 0$, $F_j > 0$, C_j and D_j are constants $(j = 1, \dots, n)$.

Assumption 2.2. $|g_i(x+h) - g(x)| \le G_i |h|$ and $|f_i(x+h) - f(x)| \le F_i |h|$ $(i = 1, \dots, n)$.

456

Main Theorem. Suppose that Assumption 2.1 is satisfied. If there exist positive constants $\xi_1, \xi_2, \dots, \xi_n$ such that for all t > 0,

$$-\xi_i d_i(t) + \sum_{j=1}^n \xi_j G_j |a_{ij}(t)| + \sum_{j=1}^n \xi_j F_j \int_0^\infty |d_s K_{ij}(t,s)| < -\eta < 0 \qquad (i = 1, 2, \cdots, n), \quad (2.1)$$

then the system (1.5) has at least an ω -periodic solution x(t). In addition, if Assumption 2.2 is satisfied and there exists a constant α such that for all t > 0,

$$-\xi_{i}(d_{i}(t) - \alpha) + \sum_{j=1}^{n} \xi_{j}G_{j}|a_{ij}(t)| + \sum_{j=1}^{n} \xi_{j}F_{j}e^{\alpha\tau_{ij}(t)} \int_{0}^{\infty} e^{\alpha s}|d_{s}K_{ij}(t,s)| \leq 0 \qquad (i = 1, 2, \cdots, n),$$
(2.2)

then for any solution $u(t) = [u_1(t), \cdots, u_n(t)]$ of (1.5),

$$||u(t) - x(t)|| = O(e^{-\alpha t}), \qquad t \to \infty.$$
 (2.3)

Proof. Pick a constant M satisfying $M > \frac{J}{\eta}$, where

$$J = \max_{i} \max_{t} \left\{ \sum_{j=1}^{n} |a_{ij}(t)| C_j + \sum_{j=1}^{n} D_j \int_0^\infty |d_s K_{ij}(t,s)| + |I_i(t)| \right\}.$$
 (2.4)

And let $C = C((-\infty, 0], \mathbb{R}^n)$ be the Banach space with norm

$$\|\phi\| = \sup_{-\infty < \theta \le \omega} \|\phi(\theta)\|_{\{\xi,\infty\}},$$

where

$$\|\phi(\theta)\|_{\{\xi,\infty\}} = \max_{i=1,\cdots,n} \xi^{-1} |\phi_i(\theta)|.$$

Denote

$$\Omega = \{ x(\theta) \in C : \| x(\theta) \| \le M, \| \dot{x}(\theta) \| \le N \},$$

$$(2.5)$$

where

$$N = (\alpha + \beta + \gamma)M + c$$

and

$$\alpha = \max_{i} \sup_{t} |d_i(t)|\xi_i^{-1},$$

$$\beta = \max_{i,j} \sup_{t} |a_{ij}(t)|\xi_i^{-1}G_j,$$

$$\gamma = \max_{i,j} \sup_{t} \int_0^\infty |d_s K_{ij}(t,s)|F_j\xi_i^{-1},$$

$$c = \max_{i} \sup_{t} |I_i(t)|\xi_i^{-1}.$$

It is easy to check that Ω is a convex compact set.

Now, define a map T from Ω to C by

$$T: \phi(\theta) \longrightarrow x(\theta + \omega, \phi),$$

where $x(t) = x(t, \phi)$ is the solution of the system (1.5) with the initial condition $x_i(\theta) = \phi_i(\theta)$ for $\theta \in (-\infty, 0]$ and $i = 1, \dots, n$.

In the following, we will prove that $T\Omega \subset \Omega$, i.e. if $\phi \in \Omega$, then $x \in \Omega$. To do that, we define the following function

$$M(t) = \sup_{s \in (-\infty, 0]} \|x(t+s)\|_{\{\xi, \infty\}},$$
(2.6)

It is easy to see that

$$\|x(t)\|_{\{\xi,\infty\}} \le M(t). \tag{2.7}$$

Therefore, what we need to do is to prove $M(t) \leq M$ for all t > 0. Assume that $t_0 \geq 0$ is the smallest value such that

$$\|x(t_0)\|_{\{\xi,\infty\}} = M(t_0) = M,$$
(2.8)

$$\|x(t)\|_{\{\xi,\infty\}} \le M \quad \text{if } t < t_0.$$
(2.9)

Let i_0 be an index such that

$$\xi_{i_0}^{-1}|x_{i_0}(t)| = \|x(t_0)\|_{\{\xi,\infty\}}.$$
(2.10)

Then direct calculation gives

$$\left\{\frac{d|x_{i_0}(t)|}{dt}\right\}_{t=t_0} \leq \operatorname{sign}(x_{i_0}(t_0))\left\{-d_{i_0}(t_0)x_{i_0}(t_0) + \sum_{j=1}^n a_{i_0j}(t_0)g_j(x_j) + \sum_{j=1}^n \int_0^\infty f_j(x_j(t_0 - \tau_{i_0j}(t_0) - s))d_sK_{i_0j}(t_0, s) + I_{i_0}(t_0)\right\} \\ \leq -d_{i_0}(t_0)|x_{i_0}(t_0)| + \sum_{j=1}^n |a_{i_0j}(t)|G_j|x_j(t_0)| \\ + \sum_{j=1}^n F_j \int_0^\infty |x_j(t_0 - \tau_{i_0j}(t_0) - s)||d_sK_{i_0j}(t_0, s)| + J \\ \leq \left[-d_{i_0}(t_0)\xi_{i_0} + \sum_{j=1}^n |a_{i_0j}(t_0)|G_j\xi_j\right] \|x(t_0)\|_{\{\xi,\infty\}} \\ + \sum_{j=1}^n F_j\xi_j \int_0^\infty \|x(t_0 - \tau_{i_0j}(t_0) - s)\|_{\{\xi,\infty\}} |d_sK_{i_0j}(t_0, s)| + J \\ \leq \left[-d_{i_0}(t_0)\xi_{i_0} + \sum_{j=1}^n |a_{i_0j}(t_0)|G_j\xi_j + \sum_{j=1}^n F_j\xi_j \int_0^\infty |d_sK_{i_0j}(t_0, s)|\right] M(t_0) + J \\ \leq -\eta M(t_0) + J = -\eta M + J < 0,$$
(2.11)

which means that $||x(t)||_{\{\xi,\infty\}}$ can never exceed M. Thus, $||x(t)||_{\{\xi,\infty\}} \leq M(t) \leq M$ for all $t > t_0$. Moreover, it is easy to see that $||\dot{x}(\theta + \omega)|| \leq N$. Therefore, $T\Omega \subset \Omega$.

458

By Brouwer fixed point theorem, there exists $\phi^* \in \Omega$ such that $T\phi^* = \phi^*$. Hence $x(t, \phi^*) = x(t, T\phi^*)$, i.e.,

$$x(t, \phi^*) = x(t + \omega, \phi^*),$$
 (2.12)

which is an ω -periodic solution of the system (1.5).

Now, we prove that (2.2) implies (2.3).

Let $\bar{u}(t) = [u(t) - x(t)], z(t) = e^{\alpha t} \bar{u}(t)$. We have

$$\frac{dz_i(t)}{dt} = -(d_i(t) - \alpha)z_i(t) + e^{\alpha t} \Big\{ \sum_{j=1}^n a_{ij}(t) \Big[g_j(u_j(t)) - g_j(x_j(t)) \Big] \\
+ \sum_{j=1}^n \int_0^\infty \Big[f_j(u_j(t - \tau_{ij}(t) - s)) - f_j(x_j(t - \tau_{ij}(t) - s)) \Big] d_s K_{ij}(t, s) \Big\}.$$
(2.13)

Therefore

$$\frac{dz_{i}(t)}{dt} \Big| \leq -(d_{i}(t) - \alpha)|z_{i}(t)| + \sum_{j=1}^{n} |a_{ij}(t)|G_{j}|z_{j}(t)|
+ \sum_{j=1}^{n} F_{j}e^{\alpha\tau_{ij}(t)} \int_{0}^{\infty} e^{\alpha s}|z_{j}(t - \tau_{ij}(t) - s)||d_{s}K_{ij}(t, s)|
\leq \Big[-\xi_{i}(d_{i}(t) - \alpha) + \sum_{j=1}^{n}\xi_{j}|a_{ij}(t)|G_{j}\Big] \|z(t)\|_{\xi,\infty}
+ \sum_{j=1}^{n}\xi_{j}F_{j}e^{\alpha\tau_{ij}(t)} \int_{0}^{\infty} e^{\alpha s} \|z_{j}(t - \tau_{ij}(t) - s)\|_{\xi,\infty} |d_{s}K_{ij}(t, s)|.$$
(2.14)

By the same approach used before, we can prove that z(t) is bounded. Then $\bar{u}(t) = O(e^{-\alpha t})$. Main Theorem is proved.

In particular, let $d_s K_{ij}(t,0) = b_{ij}(t)$ and $d_s K_{ij}(t,s) = 0$, we have

Corollary 2.1. Suppose that Assumption 2.1 is satisfied. If there exist positive constants $\xi_1, \xi_2, \dots, \xi_n$ such that for all t > 0,

$$-\xi_i d_i(t) + \sum_{j=1}^n \xi_j G_j |a_{ij}(t)| + \sum_{j=1}^n \xi_j F_j |b_{ij}(t)| < 0 \qquad (i = 1, 2, \cdots, n),$$
(2.15)

in particular, if

$$-\xi_i d_i + \sum_{j=1}^n \xi_j G_j |a_{ij}^*| + \sum_{j=1}^n \xi_j F_j |b_{ij}^*| < 0 \qquad (i = 1, 2, \cdots, n),$$
(2.16)

then the system (1.2) or (1.3) has at least an ω -periodic solution x(t). In addition, if Assumption 2.2 is satisfied, and

$$(-d_i(t) + \alpha)\xi_i + \sum_{j=1}^n \xi_j G_j |a_{ij}(t)| + \sum_{j=1}^n \xi_j F_j |b_{ij}(t)| e^{\alpha \tau_{ij}} \le 0 \qquad (i = 1, 2, \cdots, n), \quad (2.17)$$

then for any solution $u(t) = [u_1(t), \cdots, u_n(t)]$ of (1.2) or (1.3), we have

$$||u(t) - x(t)|| = O(e^{-\alpha t}), \qquad t \to \infty.$$
 (2.18)

Instead, if $d_s K_{ij}(t,s) = b_{ij}(t)k_{ij}(s)ds$, then we have

Corollary 2.2. Suppose that Assumption 2.1 is satisfied. If there exist positive constants $\xi_1, \xi_2, \dots, \xi_n$ such that for all t > 0, there hold

$$-\xi_{i}d_{i}(t) + \sum_{j=1}^{n} \xi_{j}G_{j}|a_{ij}(t)| + \sum_{j=1}^{n} \xi_{j}F_{j}|b_{ij}(t)| \int_{0}^{\infty} |k_{ij}(s)|ds < -\eta < 0 \qquad (i = 1, 2, \cdots, n),$$
(2.19)

then the system (1.4) has at least an ω -periodic solution x(t). In addition, if Assumption 2.2 is satisfied and

$$-\xi_{i}(d_{i}(t) - \alpha) + \sum_{j=1}^{n} \xi_{j}G_{j}|a_{ij}(t)| + \sum_{j=1}^{n} \xi_{j}F_{j}e^{\alpha\tau_{ij}(t)} \int_{0}^{\infty} e^{\alpha s}|k_{ij}(t,s)|ds \leq 0 \qquad (i = 1, 2, \cdots, n),$$
(2.20)

then for any solution $u(t) = [u_1(t), \cdots, u_n(t)]$ of (1.4), we have

$$||u(t) - x(t)|| = O(e^{-\alpha t}), \qquad t \to \infty.$$
 (2.21)

§3. Comparisons

In [7], by using the Mawhin continuation theory, the authors proved the following

Theorem A. Suppose that Assumption 2.1 is satisfied. If there are real constants $\epsilon > 0, \xi_i > 0, 0 < \alpha_{ij} < 1, 0 < \beta_{ij} < 1, i, j = 1, 2 \cdots, n$, such that

$$(-d_{i}+\alpha)\xi_{i}+G_{i}\left[\xi_{i}|a_{ii}^{*}|+\frac{1}{2}\sum_{j\neq i}\xi_{j}|a_{ji}^{*}|^{2\alpha_{ji}}\right]+\frac{1}{2}\xi_{i}\sum_{j\neq i}G_{j}|a_{ij}^{*}|^{2(1-\alpha_{ij})}$$
$$+\frac{1}{2}F_{i}\sum_{j=1}^{n}\xi_{j}|b_{ji}^{*}|^{2\beta_{ji}}e^{\alpha\tau_{ji}}+\frac{1}{2}\xi_{i}\sum_{j=1}^{n}F_{j}|b_{ij}^{*}|^{2(1-\beta_{ij})}e^{\alpha\tau_{ij}}<0\qquad(i=1,2,\cdots,n),\qquad(3.1)$$

where $|a_{ij}^*| = \sup_{0 < t \le \omega} |a_{ij}(t)| < +\infty$, $|b_{ij}^*| = \sup_{0 < t \le \omega} |b_{ij}(t)| < +\infty$, then the dynamical system (1.3) has at least an ω -periodic solution $v(t) = [v_1(t), \cdots, v_n(t)]$. Instead, if Assumption 2.2 is satisfied, then for any solution $u(t) = [u_1(t), \cdots, u_n(t)]$ of (1.3),

$$||u(t) - v(t)|| = O(e^{-\alpha t}), \quad t \to \infty.$$
 (3.2)

In [6], the following comparison theorem was given.

Theorem B. If the set of inequalities (3.1) holds, then there exist constants θ_i , $i = 1, \dots, n$, such that

$$(-d_i + \alpha)\theta_i + \sum_{j=1}^n \theta_j G_j |a_{ij}^*| + \sum_{j=1}^n \theta_j F_j |b_{ij}^*| e^{\alpha \tau_{ij}} < 0.$$
(3.3)

460

But, the converse is not true.

Therefore, the conditions (3.1) are much more restrictive than (3.3). And Theorem A is a special case of Corollary 2.1.

In [3], the authors claimed that they investigate model (1.2) with time-varying delays under the assumption that $\tau_{ij}(t)$ is periodic and $0 \leq \tau'_{ij}(t) < 1$. However, if $0 < \tau'_{ij}(t)$, then $\tau_{ij}(t)$ is not periodic. Thus, $\tau_{ij}(t)$ must be constants. The model reduces to the model (1.3). Therefore, they investigate only the model (1.3) with constant time delays, rather than model (1.2) with time-varying delays.

Under Assumption 2.2 with $g_j(x) = f_j(x)$ being increasing, they proved that if the following inequalities

$$-d_i + \sum_{j=1}^n G_j(1+d_i\omega)|a_{ij}^*| + \sum_{j=1}^n F_j(1+d_i\omega)|b_{ij}^*| < 0 \qquad (i=1,2,\cdots,n), \quad (3.4)$$

and some other inequalities hold, then the dynamical system has at least a periodic solution.

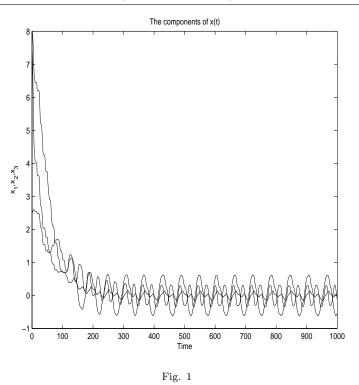
It is clear that this result is also a special case of Corollary 2.1. Moreover, their conditions are too strong.

§4. Numerical Example

In this section, we give a numerical example to verify our Main Theorem. Consider a delayed neural network with 3 neurons:

$$\begin{split} \frac{dx_1}{dt} &= -\left[2.51 + \frac{1}{2}\sin^2(\pi t)\right] x_1(t) + \sin^2(2\pi t) \tanh(x_1(t)) + \cos^2(2\pi t) \tanh(x_2(t)) \\ &+ \sin^2(\pi t) \tanh(x_3(t)) + e^{-1} \sin^2(4\pi t) \arctan(x_1(t - |\sin(2\pi t)|)) \\ &+ e^{-1} \cos^2(4\pi t) \arctan\left(x_2\left(t - \frac{\pi}{2}|\cos(2\pi t)|\right)\right) \\ &- \frac{e^{-1}}{2} \cos^2(\pi t) \arctan(x_3(t - 1)) + \sin(2\pi t), \\ \frac{dx_2}{dt} &= -[0.91 + 0.1 \sin^2(\pi t) + 0.5 \sin^2(4\pi t)]x_2(t) - 0.5 \sin^2(2\pi t) \tanh(x_1(t)) \\ &+ 0.2 \cos^2(4\pi t) \tanh(x_2(t)) + 0.3 \sin^2(\pi t) \tanh(x_3(t)) \\ &- 0.7e^{-1} \sin^2(4\pi t) \arctan(x_1(t - |\sin(2\pi t)|)) \\ &+ 0.5e^{-1} \cos^2(2\pi t) \arctan\left(x_2\left(t - \frac{\pi}{2}|\cos(2\pi t)|\right)\right) \\ &+ 0.2e^{-1} \cos^2(\pi t) \arctan(x_3(t - 1)) + 2\cos(\pi t), \\ \frac{dx_3}{dt} &= -[0.51 + 0.2 \cos^2(\pi t) + 0.2 \sin^2(2\pi t) + 0.1 \sin^2(4\pi t)]x_3(t) \\ &- 0.4 \cos^2(\pi t) \tanh(x_1(t)) + 0.3 \sin^2(2\pi t) \tanh(x_2(t)) \\ &+ 0.2e^{-1} \cos^2(2\pi t) \tanh(x_3(t)) + 0.2e^{-1} \sin^2(\pi t) \arctan(x_1(t - |\sin(2\pi t)|)) \\ &+ 0.1e^{-1} \cos^2(2\pi t) \arctan\left(x_2\left(t - \frac{\pi}{2}|\cos(2\pi t)|\right)\right) \\ &+ 0.1e^{-1} \cos^2(2\pi t) \arctan\left(x_3(t - 1)\right) + 2\sin(2\pi t)\right] \end{split}$$

It is easy to see that the conditions (2.15) in Corollary 2.1 are satisfied. However, the conditions (3.1) in Theorem A used in [7] and (3.4) used in [3] are not satisfied. Fig. 1 shows that $x_i(t)$ (i = 1, 2, 3), converges to a periodic function, respectively.



§5. Conclusions

In this paper, we address periodic dynamical systems. Under much weaker conditions, the existence of periodic solution and its exponential stability are proved.

References

- Chen, T. P., Lu, W. L. & Chen, G. R., Dynamical behaviors of a large class of general delayed neural networks, *Neural Computation*, to appear, 2004.
- [2] Gopalsamy, K. & Sariyasa, Time delays and stimulus-dependent pattern formation in periodic envirorments in isolated neurons, *IEEE Transactions on Neural Networks*, 13:2(2002), 551–563.
- [3] Liu, Z. G. & Liao, L. S., Existence and global exponential stability of periodic solution of cellular neural networks with time-varying delays, J. Math. Annl. Appl., 290(2004), 247-262.
- [4] Mohamad, S. & Gopalsamy, K., Neuronal dynamics in time varying environments: continuous and discrete time models, Dis. Cont. Dyn. Syst., 6(2000), 841–860.
- [5] Zhang, Y., Absolute periodicity and absolute stability of delayed neural networks, *IEEE Transactions Cirsuits and Systems I*, 49(2002), 256–261.
- [6] Zheng, Y. X. & Chen, T. P., Global exponential stability of delayed periodic dynamical systems, *Physics Letters A*, **322**:5-6(2004), 344–355.
- [7] Zhou, J., Liu, Z. R. & Chen, G. R., Dynamics of delayed periodic neural networks, Neural Networks, 17:1(2004), 87–101.