
Chin. Ann. Math.
25B:4(2004),463–482.

GLOBAL EXISTENCE FOR A CLASS OF SYSTEMS
OF NONLINEAR WAVE EQUATIONS IN

THREE SPACE DIMENSIONS

S. KATAYAMA∗

Abstract

Consider a system of nonlinear wave equations

(∂2
t − c2

i ∆x)ui = Fi(u, ∂u, ∂x∂u) in (0,∞)× R3

for i = 1, · · · , m, where Fi (i = 1, · · · , m) are smooth functions of degree 2 near the
origin of their arguments, and u = (u1, · · · , um), while ∂u and ∂x∂u represent the first
and second derivatives of u, respectively. In this paper, the author presents a new
class of nonlinearity for which the global existence of small solutions is ensured. For
example, global existence of small solutions for(

(∂2
t − c2

1∆x)u1 = u2(∂tu2) + arbitrary cubic terms,

(∂2
t − c2

2∆x)u2 = u1(∂tu2) + (∂tu1)u2 + arbitrary cubic terms

will be established, provided that c2
1 6= c2

2.

Keywords Wave equations, Multiple speeds, Global existence
2000 MR Subject Classification 35L70

§ 1 . Introduction

Throughout this paper, we use the notation ∂0 = ∂t and ∂j = ∂xj for j = 1, 2, 3. For
multi-indices α = (α0, α1, α2, α3) and β = (β1, β2, β3), ∂α and ∂β

x denote ∂α0
0 ∂α1

1 ∂α2
2 ∂α3

3

and ∂β1
1 ∂β2

2 ∂β3
3 , respectively. All the functions which will appear below are supposed to be

real-valued.
This paper is devoted to the study of the Cauchy problem for systems of nonlinear

wave equations of the type

¤iui = Fi(u, ∂u, ∂x∂u) in (0,∞)× R3 (i = 1, · · · ,m) (1.1)

with initial data
u(0, x) = εf(x), ut(0, x) = εg(x), (1.2)

where ¤i = ∂2
t − c2

i ∆x (i = 1, · · · ,m), u = (uj)j=1,··· ,m, ∂u = (∂auj)j=1,··· ,m
a=0,··· ,3

, ∂x∂u =

(∂k∂auj)j=1,··· ,m
k=1,··· ,3
a=0,··· ,3

. We assume that all ci’s in the definition of ¤i are positive constants, and
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that F = (Fi)i=1,··· ,m is a smooth function of degree 2 around the origin. More precisely,
we assume

F (u, v, w) = F

(
(uj)j=1,··· ,m, (vj,a)j=1,··· ,m

a=0,··· ,3
, (wj,ka)j=1,··· ,m

k=1,··· ,3
a=0,··· ,3

)

= O(|u|2 + |v|2 + |w|2)
(1.3)

around the origin in Rm×R4m×R12m. Here the variables vj,a and wj,ka correspond to ∂auj

and ∂k∂auj , respectively. We also suppose that f , g ∈ C∞0 (R3). ε is a sufficiently small and
positive parameter. To ensure the hyperbolicity of the system (1.1), we always assume

cij
ka(u, v, w) = cji

ka(u, v, w) (i, j ∈ {1, · · · , m}, k ∈ {1, 2, 3}, a ∈ {0, · · · , 3}) (1.4)

for any (u, v, w) in some neighbourhood of the origin in Rm × R4m × R12m, where

cij
ka(u, v, w) =

∂Fi

∂wj,ka
(u, v, w). (1.5)

Because we only consider classical solutions, we may also assume, without loss of generality,
that

cij
kl = cij

lk (i, j ∈ {1, · · · , m}, k, l ∈ {1, 2, 3}). (1.6)

We are concerned with the condition to ensure the global existence of solutions to (1.1)
for small data. In the following, we say that (GE) holds when for any f , g ∈ C∞0 (R3), there
exists a positive constant ε0 such that for any ε ∈ (0, ε0], the Cauchy problem (1.1)–(1.2)
admits a unique solution u ∈ C∞([0,∞)× R3;Rm).

We want to recall some known results briefly. It is known that (GE) does not hold for
some quadratic nonlinearity. Hence we need some condition on F to ensure (GE). Such a
condition is called the Null Condition. The case where c1 = · · · = cm and F = F (u, ∂u, ∂x∂u)
was studied by Klainerman [10] and Christodoulou [2]. The case where the speeds ci do
not necessarily coincide with each other and F depends only on derivatives of u, namely
F = F (∂u, ∂x∂u), was studied by Kovalyov [12], Agemi-Yokoyama [1], Yokoyama [19] and
Sideris-Tu [17]. To state their results precisely, we introduce the Null Condition for the case
of multiple speeds. Set

I(j) = {k ∈ {1, · · · ,m}; ck = cj} for j ∈ {1, 2, · · · ,m} (1.7)

and
Y m

i = {y = (y1, · · · , ym) ∈ Rm; yj = 0 if j 6∈ I(i)}. (1.8)

For a smooth function G(u, v, w) and a positive integer p, we define

G(p)(u, v, w) =
∑

|α|+|β|+|γ|=p

(∂α
u ∂β

v ∂γ
wG)(0, 0, 0)

uαvβwγ

α!β!γ!
,

where we have used the standard multi-index notation.

Definition 1.1. (The Null Condition) We say F (u, v, w) = (Fi(u, v, w))i=1,··· ,m sat-
isfies the Null Condition if the following two conditions hold for each i ∈ {1, · · · ,m} :

( i ) For any U , µ, ν ∈ Y m
i and any X = (X0, X1, X2, X3) ∈ R4 with X2

0 −X2
1 −X2

2 −
X2

3 = 0, we have
F

(2)
i (U, V (µ,X),W (ν, X)) = 0,

where V ∈ R4m and W ∈ R12m are given by

V (µ,X) = (Vj,a(µ,X))j,a = (µjXa)j,a (1.9)
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and

W (ν,X) = (Wj,ka(ν, X))j,k,a = (νjXkXa)j,k,a, (1.10)

respectively with 1 ≤ j ≤ m, 0 ≤ a ≤ 3 and 1 ≤ k ≤ 3.
(ii) For any (u, v, w) ∈ Rm × R4m × R12m and any j, k ∈ {1, · · · ,m}, we have

∂2F
(2)
i

∂uj∂uk
(u, v, w) = 0.

Note that the above Null Condition coincides with Klainerman’s Null Condition when
c1 = · · · = cm, and with Agemi-Yokoyama’s when F does not depend on u explicitly, namely
F = F (v, w).

Using this Null Condition, known results mentioned in the above can be summarized as
the following: If F satisfies the Null Condition and furthermore if we have either c1 = · · · =
cm or F = F (v, w), then (GE) holds (see [3–7] for the correponding results of two space
dimensional systems with cubic nonlinearity). Therefore we are interested in the general
case where F = F (u, v, w) and the speeds may be different from each other. Such a case was
treated by Kubota–Yokoyama [13], and quite recently the author [9] extended their result
and showed that if F satisfies the Null Condition and

(H1) For each i ∈ {1, · · · ,m}, F
(2)
i does not depend on u, namely

∂F
(2)
i

∂uj
(u, v, w) = 0 for all j ∈ {1, · · · ,m} and any (u, v, w) ∈ Rm × R4m × R12m,

then (GE) holds. Notice that (H1) is a stronger version of the condition (ii) in the definition
of the Null Condition. Note also that, in all the results mentioned above, F

(2)
i is always

independent of u itself (it follows from the Null Condition if c1 = · · · = cm, and it is apparent
when either F = F (v, w) or (H1) holds).

Our aim in this paper is to establish a global existence result for equations with non-
linearity F whose quadratic part F

(2)
i may depend also on u. In other words, we would like

to find a condition, an alternative to (H1), which allows quadratic terms including u. Our
main result is the following

Theorem 1.1. Suppose that (1.4) holds and that F satisfies the Null Condition. Fur-
thermore, assume

(H2) For each i ∈ {1, · · · ,m}, there exist some expressions Gi,a (a = 0, 1, 2, 3) such
that

F
(2)
i (u, ∂u, ∂x∂u) =

3∑
a=0

∂a{Gi,a(u, ∂u)} (i = 1, · · · ,m)

holds for any “small” functions u ∈ C2.
Then we have (GE) for the Cauchy problem (1.1)–(1.2).

Remark 1.1. We have assumed that the functions f and g in initial data (1.2) are
compactly supported for simplicity of exposition of the known results, but it is not used
essentially in the proof of Theorem 1.1. The support condition on data is not essential in
most of the known results in the above, but is used essentially in the proof of some results
including [6, 7, 13].

The first point of our theorem is that we can treat F
(2)
i including terms depending on

both of u and derivatives of u. For example, uj(∂auj) with j 6∈ I(i) can be contained in
Fi(u, ∂u, ∂x∂u), because it satisfies the Null Condition and uj(∂auj) = ∂a(u2

j/2). Similarly,
terms like uj(∂auk) + uk(∂auj) with (j, k) 6∈ I(i)× I(i) also can be included in Fi.
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The second point is that there is no restriction on higher nonlinearity. It may sound
obvious that nonlinearity of higher power than the critical power does not affect the existence
of the solution. However, sometimes it is not so easy to prove such a result, especially
when the nonlinearity depends on both of u and its derivatives. For example, in two space
dimensions, we have “almost global” existence for ¤u = u(ut)2, and global existence for
¤u = u4. Therefore, it is natural to expect we have at least “almost global” existence
also for ¤u = u(ut)2 + u4, but the known frameworks to prove each results are completely
different from each other, and this problem still remains open as far as the author knows
(see [14, 15, 8]).

Before concluding this section, we will give an explicit representation of F satisfying
both our Null Condition and the assumption (H2).

First we introduce some notations. Throughout this paper, for a set of functions
{fλ}λ∈Λ and a function g, we write g =

∑′
λ∈Λ

fλ if there exist some constants Cλ (λ ∈ Λ) such

that g =
∑

λ∈Λ

Cλfλ.

For a positive constant c, and smooth functions φ and ψ, we define the null forms:

Q0(φ, ψ; c) = (∂tφ)(∂tψ)− c2
3∑

j=1

(∂jφ)(∂jψ), (1.11)

Qab(φ, ψ) = (∂aφ)(∂bψ)− (∂bφ)(∂aψ) (0 ≤ a, b ≤ 3). (1.12)

For all i ∈ {1, · · · ,m}, we set Hi = Fi − F
(2)
i . Then, from the definition of F

(2)
i , we have

Hi(u, v, w) = O(|u|3 + |v|3 + |w|3). (1.13)

Using these notations, if F satisfies the Null Condition, we have

Fi(u, ∂u, ∂x∂u) = Ni(∂u, ∂x∂u) + Ri(u, ∂u, ∂x∂u) + Hi(u, ∂u, ∂x∂u)

for all i = 1, · · · ,m, where

Ni(∂u, ∂x∂u) =
∑′

(j,k)∈I(i)×I(i)

( ∑′

|α|,|β|=0,1

Q0(∂αuj , ∂
βuk; ci) +

∑′

|α|,|β|=0,1
a,b

Qab(∂αuj , ∂
βuk)

)
,

Ri(u, ∂u, ∂x∂u) =
∑′

(j,k)6∈I(i)×I(i)

( ∑′

|α|,|β|=0,1,2
with |α|+ |β| ≥ 1

(∂αuj)(∂βuk)
)

(refer to [1, 2, 10, 19]). Moreover, if we further assume (H2) in addition to the Null Condition,
we easily get the expression

Fi(u, ∂u, ∂x∂u) =
( 3∑

a=0

∂a{Gi,a(u, ∂u)}
)

+ Hi(u, ∂u, ∂x∂u) (1.14)

for i ∈ {1, · · · ,m}, where Gi,a has the form

Gi,a(u, ∂u) = Ni,a(∂u) + Ri,a(u, ∂u) (1.15)

with

Ni,a(∂u) =
∑′

(j,k)∈I(i)×I(i)

(
Q0(uj , uk; ci) +

∑′

a,b

Qab(uj , uk)
)
, (1.16)

Ri,a(u, ∂u) =
∑′

(j,k) 6∈I(i)×I(i)

( ∑′

|α|,|β|=0,1

(∂αuj)(∂βuk)
)
. (1.17)
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§ 2 . Notations and Preliminary Results

First we introduce some notations which will be used throughout this paper.
2.1. Notations. Let f and g be functions in S, where S denotes the class of rapidly

decreasing functions, and c1, · · · , cm be positive constants given in (1.1). For each i ∈
{1, · · · ,m}, we define a mapping U∗

i [f, g] by

U∗
i [f, g](t, x) = u(t, x) for (t, x) ∈ [0,∞)× R3, (2.1a)

where u is the unique classical solution to
{

(∂2
t − c2

i ∆x)u(t, x) = 0 for (t, x) ∈ (0,∞)× R3,

u(0, x) = f(x), (∂tu)(0, x) = g(x) for x ∈ R3.
(2.1b)

Also, for a given function φ = φ(t, x), we define another mapping Ui[φ] by

Ui[φ](t, x) = v(t, x) for (t, x) ∈ [0,∞)× R3, (2.2a)

where v is the unique classical solution to
{

(∂2
t − c2

i ∆x)v(t, x) = φ(t, x) for (t, x) ∈ (0,∞)× R3,

v(0, x) = (∂tv)(0, x) = 0 for x ∈ R3.
(2.2b)

Now, we introduce some vector fields:

Γ0 = t∂t +
3∑

j=1

xj∂j , Γ1 = ∂t, Γ2 = ∂1, Γ3 = ∂2, Γ4 = ∂3,

Γ5 = Ω12, Γ6 = Ω13, Γ7 = Ω23,

(2.3)

where Ωij = xi∂j − xj∂i. We write Γα for Γα0
0 Γα1

1 · · ·Γα7
7 using a multi-index α. It is easy

to check that for any smooth function φ, we have

ΓαΓβφ(t, x) =Γα+βφ(t, x) +
∑′

|γ|≤|α|+|β|−1

Γγφ(t, x), (2.4)

Γα∂aφ(t, x) =∂aΓαφ(t, x) +
∑′

b∈{0,1,2,3}
|β|≤|α|−1

∂bΓβφ(t, x) for any a ∈ {0, 1, 2, 3}, (2.5)

∂aΓαφ(t, x) =Γα∂aφ(t, x) +
∑′

b∈{0,1,2,3}
|β|≤|α|−1

Γβ∂bφ(t, x) for any a ∈ {0, 1, 2, 3}. (2.6)

We also have
¤iΓαφ(t, x) = Γα(¤iφ(t, x)) +

∑′

|β|≤|α|−1

Γβ(¤iφ(t, x)), (2.7)

where ¤i = ∂2
t − c2

i ∆x.
For a non-negative integer s and a function v, we define

|v(t, x)|s =
∑

0≤|α|≤s

|Γαv(t, x)|, (2.8)

‖v(t, ·)‖s,p = ‖|v(t, ·)|s‖Lp(R3) (1 ≤ p ≤ ∞). (2.9)

2.2. Preliminary Results. We start this subsection with the well-known energy
inequality for hyperbolic systems.



468 S. KATAYAMA

Lemma 2.1. (The Energy Inequality) Let v = (v1, · · · , vm) be a solution to

∂2
t vi(t, x)−

m∑

j=1

3∑

k=1

3∑
a=0

Si,j
k,a(t, x)(∂k∂avj)(t, x) = φi(t, x) in (0,∞)× R3

for i = 1, · · · ,m, with initial data v = f and vt = g at t = 0. Assume that we have
Si,j

k,a = Sj,i
k,a and Si,j

k,l = Si,j
l,k for any i, j ∈ {1, · · · , m}, k, l ∈ {1, 2, 3} and a ∈ {0, 1, 2, 3}. We

also suppose that there exists some positive constant M such that

M−1|ξ|2 ≤
m∑

i,j=1

3∑

k,l=1

Si,j
k,l(t, x)ξi,kξj,l ≤ M |ξ|2

holds for any (t, x) ∈ [0,∞)× R3 and any ξ = (ξi,k)i=1,··· ,m
k=1,2,3

∈ R3m. Then we have

‖∂v(t, ·)‖L2 ≤ C(‖f‖H1 + ‖g‖L2) + C

∫ t

0

(‖∂S(τ, ·)‖L∞‖∂v(τ, ·)‖L2 + ‖φ(τ, ·)‖L2)dτ, (2.10)

where S = (Si,j
k,a)i,j=1,··· ,m

k=1,··· ,3
a=0,··· ,3

and φ = (φi)i=1,··· ,m.

Since this energy inequality can be shown by the classical and standard argument, we
omit the proof here.

Let φ = φ(t, x) be a sufficiently smooth function on (0,∞)×R3. We will use notations
in Subsection 2.1. The following lemma is classical (see [18]).

Lemma 2.2. Let i ∈ {1, · · · ,m}. Then we have

‖Ui[φ](t, ·)‖L2(R3) ≤ C

∫ t

0

‖φ(τ, ·)‖L6/5(R3)dτ for t > 0, (2.11)

‖U∗
i [f, g](t, ·)‖L2(R3) ≤ C(‖f‖L2(R3) + ‖g‖L6/5(R3)) for t > 0. (2.12)

Since we have

Ui[∂aφ] = ∂aUi[φ]− δ0,aU∗
i [0, φ(0, ·)], a = 0, 1, 2, 3, (2.13)

by using Kronecker’s delta δi,j , the standard energy inequality for wave equations, together
with (2.12), implies the following

Lemma 2.3. Let i ∈ {1, · · · ,m} and a ∈ {0, 1, 2, 3}. Then we have

‖Ui[∂aφ](t, ·)‖L2 ≤ C
( ∫ t

0

‖φ(τ, ·)‖L2dτ + δ0,a‖φ(0, ·)‖L6/5

)
for t > 0. (2.14)

For the detail of the proof, see [16] for example.

§ 3 . L1 Decay Estimates for Linear Wave Equations

In this section we will derive L∞ decay estimates for solutions of linear wave equations.
We introduce some weight functions which are concerned with decay of solutions to

wave equations. For (t, x) ∈ R+ × R3, we define

w+(t, x) = 1 + t + |x|, (3.1)

wi(t, x) = 1 + |cit− |x|| for i = 1, · · · , m. (3.2)
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For convenience of exposition, we set c0 = 0, and define

w0(t, x) =1 + |c0t− |x|| = 1 + |x|. (3.3)

First we state a known decay estimate for homogeneous wave equations (see [13] for
instance).

Lemma 3.1. Let i ∈ {1, · · ·m}. Suppose that f , g ∈ S(R3). Then there exists some
constant C, depending on f and g, such that

(w+wi)(t, x)|U∗
i [f, g](t, x)| ≤ C for t > 0 and x ∈ R3. (3.4)

Now we turn our attention to inhomogeneous wave equations. The following weighted
L∞ – L∞ estimate played an essential role in [19].

Lemma 3.2. Let c1, · · · , cm be positive constants appeared in (1.1), and c0 = 0. As-
sume i = 1, · · · ,m and J = 0, 1, · · · ,m. We define

Φθ(t) =

{
log(2 + t), when θ = 0,

1, when θ > 0.
(3.5)

( i ) We have

|∂aUi[φ](t, x)| ≤ Cw−1
0 (t, x){w−µ

i (t, x)Φν−1(t) + w−ν
i (t, x)Φµ−1(t)}

× sup
0≤τ≤t
y∈R3

|y|(wµ
+wν

J)(τ, y)|φ(τ, y)|1 (3.6)

for µ ≥ 1 and ν ≥ 1.
(ii) Moreover, if ci 6= cJ , we have

|∂aUi[φ](t, x)| ≤ C(w−1
0 w−µ

i )(t, x)Φν−1(t) sup
0≤τ≤t
y∈R3

|y|(wµ
+wν

J)(τ, y)|φ(τ, y)|1 (3.7)

for µ > 0 and ν ≥ 1.
Here the constant C may depend on i, J , µ and ν, but is independent of the other quantities.

The proof of Lemma 3.2 is rather complicated, but can be done in a similar spirit to
the proof of Proposition 3.4 below. Refer to [19] for the details.

Remark 3.1. More precisely, we do not need Γ0 in Lemma 3.1, i.e., (3.6) and (3.7)
stay valid if |φ|1 is replaced by |φ|+ |∂φ|+ |Ωφ|.

From Lemma 3.2, we get the following corollary.

Corollary 3.1. Let i, k ∈ {1, · · · ,m}. Then for µ ≥ 1, we have

(w0w
µ
i )(t, x)|∂aUi[φ](t, x)| ≤ CΦµ−1(t) sup

0≤τ≤t
y∈R3

|y|(wµ
0 wµ

k )(τ, y)|φ(τ, y)|1, (3.8)

where Φθ is given by (3.5).

Proof. First, suppose that φ = φ(τ, y) is supported on the set {(τ, y); ckτ ≤ 3|y|}.
Then there exists a constant C such that w+ ≤ Cw0 in the support of φ. Hence (3.8) for
such φ follows from Lemma 3.2(i) with the choice (J, ν) = (k, µ). Similarly, if φ is supported
on the set {(τ, y); ckτ ≥ 2|y| or |τ |2 + |y|2 ≤ 2}, we get (3.8) from Lemma 3.2(ii) with the
choice (J, ν) = (0, µ), because we have w+ ≤ Cwk on the support of φ. Now an appropriate
partition of unity implies the assertion for general φ.

To control the contribution of the higher nonlinearity to the solution, we have to
estimate L∞ norm of the solution itself in addition to its derivatives.
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Proposition 3.1. Let i, j ∈ {1, · · · ,m}. Then we have

(w+wi)(t, x)|Ui[φ](t, x)| ≤ C sup
0≤τ≤t
y∈R3

|y|(w2
0w

2
j )(τ, y)|φ(τ, y)|. (3.9)

Proof. It suffices to prove (3.9) assuming ci = 1 and cj = c (> 0).
Let T > 0, and set M = sup

0≤τ≤T
y∈R3

|y|(w2
0w

2
j )(τ, y)|φ(τ, y)|. Let v be a solution to

(∂2
t −∆x)v(t, x) = r−1(1 + r)−2(1 + |ct− r|)−2M (3.10)

with v = vt = 0 at t = 0, where r = |x|. Since |φ(t, x)| is dominated by the right hand side
of (3.10) for any (t, x) ∈ [0, T ]× R3, the positivity of the fundamental solution to the wave
equation in three space dimensions implies

|Ui[φ](t, x)| ≤ v(t, x) for 0 ≤ t ≤ T and x ∈ R3. (3.11)

Since v is spherically symmetric, and

(∂2
t − ∂2

r )(rv) = (1 + r)−2(1 + |ct− r|)−2M,

v can be expressed explicitly as
v(t, x) = MI(t, r), (3.12)

where

I(t, r) =
1
r

∫ t

0

ds

∫ r+t−s

|r−t+s|

dρ

(1 + ρ)2(1 + |cs− ρ|)2 . (3.13)

Hence the assertion of the proposition is an immediate consequence of (3.11), if we can show
that

I(t, r) ≤ C(1 + t + r)−1(1 + |t− r|)−1. (3.14)

Now we are going to prove (3.14). By changing variables in the integral by p = ρ + s
and q = ρ− cs, we get

I(t, r) =
1

(c + 1)r

∫ t+r

|r−t|
dp

∫ p

p1

dq(
1 + cp+q

c+1

)2(1 + |q|)2
, (3.15)

where p1 = p1(p, r, t) = (1−c)p+(1+c)(r−t)
2 . Set

Rr,t = {(p, q); p1(p, r, t) ≤ q ≤ p, |r − t| ≤ p ≤ r + t}.

We define

I1(p, t, r) =
∫ p

0

dq(
1 + cp+q

c+1

)2(1 + |q|)2
, (3.16)

I2(p, t, r) =
∫ 0

p1

dq(
1 + cp+q

c+1

)2(1 + |q|)2
. (3.17)

Then we have

I(t, r) =
1

(c + 1)r

∫ t+r

|t−r|
(I1(p, t, r) + I2(p, t, r))dp. (3.18)
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Since
1 +

cp + q

c + 1
≥ c

c + 1
(1 + p) when q ≥ 0,

we get

I1(p, t, r) ≤ C

(1 + p)2

∫ ∞

−∞

dq

(1 + |q|)2 =
2C

(1 + p)2
, (3.19)

where C is a constant independent of t and r.
If p1 ≥ 0, it is clear that I2(t, r) ≤ 0, and I2 is negligible. Therefore we may assume

p1 < 0 in the following estimate of I2. Let δ be a constant satisfying 0 < δ < 1. We split I2

into two parts:

I2(p, t, r) =
∫ δp1

p1

dq(
1 + cp+q

c+1

)2(1 + |q|)2
+

∫ 0

δp1

dq(
1 + cp+q

c+1

)2(1 + |q|)2

≡ I3(p, t, r) + I4(p, t, r). (3.20)

We have
1 +

cp + q

c + 1
≥ 1 +

cp + δp1

c + 1
≥ 1 +

c

c + 1
(1− δ)p

for any (p, q) satisfying δp1 ≤ q ≤ 0 and |t − r| ≤ p, because we have p1 ≥ −cp for such p
and q. Hence, similarly to (3.19), we obtain

I4(p, t, r) ≤ Cδ

(1 + p)2
. (3.21)

From now on, we concentrate on I3. Let ε be a positive constant. First we consider
the case p ≥ (1 + ε)|t− r|. We have

1 +
cp + q

c + 1
≥ 1 +

p− |t− r|
2

≥ 1 +
ε

2(1 + ε)
p ≥ Cε(1 + p) for q ≥ p1.

Therefore, similarly to (3.19), we obtain

I3(p, t, r) ≤ Cε

(1 + p)2
for p ≥ (1 + ε)|t− r|. (3.22)

Secondly we consider the case |t − r| ≤ p ≤ (1 + ε)|t − r|. We may assume r < t because
r ≥ t implies p1 ≥ 0 for such p, provided that ε is small enough. This time we have

1 + |q| = 1− q ≥ 1 + δ
( (1 + c)(t− r)− (1− c)p

2

)

≥ 1 +
(1 + c)− |1− c|(1 + ε)

2(1 + ε)
δp (3.23)

for any (p, q) satisfying p1 < q < δp1(< 0) and (0 <)t− r ≤ p ≤ (1 + ε)(t− r). Hence there
exists a positive constant Cε,δ such that

1 + |q| ≥ Cε,δ(1 + p) (3.24)

for (p, q) satisfying p1 < q < δp1 and 0 < t− r ≤ p ≤ (1 + ε)(t− r), provided that ε satisfies
1 + c − |1 − c|(1 + ε) > 0. Note that we can find such ε (> 0), because 1 + c − |1 − c| > 0
for c > 0. By (3.24), we obtain

I3(p, t, r) ≤ C

(1 + p)2

∫ δp1

p1

dq(
1 + cp+q

c+1

)2 ≤
C

(1 + p)2
1

1 + p−(t−r)
2

≤ C

(1 + p)2
(3.25)
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for t− r ≤ p ≤ (1 + ε)(t− r), where C is a constant independent of t and r.
Finally (3.21), (3.22) and (3.25) imply

I2(p, t, r) ≤ C

(1 + p)2
, (3.26)

which, together with (3.19), leads to

I(t, r) ≤C

r

∫ t+r

|t−r|

dp

(1 + p)2
=

C

r

( 1
1 + |t− r| −

1
1 + t + r

)

=
C(t + r − |t− r|)

r(1 + |t− r|)(1 + t + r)
≤ 2C

(1 + |t− r|)(1 + t + r)
, (3.27)

because t + r − |t− r| ≤ 2r. This completes the proof.

Now we are going to unify the weight functions for each speeds to one weight function.
We set

w−(t, x) = min
j=1,··· ,m

wj(t, x). (3.28)

Then, making use of an appropriate partition of unity, we find the following inequalities
from Corollary 3.1 and Proposition 3.1.

Corollary 3.2. Let i ∈ {1, · · · , m}. Then we have

(w0wi)(t, x)|∂aUi[φ](t, x)| ≤ C sup
0≤τ≤t
y∈R3

|y|(wµ
0 wµ

−)(τ, y)|φ(τ, y)|1 if µ > 1, (3.29)

(w0wi)(t, x)|∂aUi[φ](t, x)| ≤ C log(2 + t) sup
0≤τ≤t
y∈R3

|y|(w0w−)(τ, y)|φ(τ, y)|1 (3.30)

for any a = 0, 1, 2, 3, and

(w+wi)(t, x)|Ui[φ](t, x)| ≤ C sup
0≤τ≤t
y∈R3

|y|(w2
0w

2
−)(τ, y)|φ(τ, y)|. (3.31)

§ 4 . Proof of Theorem 1.1

In this section we will prove Theorem 1.1. Because of the classical local existence
theorem, it suffices to get some a priori estimate of the solution.

Let T > 0 and u(ε) = (u(ε)
1 , · · · , u

(ε)
m ) be the solution to (1.1)–(1.2) for 0 ≤ t < T ,

where ε is the parameter appeared in (1.2).
We define

Eε(t) = sup
0≤τ<t

m∑

i=1

eε,i(τ), (4.1)

where

eε,i(t) = ‖(w0wi)(t, ·) |u(ε)
i (t, ·)|K+2‖L∞(R3)

+ (1 + t)−λ(‖u(ε)
i (t, ·)‖2K,2 + ‖∂u

(ε)
i (t, ·)‖2K,2)

+ ‖(w1−2λ
0 w1−2λ

i )(t, ·) |u(ε)
i (t, ·)|2K−3‖L∞(R3)

+ ‖(w0w
1−2λ
i )(t, ·) |u(ε)

i (t, ·)|2K−8‖L∞(R3) + ‖u(ε)
i (t, ·)‖2K−4,2. (4.2)
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In the above, λ is a positive and sufficiently small constant, and K is an integer satisfying
K ≥ 12.

Since 1 + t ≤ C(w0wi)(t, x) for any t ≥ 0 (i = 1, · · · ,m), we have

sup
x∈R3

|u(ε)
i (t, x)|K+2 ≤ C(1 + t)−1Eε(T ) for 0 ≤ t < T . (4.3)

By the Sobolev type inequality

sup
x∈R3

|x| |v(x)| ≤ C
∑

|α|+|β|≤2

‖∂α
x Ωβv‖L2(R3),

which holds for any v ∈ S(R3) (see [11] for the proof), we also have

sup
x∈R3

|x|{(1 + t)−λ(|u(ε)
i (t, x)|2K−2 + |∂u

(ε)
i (t, x)|2K−2) + |u(ε)

i (t, x)|2K−6} ≤ CEε(t) (4.4)

for any i ∈ {1, · · · ,m} and t > 0.
Our aim in this section is to prove the following proposition.

Proposition 4.1. Let T > 0. There exist positive constants M0, C0 and ε1, which are
independent of T , such that Eε(T ) ≤ M0 implies

Eε(T ) ≤ C0(ε + Eε(T )2), (4.5)

provided that ε ≤ ε1.

If once Proposition 4.1 is established, the bootstrap argument implies that there exists
a positive constant ε0 (≤ ε1) such that for any ε ≤ ε0, Eε(t) stays bounded as far as the
solution exists. This a priori estimate, together with the local existence theorem, implies
the existence of global solutions. This completes the proof of Theorem 1.1. Hence our task
is to prove Proposition 4.1.

Now we are in a position to prove Proposition 4.1. We always assume that Eε(T )
and ε are sufficiently small in what follows. We also abbreviate u(ε) as u for simplicity of
exposition.

Proof of Proposition 4.1. Operating Γα to (1.1), by (2.7) we have

¤i(Γαui) =
∑′

|β|≤|α|
ΓβFi(u, ∂u, ∂x∂u). (4.6)

Therefore, remembering (2.5) and the expression (1.14), we find

Γαui = U∗
i [fi,α, gi,α] +

∑′

|β|≤|α|
a,b∈{0,1,2,3}

(Ui[∂b(ΓβNi,a)] + Ui[∂b(ΓβRi,a)])

+
∑′

|β|≤|α|
Ui[ΓβHi], (4.7)

where fi,α = (Γαui)(0, ·) and gi,α = (∂tΓαui)(0, ·).
4.1. Estimates for |ui(t, x)|2K−3. Let |α| ≤ 2K − 3 in (4.7). Throughout this

subsection, we assume that β is a multi-index with |β| ≤ 2K − 3.
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Lemma 3.1 implies that

(w+wi)(t, x)|U∗
i [fi,α, gi,α](t, x)| ≤ Cε, (4.8)

(w+wi)(t, x)|U∗
i [0, (ΓβRi,a)(0, ·)](t, x)| ≤ Cε2. (4.9)

Since |Ri,a(u, ∂u)| ≤ C(|u|2 + |∂u|2), (3.30) in Corollary 3.2 leads to

(w0wi)(t, x)|∂bUi[ΓβRi,a](t, x)|
≤ C log(2 + t) sup

(τ,y)∈[0,t)×R3
(w0w−)(τ, y)|u(τ, y)|K+2

× {|y|(|u(τ, y)|2K−2 + |∂u(τ, y)|2K−2)}
≤ C{log(2 + t)}(1 + t)λEε(t)2. (4.10a)

Here we have used (4.4) to get the last line. Therefore, noting that log(2 + t) ≤ Cλ(1 + t)λ,
we obtain

(w1−2λ
0 w1−2λ

i )(t, x)|∂bUi[ΓβRi,a](t, x)| ≤ CEε(T )2 for (t, x) ∈ [0, T )× R3. (4.10b)

Since Ui[∂b(ΓβRi,a)] = ∂bUi[ΓβRi,a] − δ0,bU
∗
i [0, (ΓβRi,a)(0, ·)], from (4.9) and (4.10b)

we find
(w1−2λ

0 w1−2λ
i )(t, x)|Ui[∂b(ΓβRi,a)](t, x)| ≤ C(ε2 + Eε(T )2) (4.11)

for (t, x) ∈ [0, T )× R3.
Just in the same manner, we can also show

(w1−2λ
0 w1−2λ

i )(t, x)|Ui[∂b(ΓβNi,a)](t, x)| ≤ C(ε2 + Eε(T )2) (4.12)

for (t, x) ∈ [0, T )× R3.

Now we are going to estimate Ui[ΓβHi]. Since |Hi(u, ∂u, ∂x∂u)| ≤ C(|u|3 + |∂u|3 +
|∂x∂u|3), (3.31) in Corollary 3.2 implies

(w+wi)(t, x)|Ui[ΓβHi](t, x)|

≤ C sup
(τ,y)∈[0,t)×R3

(w2
0w

2
−)(τ, y)|u(τ, y)|2K+2 {|y|(|u(τ, y)|2K−3 + |∂u(τ, y)|2K−2)}

≤ C(1 + t)λEε(T )3 for |β| ≤ 2K − 3. (4.13a)

Here we have used (4.4) again. (4.13a) implies

(w1−λ
0 w1−λ

i )(t, x)|Ui[ΓβHi](t, x)| ≤ CEε(T )3 ≤ CEε(T )2 (4.13b)

for (t, x) ∈ [0, T )× R3.
Finally, from (4.7), (4.8), (4.11), (4.12) and (4.13b), we obtain

(w1−2λ
0 w1−2λ

i )(t, x)|ui(t, x)|2K−3 ≤ C(ε + Eε(T )2) for (t, x) ∈ [0, T )× R3. (4.14)

4.2. Estimates for ‖u(t, ·)‖2K−4,2. We are going to prove

‖u(t, ·)‖2K−4,2 ≤ C(ε + Eε(T )2) for 0 ≤ t < T . (4.15)
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From (4.7) and (2.12) in Lemma 2.2, we have

‖u(t)‖2K−4,2 ≤ Cε + C
∑

|β|≤2K−4
0≤a,b≤3

(‖Ui[∂bΓβNi,a](t)‖L2 + ‖Ui[∂bΓβRi,a](t)‖L2)

+
∑

|β|≤2K−4

‖Ui[ΓβHi](t)‖L2 . (4.16)

First, we will get a bound of ‖Ui[∂b(ΓβNi,a)](t, ·)‖L2 . By Lemma 2.3, we have

‖Ui[∂bΓβNi,a](t, ·)‖L2 ≤ C
(
ε2 +

∫ t

0

‖Ni,a(τ, ·)‖2K−4,2dτ
)
. (4.17)

Because Ni,a is a quadratic function of ∂uj with j ∈ I(i), we have

|Ni,a(τ, y)|2K−4 ≤ C
∑

j,k∈I(i)

|uj(τ, y)|K−1|uk(τ, y)|2K−3

≤ C(w−2+2λ
0 w−2+2λ

i )(t, x)Eε(T )2 (4.18)

for (τ, y) ∈ [0, T )× R3.
Since Ni,a satisfies the Null Condition, we have a better estimate around the light cone.

To explain it, we recall the estimates for the null forms.

Lemma 4.1. Let c be a positive constant, and a, b ∈ {0, 1, 2, 3}. Then we have

|Q0(φ, ψ; c)(t, x)| ≤C|ct− r|(1 + t + r)−1|∂φ| |∂ψ|
+ C(1 + t + r)−1(|φ|1 |∂ψ|+ |∂φ| |ψ|1), (4.19)

|Qab(φ, ψ)(t, x)| ≤C(1 + t + r)−1(|φ|1 |∂ψ|+ |∂φ| |ψ|1) (4.20)

for any (t, x) satisfying |ct− r| < ct

2
, where r = |x|.

Proof. See [19] for the proof.

Set

Λi(τ) =
{

y ∈ R3; | ciτ − |y| | < ciτ

2

}
for i = 1, · · · ,m. (4.21)

Note that w0 ≥ Cw+ in Λi(τ).
Since Ni,a can be written as a linear combination of the null forms, by Lemma 4.1 we

get

|Ni,a(τ, y)|2K−4 ≤ C(w−1
+ wi)(τ, y)

∑

j,k∈I(i)

|uj(τ, y)|K−1|uk(τ, y)|2K−3

≤ C(w−1
+ w−2+2λ

0 w−1+2λ
i )(τ, y)Eε(T )2

≤ C(w−3+2λ
+ w−1+2λ

i )(τ, y)Eε(T )2 (4.22a)
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for any y ∈ Λi(τ) and any τ ∈ [0, T ). Hence we obtain
∫

y∈Λi(τ)

|Ni,a(τ, y)|22K−4dy

≤ C(1 + τ)−6+4λEε(T )4
∫ 3ciτ/2

ciτ/2

(1 + |ciτ − r|)−2+4λr2dr

≤ C(1 + τ)−4+4λEε(T )4
∫ ∞

0

(1 + |ciτ − r|)−2+4λdr

≤ C(1 + τ)−4+4λEε(T )4 (4.22b)

for τ ∈ [0, T ), provided that −2 + 4λ < −1.
On the other hand, observing that 1 + τ + |y| ≤ Cwi(τ, y) for y 6∈ Λi(τ), by (4.18) we

get
∫

y 6∈Λi(τ)

|Ni,a(τ, y)|22K−4dy

≤ C(1 + τ)−4+4λEε(T )4
∫ ∞

0

(1 + r)−4+4λr2dr ≤ C(1 + τ)−4+4λEε(T )4 (4.23)

for any τ ∈ [0, T ), provided that −2 + 4λ < −1.
Since (4.22b) and (4.23) lead to

‖Ni,a(τ, ·)‖2K−4,2 ≤ C(1 + τ)−2+2λEε(T )2, (4.24)

from (4.17) we obtain

‖Ui[∂bΓβNi,a](t, ·)‖L2 ≤ C
(
ε2 + Eε(T )2

∫ ∞

0

(1 + τ)−2+2λdτ
)
≤ C(ε2 + Eε(T )2) (4.25)

for |β| ≤ 2K − 4 and t ∈ [0, T ), provided that −2 + 2λ < −1.
Secondly we will estimate ‖Ui[∂bΓβRi,a]‖L2 for |β| ≤ 2K − 4. From the assumption on

Ri,a, we have

‖∂Ui[ΓβRi,a](t, ·)‖L2 ≤ C
∑

(j,k) 6∈I(i)×I(i)
|γ1|+|γ2|≤|β|
|p|,|q|=0,1

‖∂Ui[(Γγ1∂puj)(Γγ2∂quk)](t, ·)‖L2 . (4.26)

Hence our task is to get a bound for ‖∂Ui[(Γγ1∂puj)(Γγ2∂quk)](t, ·)‖L2 with (j, k) 6∈ I(i) ×
I(i).

Set v = Ui[(Γγ1∂puj)(Γγ2∂quk)] for a while. Multiplying the equation

¤iv = (Γγ1∂puj)(Γγ2∂quk)

by ∂tv, and then following the standard derivation of the energy equality, we obtain

‖∂v(t, ·)‖2L2 ≤2
∫ t

0

∫

y∈R3
{(Γγ1∂puj)(Γγ2∂quk)(∂tv)}(τ, y)dydτ. (4.27a)

Similarly to (4.10b), we can prove

(w1−2λ
0 w1−2λ

i )(t, x) |∂v(t, x)| ≤ CEε(T )2 for 0 ≤ t < T . (4.27b)
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Since (j, k) 6∈ I(i)× I(i), we have either cj 6= ci or ck 6= ci. Without loss of generality,
we may assume cj 6= ci. From (4.27a) and (4.27b), we get

‖∂v(t, ·)‖2L2 ≤ C

∫ T

0

‖{(Γγ1∂puj)(∂tv)}(τ, ·)‖L2‖Γγ2∂quk(τ, ·)‖L2dτ

≤ C

∫ T

0

‖|uj |2K−3|∂v|‖L2‖uk‖2K−3,2dτ

≤ CEε(T )4
∫ T

0

‖wj,i(τ, ·)−1+2λ‖L2(1 + τ)λdτ, (4.27c)

where
wj,i(τ, y) = (w2

0wjwi)(τ, y).

If |y| ≤ cj,iτ/2 with cj,i = min{cj , ci}, we have

w−1+2λ
j,i (τ, y) ≤ C(1 + |y|)−2+4λ(1 + τ)−2+4λ. (4.27d)

Therefore we get
∫

|y|≤cj,iτ/2

|wj,i(τ, y)−1+2λ|2dy

≤ C(1 + τ)−4+8λ

∫ ∞

0

(1 + r)−4+8λr2dr ≤ C(1 + τ)−4+8λ, (4.27e)

provided that −2 + 8λ < −1.
On the other hand, since the assumption cj 6= ci implies (wjwi)(τ, y) ≥ C(1 + τ), we

obtain
wj,i(τ, y)−1+2λ ≤ C(1 + |y|)−2+4λ(1 + τ)−1+2λ, (4.27f)

which leads to
∫

|y|≥cj,iτ/2

|wj,i(τ, y)−1+2λ|2dy ≤ C(1 + τ)−2+4λ

∫ ∞

cj,iτ/2

(1 + r)−4+8λr2dr

≤ C(1 + τ)−2+4λ
(
1 +

cj,iτ

2

)−1+8λ

≤ C(1 + τ)−3+12λ, (4.27g)

provided that −1 + 8λ < 0.
From (4.27e) and (4.27g), we find

‖wj,i(τ, ·)−1+2λ‖L2 ≤ C(1 + τ)−3/2+6λ (4.27h)

for sufficiently small λ, and from (4.27c) we obtain

sup
0≤t<T

‖∂v(t, ·)‖L2 ≤ CEε(T )2
( ∫ ∞

0

(1 + τ)−3/2+7λdτ
) 1

2 ≤ CEε(T )2, (4.27i)

provided that −3/2 + 7λ < −1.

As an immediate consequence of (4.27i), (2.13) and (2.12), we get

sup
0≤t<T

‖Ui[∂bΓβRi,a](t, ·)‖L2 ≤ C(ε2 + Eε(T )2) (4.28)
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for β with |β| ≤ 2K − 4.
Now, we will get cotrol of ‖Ui[ΓβHi](t, ·)‖L2 with |β| ≤ 2K − 4. We note that

|Hi(τ, y)|2K−4 ≤ C|u(τ, y)|2K(|u(τ, y)|2K−4 + |∂u(τ, y)|2K−3). (4.29a)

From Lemma 2.2 and Hölder’s inequality, we have

‖Ui[ΓβHi](t, ·)‖L2 ≤ C

∫ t

0

‖Hi(τ, ·)‖2K−4,6/5dτ

≤ C

∫ t

0

‖u(τ, ·)‖4/3
K,∞‖u(τ, ·)‖2/3

K,2 (‖u(τ, ·)‖2K−4,2 + ‖∂u(τ, ·)‖2K−3,2)dτ

≤ CEε(T )3
∫ ∞

0

(1 + τ)5λ/3−4/3dτ ≤ CEε(T )3, (4.29b)

provided that 5λ/3− 4/3 < −1.
Finally, (4.15) follows from (4.16), (4.25), (4.28) and (4.29b).

4.3. Estimates for |ui(t, x)|2K−8 and |ui(t, x)|K+2. Lemma 3.1 and Corollary
3.1 with µ = ν = 1 + λ imply

(w0wi)(t, x)|Ui[∂bΓβNi,a](t, x)|
≤ C

(
ε2 + C sup

(τ,y)∈(0,t)×R3
|y|(w0wi)1+λ(τ, y)|Ni,a(τ, y)|2K−7

)
(4.30a)

for |β| ≤ 2K − 8.
By Lemma 4.1, we have

|y| |Ni,a(τ, y)|2K−7 ≤ C|y|(w−1
+ wi)(τ, y)

∑

j,k∈I(i)

|uj(τ, y)|K−2 |uk(τ, y)|2K−6

≤ C(w−1
+ w−1+2λ

0 w−1+2λ
i )(τ, y)Eε(T )2

≤ C(w−1+6λ
+ w−1−λ

0 w−1−λ
i )(τ, y)Eε(T )2 (4.30b)

for y ∈ Λi(τ). On the other hand, for y 6∈ Λi(τ), we get

|y| |Ni,a(τ, y)|2K−7 ≤ C|y|(w−2+2λ
0 w−2+2λ

i )(τ, y)Eε(T )2

≤ C(w−1+2λ
0 w−2+2λ

+ )(τ, y)Eε(T )2

≤ C(w−1−λ
0 w−1−λ

i w−1+6λ
+ )(τ, y)Eε(T )2. (4.30c)

Consequently, if λ is small enough to satisfy −1 + 6λ ≤ 0, we obtain

(w1+λ
0 w1+λ

i )(t, y) |y| |Ni,a(τ, y)|2K−7 ≤ CEε(T )2 for any (τ, y) ∈ [0, T )× R3,

and (4.30a) leads to

(w0wi)(t, x)|Ui[∂bΓβNi,a](t, x)| ≤ C(ε2 + Eε(T )2) (4.30d)

for |β| ≤ 2K − 8 and t ∈ [0, T ).

Now we turn our attention to the estimate of Ui[∂bΓβRi,a].
First, suppose j, k ∈ {1, · · · ,m} and I(j) 6= I(k). Then, for |β| ≤ 2K − 8 and for

0 ≤ |p|, |q| ≤ 1, Lemma 3.1 and (3.29) in Corollary 3.2 lead to

(w0wi)(t, x)|Ui[∂bΓβ(∂puj ∂quk)](t, x)|
≤ C

(
ε2 + sup

(τ,y)∈(0,t)×R3
|y|(w1+λ

0 w1+λ
− )(τ, y)|(∂puj)(∂quk)(τ, y)|2K−7

)
. (4.31a)
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Since we have (wjwk)(τ, y) ≥ (w+w−)(τ, y), we obtain

|y| |(∂puj)(∂quk)(τ, y)|2K−7 ≤ C|y||uj(τ, y)|2K−6|uk(τ, y)|2K−6

≤ C|y|(w−2+4λ
0 w−1+2λ

+ w−1+2λ
− )(τ, y)Eε(T )2

≤ C(w−1−λ
0 w−1−λ

− w−1+10λ
+ )(τ, y)Eε(T )2. (4.31b)

Therefore, if λ is so small that −1 + 10λ ≤ 0 holds, we get

|y|(w1+λ
0 w1+λ

− )(τ, y)|(∂puj)(∂quk)(τ, y)|2K−7 ≤ CEε(T )2 (4.31c)

for any (τ, y) ∈ [0, T )× R3, and consequently (4.31a) implies

(w0wi)(t, x)|Ui[∂bΓβ(∂puj∂
quk)](t, x)| ≤ C(ε2 + Eε(T )2) for t ∈ [0, T ), (4.31d)

provided |β| ≤ 2K − 8.

Next, let j, k ∈ {1, · · · ,m} with I(j) = I(k) 6= I(i). We can choose a cutoff function
χ ∈ C∞(R+ × R3) which satisfies





supp χ ⊂ {(τ, y) ∈ R+ × R3; τ2 + |y|2 ≥ 1 and |cjτ − |y| | ≤ cjτ/2},
χ ≡ 1 on the set {(τ, y); τ2 + |y|2 ≥ 2 and |cjτ − |y| | ≤ cjτ/4},
0 ≤ χ(τ, y) ≤ 1 and sup

(τ,y)∈R+×R3
|χ(τ, y)|1 ≤ C.

(4.32)

Since cj = ck, we have

|y| |(∂puj∂
quk)(τ, y)|2K−7

≤ C|y|(|uj(τ, y)|K−3|uk(τ, y)|2K−6 + |uk(τ, y)|K−3|uj(τ, y)|2K−6)

≤ C|y|(w−2+2λ
0 w−2+2λ

j )(τ, y)Eε(T )2. (4.33a)

For (τ, y) satisfying | cjτ − |y| | ≥ cjτ/4, we get

|y|(w−2+2λ
0 w−2+2λ

j )(τ, y) ≤C(w−1−λ
0 w−2+5λ

+ )(τ, y). (4.33b)

It is easy to see that (4.33b) is valid also for (τ, y) satisfying τ2 + |y|2 ≤ 2. Therefore, if
2− 5λ > 1, Lemma 3.2(i) with the choice

J = 0, µ = 2− 5λ and ν = 1 + λ

gives us
(w0wi)(t, x)|∂Ui[(1− χ)Γβ(∂puj ∂quk)](t, x)| ≤ CEε(T )2 (4.33c)

for |β| ≤ 2K − 8.
On the other hand, for (τ, y) with | cjτ − |y| | ≤ cjτ/2, we get

|y|(w−2+2λ
0 w−2+2λ

j )(τ, y) ≤ C(w−1+2λ
+ w−2+2λ

j )(τ, y). (4.34a)

Since we may assume 2− 2λ > 1 for small λ, by (4.33a) and Lemma 3.2(ii) with the choice

J = j, µ = 1− 2λ and ν = 2− 2λ,

we obtain
(w0w

1−2λ
i )(t, x)|∂Ui[χΓβ(∂puj ∂quk)](t, x)| ≤ CEε(T )2 (4.34b)
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for |β| ≤ 2K − 8.

Now we are going to get a similar estimate for |β| ≤ K+2. Since we have (K+3)/2+1 ≤
K + 2 and K + 4 ≤ 2K − 8 for K ≥ 12, we get

|y| |(∂puj ∂quk)(τ, y)|K+3

≤ C|y|(|uj(τ, y)|K+2|uk(τ, y)|2K−8 + |uk(τ, y)|K+2|uj(τ, y)|2K−8)

≤ C(w−1
0 w−2+2λ

j )(τ, y)Eε(T )2 (4.35a)

in place of (4.33a). For (τ, y) with | cjτ − |y| | ≤ cjτ/2, instead of (4.34a), we have

(w−1
0 w−2+2λ

j )(τ, y) ≤ C(w−1
+ w−2+2λ

j )(τ, y). (4.35b)

Now we can apply Lemma 3.2(ii) with the choice

J = j, µ = 1, ν = 2− 2λ,

and we obtain

(w0wi)(t, x)|∂Ui[χΓβ(∂puj ∂quk)](t, x)| ≤ CEε(T )2 for |β| ≤ K + 2. (4.35c)

From (4.33c) and (4.34b), we get

(w0w
1−2λ
i )(t, x)|∂Ui[Γβ(∂puj ∂quk)](t, x)| ≤ CEε(T )2 for |β| ≤ 2K − 8, (4.36)

provided that I(j) = I(k) 6= I(i).
Similarly, (4.33c) and (4.35c) lead to

(w0wi)(t, x)|∂Ui[Γβ(∂puj ∂quk)](t, x)| ≤ CEε(T )2 for |β| ≤ K + 2, (4.37)

provided that I(j) = I(k) 6= I(i).
By (4.31d) and (4.36) together with (4.9), we see that

(w0w
1−2λ
i )(t, x)|Ui[∂bΓβRi,a](t, x)| ≤ C(ε2 + Eε(T )2) for |β| ≤ 2K − 8, (4.38)

and, replacing (4.36) by (4.37), we also obtain

(w0wi)(t, x)|Ui[∂bΓβRi,a](t, x)| ≤ C(ε2 + Eε(T )2) for |β| ≤ K + 2. (4.39)

Finally, since Hi is a function of degree 3, by (4.4) we have

|y|(w2
0w

2
−)(τ, y)|Hi(τ, y)|2K−8

≤ C{(w0w−)(τ, y)|u(τ, y)|K−2}2(|y| |u(τ, y)|2K−6) ≤ CEε(T )3 (4.40a)

for all (τ, y) ∈ [0, T )× R3. Therefore (3.31) in Corollary 3.2 implies

(w0wi)(t, x)|Ui[ΓβHi,a](t, x)| ≤ CEε(T )3 for |β| ≤ 2K − 8. (4.40b)

Summing up, from (4.8), (4.30d), (4.39) and (4.40b) we get

(w0wi)(t, x)|ui(t, x)|K+2 ≤ C(ε + Eε(T )2), (4.41)

while, using (4.38) instead of (4.39), we obtain

(w0w
1−2λ
i )(t, x)|ui(t, x)|2K−8 ≤ C(ε + Eε(T )2). (4.42)



GLOBAL EXISTENCE FOR A CLASS OF SYSTEMS OF NONLINEAR WAVE EQUATIONS 481

4.4. Estimates for ‖∂u(t, ·)‖2K,2. Let |α| ≤ 2K in (4.7), which can be rewritten as

¤i(Γαui)−
∑

j,k,a

cij
ka∂k∂a(Γαuj) = ΓαFi −

∑

j,k,a

cij
ka∂k∂a(Γαuj) +

∑′

|β|≤|α|−1

ΓβFi, (4.43)

where the coefficients cij
ka(u, v, w) are given by (1.5).

Since Fi(u, v, w) = O(|u|2+|v|2+|w|2) for small (u, v, w), the Leibniz formula, together
with (2.4) and (2.5), implies that the right hand side of (4.43) is dominated by

C|u(t, x)|K+2(|u(t, x)|2K + |∂u(t, x)|2K).

We also have cij
ka(u, ∂u) ≤ C|u(t, x)|1(<< 1). Hence, remembering the assumptions (1.4)

and (1.6), we can apply Lemma 2.1 to (4.43), and we get

‖∂ui(t, ·)‖2K,2 ≤ C
(
ε +

∫ t

0

‖u(τ)‖K+2,∞(‖u(τ)‖2K,2 + ‖∂u(τ)‖2K,2)dτ
)

≤ C
(
ε + Eε(t)2

∫ t

0

(1 + τ)λ−1dτ
)

≤ C(1 + t)λ(ε + Eε(T )2) for 0 ≤ t < T . (4.44)

4.5. Estimates for ‖u(t, ·)‖2K,2. Let |α| ≤ 2K in (4.7), again.
Remembering that Fi =

∑
a

∂aGi,a + Hi, and using (2.4)–(2.7), we find

¤i(Γαu) =
∑′

|β|≤|α|
0≤a,b≤3

∂b(ΓβGi,a) +
∑

j,k,a

∂k

( ∂Hi

∂wj,ka
Γα∂auj

)
+ H∗

i,α, (4.45)

where
H∗

i,α = ΓαHi −
∑

j,k,a

∂k

( ∂Hi

∂wj,ka
Γα∂auj

)
+

∑′

|β|≤|α|−1

ΓβHi.

Since |H∗
i,α| ≤ C|u|2K+2(|u|2K + |∂u|2K), Lemma 2.2 implies that

‖Ui[H∗
i,α](t, ·)‖L2 ≤ C

∫ t

0

‖|u(τ)|2K+2(|u(τ)|2K + |∂u(τ)|2K)‖L6/5dτ

≤ C

∫ t

0

‖u‖
4
3
K+2,∞‖u‖

2
3
K+2,2(‖u‖2K,2 + ‖∂u‖2K,2)dτ

≤ CEε(t)3
∫ ∞

0

(1 + τ)
5
3 λ− 4

3 dτ ≤ CEε(T )3 for 0 ≤ t < T , (4.46)

provided that λ is small enough to satisfy 5
3λ− 4

3 < −1.
On the other hand, by virtue of Lemma 2.3, we have

∥∥∥∥Ui

[ ∑′

|β|≤|α|
a,b∈{0,1,2,3}

∂b(ΓαGi,a) +
∑

j,k,a

∂k

( ∂Hi

∂wj,ka
Γα∂auj

)]
(t, ·)

∥∥∥∥
L2

≤ C
(
ε2 +

∫ t

0

‖u(τ)‖K+2,∞(‖u(τ)‖2K,2 + ‖∂u(τ)‖2K,2)dτ
)

≤ C
(
ε2 + Eε(T )2

∫ t

0

(1 + τ)λ−1dτ
)
≤ C(1 + t)λ(ε2 + Eε(T )2). (4.47)
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Summing up, we obtain

(1 + t)−λ‖ui(t, ·)‖2K,2 ≤ C(ε + Eε(T )2) for 0 ≤ t < T . (4.48)

4.6. Conclusion. Finally Proposition 4.1 follows from (4.14), (4.15), (4.41), (4.42),
(4.44) and (4.48). This completes the proof.
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