
Chin. Ann. Math.
25B:4(2004),493–506.

ESTIMATES OF LOWER CRITICAL MAGNETIC
FIELD AND VORTEX PINNING BY INHOMO-

GENEITIES IN TYPE II SUPERCONDUCTORS∗∗∗
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Abstract

The effect of an applied magnetic field on an inhomogeneous superconductor is
studied and the value of the lower critical magnetic field Hc1 at which superconduct-
ing vortices appear is estimated. In addition, the authors locate the vortices of local
minimizers, which depends on the inhomogeneous term a(x).
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§ 1 . Introduction

Consider the following functional:

J(u, A) =
1
2

∫

Ω

|∇Au|2 +
1

2ε2
(a(x)− |u|2)2 + |h− hex|2 − h2

ex, (1.1)

which corresponds to the free energy of a superconductor in a prescribed constant magnetic
field hex. Here, Ω ⊆ R2 is the smooth, bounded, simply connected section of the supercon-
ductor and a(x) : Ω → R2 is a given function satisfying 0 < min a(x) ≤ a(x) in Ω. The
unknowns are the complex-valued order parameter u ∈ H1(Ω,C) and the U(1) connection
A ∈ H1(Ω,R2). h = curlA is the induced magnetic field, ∇A = ∇− iA. The order param-
eter u indicates the local state of the material, viz., |u| is the density of superconducting
electron pairs so that, when |u| ' 1, the material is in its superconducting state, whereas
when |u| ' 0, it is in its normal state. κ = 1

ε is the Ginzburg-Landau parameter depending
on the material. The modified Ginzburg-Landau functional (1.1) was first written down by
Likharev [12]. Then, this model has been used and developed by Aftalion, Sandier, Serfaty,
Chapman and Richardson [3, 9]. The minima of a(x) corresponds to the impurities in the
material.

It is well known that a superconductor placed in an applied magnetic field may change
its phase when the field varies. There are two critical fields Hc1 and Hc2 for which a phase
transition occurs. Above Hc2 , superconductivity is destroyed and material is in the normal
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phase. Below Hc1 , the material is superconducting everywhere. When Hc1 ≤ hex ≤ Hc2 ,
the material is in mixed state. In this state, since the works of Abrikosov [1], the minimizers
of (1.1) exhibit vortices, i.e. points where the order parameter vanishes, if the Ginzburg-
Landau parameter kappa is large enough. Actually these vortices are observed in nature
experimentally. It is of importance to determine where these points are located and estimate
the values of Hc1 and Hc2 . There have been many works toward to dealing with such
problems [2, 4–11, 13–22]. We do not attempt to give an exhaustive list of reference, but
briefly summarize the advances concerning this problem. In the case a(x) ≡ 1 in Ω, the
value of the first critical field (as a function of kappa) was predicted by Abrikosov when
the domain is the plane. This computation was extended to arbitrary domain by others.
However, these were only formal works. Very recently, S. Serfaty [18] was able to derive a
completely rigorous proof of the previous predictions. In the case a(x) 6= 1 in Ω, Kim and
Liu [14, 15, 16] studied the global minimizers of the functional (1.1).

In this paper, we want to find the first critical magnetic field Hc1 and study the local
minimiers of (1.1). Inspired by [10, 18], we will choose a suitable M and construct the local
minimizer of functional (1.1) in

Da
M = {(u,A) ∈ H1(Ω,C)×H1(Ω,R2) : Fa(u) < M | ln ε|}, (1.2)

where

Fa(u) =
1
2

∫

Ω

[
|∇u|2 +

1
2ε2

(a(x)− |u|2)2
]
. (1.3)

Recall that the Ginzburg-Landau equation of any critical point (u,A) ∈ H1(Ω,C)×H1(Ω,
R2) associated to the functional (1.1) is

(G.L.)




−∇2

Au =
1
ε2

(a− |u|2)u,

−∇⊥h = (iu,∇Au)

with the boundary conditions
{

h = hex on ∂Ω,

(∇u− iAu) · ν = 0 on ∂Ω.
(1.4)

Here ∇⊥ denotes (−∂x2 , ∂x1), ν is the unit outer normal vector to ∂Ω and (z, w) = Re(zw̄)
where z and w are in C.

Let us now state our main results and hypothesis. Notice that J(u,A) is invariant
under U(1)-gauge transformation, i.e. of the type

v = eiφu, B = A +∇φ for any φ ∈ H2(Ω,R),

which makes the problem non-compact. Therefore, throughout this paper, we shall impose
the gauge condition {

div (a(x)A) = 0 on Ω,

A · ν = 0 on ∂Ω.
(1.5)

Moreover, since we assume that Ω is simply connected, we can say that there exists ξ ∈
H2(Ω,R) such that {

a(x)A = (−ξx2 , ξx1) in Ω,

ξ = 0 on ∂Ω.
(1.6)
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Hence

h = curlA = div
(1

a
∇ξ

)
. (1.7)

Without loss of generality, we make the following hypothesis on the function a(x):

0 < b0 = min
Ω

a(x) ≤ a(x) ≤ 1. (1.8)

Now let ξ0 be a smooth function satisfying



−div

(1
a
∇ξ0

)
+ ξ0 = −1 in Ω,

ξ0 = 0 on ∂Ω,
(1.9)

and define

Λ =
{

x ∈ Ω :
∣∣∣ξ0(x)
a(x)

∣∣∣ = max
Ω

∣∣∣ξ0

a

∣∣∣
}

. (1.10)

From Lemma 4.2 in [16], the set Λ is a finite set under the assumption that a(x) is analytic.
Our main theorem is the following

Theorem 1.1. Let Ω ⊂ R2 be a bounded, smooth, simply connected domain. Assume
that a(x) is a analytic function and (1.8) holds. Assume that M > π(CardΛ)max

Λ
a(x).

Then, there exist k1 = 1

2 max
Ω
| ξ0(x)

a(x) |
, kε

2 = Oε(1), kε
3 = oε(1) and ε0 = ε0(M) > 0 such that

Hc1 = k1| ln ε|+ kε
2, (1.11)

and the following holds for ε < ε0:
( i ) If hex ≤ Hc1 , a solution of (G.L.), which minimizes J(u, A) in Da

M , exists and

satisfies
b0

2
≤ |u| ≤ 1.

(ii) If Hc1 + kε
3 ≤ hex ≤ Hc1 + Oε(1), there exists a solution of (G.L.) that minimizes

J(u,A) in Da
M . It has a bounded positive number of vortices aε

i of degree one such that

dist (aε
i , Λ) → 0 as ε → 0, (1.12)

and there exists a constant α > 0 such that

dist (aε
i , a

ε
j) ≥ α for i 6= j. (1.13)

Remark 1.1. It follows from (1.10) and (1.12) that the distribution of the location of
vortices are governed both by the term a(x) and by the function ξ0 which is related to the
magnetic field. This is called the pinning mechanism in superconductivity.

Remark 1.2. In Theorem 1.1, we only assume the smooth property of the inho-
mogeneous term a(x). This results can be extended to the model of variable thickness
superconducting thin film in [10, 18].

This paper is organized as follows. In the next section we shall give some basic estimate
for J(u, A). In Section 3, we pay attention to the splitting of the energy J(u,A). In Section
4, we shall split the magnetic field. In Section 5, we give some estimates for Fa. In Section
6, we shall obtain the critical magnetic field. In Section 7, we prove Theorem 1.1.

In the discussion of the following sections, we always assume that the Abrikosov esti-
mate Hc1 ≤ C| ln ε| holds and 1 ≤ hex ≤ C| ln ε|. Also, for simplicity of the notation, we
denote Da

M by D hereafter.
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§ 2 . Basic Estimates

In this section, we give the following lemmas and omit their proofs here.

Lemma 2.1. For (ũ, Ã) minimizing J(u, A) in D with gauge condition (1.5), we have

J(ũ, Ã) ≤ Ch2
ex, (2.1)

1
2

∫

Ω

|∇ eAũ|2 ≤ Ch2
ex, (2.2)

1
4ε2

∫

Ω

(a(x)− |ũ|2)2 ≤ Ch2
ex, (2.3)

‖ξ̃‖H2(Ω,R) ≤ Chex, (2.4)

where ξ̃ is defined by (1.6).

Lemma 2.2. For any (ũ, Ã) in D satisfying gauge condition (1.5) and J(ũ, Ã) ≤ Ch2
ex,

there exists (u, A) ∈ D satisfying (1.5) such that

|u| ≤ 1, (2.5)

Fa(u) ≤ Fa(ũ), (2.6)

J(u,A) ≤ J(ũ, Ã) + o(1), (2.7)

‖∇ξ‖L∞(Ω,R) ≤ Chex. (2.8)

In addition, if (ũ, Ã) minimizes J in D, then there holds

Fa(u) = Fa(ũ) + o(1) as ε → 0, (2.9)

J(u,A) = J(ũ, Ã) + o(1) = J(u, Ã) + o(1) as ε → 0. (2.10)

Lemma 2.3. For (u,A) ∈ D and |u| ≤ 1, let uγ ∈ H1(Ω,C) be a minimizer of the
following minimization problem

min
v∈H1(Ω,C)

{ ∫

Ω

[1
2
|∇v|2 +

1
4ε2

(a− |v|2)2
]

+
∫

Ω

|u− v|2
2ε2γ

}
, (2.11)

where 0 < γ < 1, 0 ≤ b0 ≤ a(x) ≤ 1 in Ω and a ∈ C2(Ω). Then, we have uγ in H3(Ω,C)
and uγ satisfies

−∆uγ =
1
ε2

uγ(a− |uγ |2) +
u− uγ

ε2γ
, (2.12)

Fa(uγ) ≤ Fa(u) ≤ M | ln ε|, (2.13)

|uγ | ≤ 1, (2.14)

|∇uγ | ≤ C

ε
. (2.15)

Since |∇uγ | ≤ C
ε , the vortices are well defined in the following lemma (see [5]).

Lemma 2.4. There exists λ > 0 and vortex points {aε
i}i∈T in Ω such that CardT ≤

Ch2
ex, and

|uγ(x)| ≥ 1
2
b0 in Ω \ ∪

i∈T
B(aε

i , λε). (2.16)
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In the remaining part of this section, we shall pay our attentions to the discussions
on the minimizer uγ . Although we have put a function a(x) in the functional (2.11) on
uγ , we found that the proofs of the following four lemmas on the properties of uγ can be
obtained directly from adjusting the corresponding ones in [2, 18] and [19] by replacing the
energy density with 1

2 [|∇v|2 + 1
ε2 a(1− |v|2)2] where v = uγ√

a
. Thus, we omit the proof of the

following lemmas in this paper.

Lemma 2.5. For any 0 < γ < β < 1, uγ has no vortex
(
i.e. |uγ | ≥ 1

2
b0

)
on the

domain {x ∈ Ω : dist (x, ∂Ω) ≤ εβ}.
Lemma 2.6. Card T is uniformly bounded by a constant N which is independent of

ε. Let 0 < γ < β < µ < 1 be such that µ̄ = µN+1 > β. For ε small enough we may choose
a subset T1 ⊂ T and a radius ρ > 0 with λε ≤ εµ ≤ ρ ≤ εµ̄ < εβ such that

|uγ | ≥ 1
2
b0 in Ω \ ∪

i∈T1
B(aε

i , ρ), (2.17)

|uγ | ≥ √
a− C

| ln ε|2 on ∂B(aε
i , ρ) for i ∈ T1, (2.18)

∫

∂B(aε
i ,ρ)

eε(uγ) ≤ C(β, µ)
ρ

for i ∈ T1, (2.19)

where eε(uγ) =
1
2

[
|∇uγ |2 +

1
2ε2

(a− |uγ |2)2
]

and

|aε
i − aε

j | ≥ 8ρ for i 6= j ∈ T1. (2.20)

Lemma 2.7. For any u ∈ D, denote di = deg(uγ , ∂B(aε
i , ρ)). Then we have

|di| = O(1), ∀ i ∈ T1. (2.21)

If the fact |∇u| ≤ C
ε is proved (if u is a solution of (G.L.), then this is true), then in

the sense of [5] the vortices of u are well defined and has the same uniformly bound on the
number as the vortices of uγ has. For u, we may also have bigger vortices (bε

i , qi) of size ρ,
such that u satisfies the same conclusions as in Lemma 2.6 for uγ . We may compare (aε

i , di)
(the vortices of uγ) with (bε

i , qi) (the vortices of u) by the minimal connection between the
vortices as in [18]. Now define positive points pi and negative points ni as follows:

( i ) The set of pi’s consists of all the bi’s such that qi > 0 repeated |qi| times, with the
ai’s such that di < 0 repeated |di| times.

(ii) The set of ni’s consists of all the bi’s such that qi < 0 repeated |qi| times, with the
ai’s such that di > 0 repeated |di| times.

Also define the positive holes by Pi = B(pi, ρ) and negative holes by Ni = B(ni, ρ)
and add R2 \ Ω as a hole of multiplicity

∑
di −

∑
qi. Then there are k positive holes and

k negative holes, and the distance between the configurations ā = (ai, di) and b̄ = (bi, qi) is
defined by the minimal connection [7],

dist (ā, b̄) = L(pi, ni) = inf
σ∈Sk

k∑

i=1

|pi − nσ(i)|.

Lemma 2.8. For small ε, there holds

dist (ā, b̄) ≤ Cεγ | ln ε|. (2.22)
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§ 3 . Splitting of the Energy J(u, A)

The results in this section are closely related to those in Section IV.1 in [18]. As in
[18], we shall decompose the energy J(u,A) with the following lemma.

Lemma 3.1. For any (ũ, Ã) ∈ D̃ satisfying (1.5), (2.1)–(2.4), let (u, A) be associated
with (ũ, Ã) as in Lemma 2.2 and let u be associated with uγ , solving the minimization problem
(2.11), which has vortices (ai, di) satisfying Lemma 2.6. Then we have

J(u,A) = Fa(u) + V (ξ) + o(1), (3.1)

where

V (ξ) =
1
2

∫

Ω

1
a
|∇ξ|2 +

1
2

∫

Ω

∣∣∣div
(1

a
∇ξ

)∣∣∣
2

− hex

∫

Ω

div
(1

a
∇ξ

)
+ 2π

∑

i∈T1

diξ(ai), (3.2)

and ξ is defined by (1.6).

§ 4 . Splitting of the Magnetic Field V (ξ)

In this section, we will split the magnetic field under the assumptions of Lemma 3.1.
Let

ζ = ξ − hexξ0, (4.1)

where ξ0 is the unique solution of the equation

−div
(1

a
∇

(
div

(1
a
∇ξ0

)))
+ div

(1
a
∇ξ0

)
= 0 in Ω, (4.2)

div
(1

a
∇ξ0

)
= 1 on ∂Ω, (4.3)

ξ0 = 0 on ∂Ω. (4.4)

By computation, we have the following lemma.

Lemma 4.1. Under the assumptions of Lemma 3.1, we have

V (ξ) = V (hexξ0) + Ṽ (ζ), (4.5)

where
Ṽ (ζ) =

1
2

∫

Ω

1
a

∣∣∣∇ζ
∣∣∣
2

+
∣∣∣div

(1
a
∇ζ

)∣∣∣
2

+ 2π
∑

i∈T1

diζ(ai). (4.6)

Now, from Lemmas 3.1 and 4.1, we can write J(u, A) as

J(u, A) = J0 + Fa(u) + 2πhex

∑

i∈T1

diξ0(ai) + Ṽ (ζ) + o(1), (4.7)

where
J0 = −1

2
h2

ex

∫

Ω

∣∣∣div
(1

a
∇ξ0

)∣∣∣
2

+
1
a
|∇ξ0|2. (4.8)

By a simple computation we also have the following estimate.
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Lemma 4.2. J0 satisfies

inf
{(u,A)∈D:T1=∅}

J(u,A) = J0 +
1
2

∫

Ω

|∇√a|2 + o(1), (4.9)

i.e. J0 +
1
2

∫

Ω

|∇√a|2 is (almost) the minimal energy for vortex-less configuration.

Lemma 4.3. ξ0 is the unique solution of the equations (4.2)–(4.4). Then ξ0 satisfies

−div
(1

a
∇ξ0

)
+ ξ0 = −1 in Ω, (4.10)

ξ0 = 0 on ∂Ω, (4.11)

−1 < ξ0 < 0 in Ω. (4.12)

Proof. By the uniqueness, (4.10) follows directly from (4.2)–(4.4). (4.12) follows from
the maximum principle.

Lemma 4.4.

J0 +
1
2

∫

Ω

h2
ex =

1
2
h2

ex

∫

Ω

|ξ0|. (4.13)

Proof. By the definition of J0 and (4.10), the conclusion follows.

In the last part of this section, we will pay our attention to the discussions on Ṽ (ζ).
Since we found that the proof of the following two lemmas on the properties of ζ can be
obtained directly from adjusting the corresponding proof of lemmas in [18], we give the
statements of the lemmas.

Lemma 4.5. The configurations (ai, di) being set, Ṽ (ζ) is minimal for ζ satisfying the
following equation

−div
(1

a
∇

(
div

(1
a
∇ζ

)))
+ div

(1
a
∇ζ

)
= 2π

∑

i∈T1

diδai in Ω, (4.14)

div
(1

a
∇ζ

)
= 0 on ∂Ω, (4.15)

ζ = 0 on ∂Ω, (4.16)

and
Ṽ (ζ) = π

∑

i∈T1

diζ(ai). (4.17)

Lemma 4.6.

Ṽ (ζ) = π
∑

i,j

didjζ
ai(aj) ≤ C

( ∑

i

|di|
)2

(4.18)

remains bounded as ε tends to 0. Furthermore

‖ζp‖L∞(Ω) ≤ Cdist (p, ∂Ω)k, ∀k < 1, (4.19)

‖ζp − ζq‖H2(Ω) ≤ C|p− q|k, ∀k < 1. (4.20)
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Here ζp is the solution of

−div
(1

a
∇

(
div

(1
a
∇ζp

)))
+ div

(1
a
∇ζp

)
= 2πδp in Ω, (4.21)

div
(1

a
∇ζp

)
= 0 on ∂Ω, (4.22)

ζp = 0 on ∂Ω. (4.23)

§ 5 . Estimates for Fa

Denote eε(u) = 1
2 [|∇u|2 + 1

2ε2 (a− |u|2)2] and Ωρ as before. The same argument of [10]
gives the following lemma.

Lemma 5.1.
1
2

∫

Ωρ

|∇uγ |2 ≥ π
∑

i∈T1

a(ai)d2
i | ln ρ|+ W ((a1, d1), · · · , (ak, dk)) + O(1), (5.1)

where we have assumed T1 = {1, 2, · · · , k} and

W ((a1, d1), · · · , (ak, dk)) = −π
∑

i6=j∈T1

a(ai)didj ln |ai − aj | − π
∑

i∈T1

diR0(ai),

R0(x) = Φ0(x)−
∑

i∈T1

a(ai)di ln |x− ai|,

where Φ0(x) solves

−div
(1

a
∇Φ0

)
= 2π

∑

i∈T1

di δai in Ω, (5.2)

Φ0 = 0 on ∂Ω. (5.3)

Lemma 5.2.

Fa(uγ) ≥ π
∑

i∈T1

a(ai)d2
i | ln ρ|+ π

∑

i∈T1

a(ai)|di| ln ρ

ε

+ W ((a1, d1), · · · , (ak, dk)) + O(1), (5.4)

Fa(uγ) ≥ π
∑

i∈T1

a(ai)|di|
∣∣∣ ln

ρ

ε

∣∣∣ + O(1). (5.5)

Proof. First, we have

Fa(uγ) ≥ 1
2

∫

Ωρ

|∇uγ |2 +
∑

i∈T1

∫

B(ai,ρ)

eε(uγ). (5.6)

But we know from [11] that
∫

B(ai,ρ)

eε(uγ) =
∫

B(ai,ρ)

1
2

[
|∇uγ |2 +

1
2ε2

(a− |uγ |2)2
]
≥ πa(ai)|di| ln ρ

ε
+ O(1).

Hence ∑

i∈T1

∫

B(ai,ρ)

eε(uγ) ≥
∑

i∈T1

πa(ai)|di| ln ρ

ε
+ O(1).

Now combining the above result with (5.1), we have the conclusions of this lemma.



ESTIMATES OF LOWER CRITICAL MAGNETIC FIELD AND VORTEX PINNING 501

§ 6 . Estimates of the Critical Magnetic Field Hc1

In this section, we shall obtain the critical magnetic field Hc1 .

Lemma 6.1. Suppose M > π max
Ω

a(x). Then there exist kε
2 = O(1), kε

3 = o(1) as

ε → 0 such that for

hex =
| ln ε|

2max
Ω

∣∣ ξ0
a

∣∣ + t, (6.1)

there holds
( i ) If t < kε

2, considering (ũ, Ã) a minimizing configuration in D, then T1 = ∅ and

J(ũ, Ã) = inf
{(u,A)∈D:T1=∅}

J = J0 +
1
2

∫

Ω

|∇√a|2 + o(1). (6.2)

(ii) If t = kε
2, then there is (u,A) ∈ D with one vortex of degree one such that

J(u, A) ≤ inf
{(u,A)∈D:T1=∅}

J. (6.3)

(iii) If t ≥ kε
2 + kε

3, there exists (u,A) in D having one vortex of degree one such that

J(u, A) < inf
{(u,A)∈D:T1=∅}

J.

Proof. Recall that, for (u,A) obtained from (ũ, Ã) with the aid of Lemma 2.2, (4.7)
yields

J(u, A) = Fa(u) + J0 + 2πhex

∑

i∈T1

diξ0(ai) + Ṽ (ζ) + o(1), (6.4)

and if T1 6= ∅, using Lemma 5.2, we have

Fa(u) ≥ Fa(uγ) ≥ π
∑

i∈T1

a(ai)|di|| ln ε|+ O(1). (6.5)

Now substituting (6.5) into (6.4), we get

J(u,A) ≥ J0 + π
∑

i∈T1

a(ai)|di|| ln ε| − 2πhex

∑

i∈T1

a(ai)|di|
∣∣∣ξ0(ai)
a(ai)

∣∣∣ + Ṽ (ζ) + O(1).

Hence

J(u,A) > inf
{(u,A)∈D:T1=∅}

J(u,A)

as long as

πhex

∑

i∈T1

a(ai)|di|
∣∣∣ξ0(ai)
a(ai)

∣∣∣ ≤ π
∑

i∈T1

a(ai)|di|| ln ε|+ O(1),

which is valid if

hex ≤ | ln ε|
2max

Ω

∣∣ ξ0(x)
a(x)

∣∣ + O(1). (6.6)
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As in [18], set

Zε =
{

t ∈ R : there exist (u,A) ∈ D with at least one vortex and

J(u,A) < inf
{(u,A)∈D:T1=∅}

J for hex = k1| ln ε|+ t
}

,

where k1 = 1
2 max

Ω
|ξ0(x)/a(x)| . In the following, we want to show Zε 6= ∅ and then define

kε
2 = inf Zε and prove that there exists kε

3 = o(1) such that [kε
2 + kε

3, +∞] ⊂ Zε.
To show Zε 6= ∅, let c ∈ Ω such that |ξ0(c)/a(c)| = max

Ω
|ξ0(x)/a(x)|. Then, since

ξ0 = 0 on ∂Ω, we have c ∈ Ω. Now consider the following minimization problem

νε(c) = min
W

1
2

∫

Ω\B(c,ε)

|∇u|2, (6.7)

where W = {u : u =
√

av, v ∈ H1(Ω \B(c, ε), S1), deg(v, ∂B(c, ε)) = 1}.
Then, it follows from discussions in [11] that

νε(c) =
1
2

∫

Ω\B(c,ε)

1
a(x)

|∇Φε|2 +
1
2

∫

Ω

∣∣∇√a
∣∣2 = πa(c)| ln ε|+ O(1), (6.8)

where Φε satisfies 



−div
(1

a
∇Φε

)
= 0 in Ω \B(c, ε),

Φε = 0 on ∂Ω,

Φε = const. on ∂B(c, ε),∫

∂B(c,ε)

1
a

∂Φε

∂n
= 2π.

(6.9)

Let u be a minimizer of the problem (6.7) which is well defined on Ω \B(c, ε). Now we
extend it to the whole domain Ω by defining it on B(c, ε) as taking polar system centered
at c such that ū(r, θ) = f(r)w(θ) with w(θ)|∂B(c,ε) = u|∂B(c,ε), f ≡ 1 in Ω \ B(c, ε

2 ), f ≡
0 in B(c, ε

4 ) and |f ′(r)| ≤ C
ε . Then, since ū has one vortex at c, ūγ has one vortex in

B(c, Cεγ | ln ε|). Thus, we have

Fa(ū, B(c, ε)) =
1
2

∫

B(c,ε)

[
|∇ū|2 +

1
2ε

(a− |ū|2)2
]

≤ 1
2

∫

B(c,ε)

‖f ′‖2L∞ +
C

ε2
‖w′‖2L∞ +

1
2ε2

≤ C, (6.10)

and hence

Fa(ū, Ω) = Fa(ū, B(c, ε)) +
1
2

∫

Ω\B(c,ε)

|∇ū|2 ≤ K + a(c)π| ln ε|. (6.11)

Then, taking ξ = hexξ0 + ζc, where ζc is defined by (4.21)–(4.23), we know from Section 4
that

V (ξ) = V (hexξ0) + Ṽ (ζc) = J0 + 2πhexξ0(c) + πζc(c) + o(1).

Now we derive that for

hex =
1

2max |ξ0(x)/a(x)| | ln ε|+ t = − 1
2ξ0(c)/a(c)

| ln ε|+ t,
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J(ū, A) ≤ K + a(c)π| ln ε|+ J0 + 2πhexξ0(c) + o(1)

≤ K + a(c)π| ln ε|+ J0 + 2πξ0(c)
[
t− a(c)

ξ0(c)
| ln ε|

]
+ o(1)

= K + 2πξ0(c)t + J0 + o(1).

This in turn implies t ∈ Zε when

t ≥ K − 1
2

∫
Ω

∣∣∇√a
∣∣2

2π|ξ0(c)| + o(1).

Therefore Zε 6= ∅ and

kε
2 = inf Zε ≤ K − 1

2

∫
Ω

∣∣∇√a
∣∣2

2π|ξ0(c)| + o(1).

On the other hand, by (6.6), we have hex ≤ k1| ln ε|+O(1). So, we know that kε
2 ≥ O(1) and

thus kε
2 = O(1). Now we prove that there exists kε

3 = o(1) such that [kε
2 + kε

3,+∞] ⊂ Zε. In
fact, let t ∈ Zε and let (u,A) satisfy

J(u, A) < inf
{(u,A)∈D:T1=∅}

J (6.12)

for hex,1 = k1| ln ε|+ t and uγ has vortices (ai, di). Assume t′ > t and hex,2 = k1| ln ε|+ t′.
Then we have

J(u,A) = Fa(u) + V (hex,2ξ0) + Ṽ (ζ) + o(1)

= Fa(u) + J0 + hex,2

∑

i∈T1

2πdiξ0(ai) + Ṽ (ζ) + o(1)

≤ Fa(u) + J0 + hex,1

∑

i∈T1

2πdiξ0(ai) + Ṽ (ζ) + o(1) + (t′ − t)
∑

i∈T1

2πdiξ0(ai).

This means that if t′ − t ≥ kε
3 = o(1), then by (6.12) J(u,A) < inf

{(u,A)∈D:T1=∅}
J(u,A). This

in turn implies [kε
2 + kε

3, +∞] ⊂ Zε and the proof of this lemma is complete.

In summary, we have deduced that Hc1 = k1| ln ε|+kε
2 where Hc1 is the first critical field

defined as the value of hex for which the minimal energy among vortex-less configurations
is equal to the minimal energy among single-vortex configurations.

§ 7 . Proof of Theorem 1.1

In order to prove Theorem 1.1, we need the following lemmas.

Lemma 7.1. Let hex = k1| ln ε| + o(| ln ε|) and (ũ, Ã) be a minimizer of J(u,A) in
D. Let {(ai, di)}k

i=1 be vortices of uγ . Then di = 1 for i ∈ T1 = {1, 2, · · · , k} and there are
ε0 > 0 and α > 0 such that dist (ai, ∂Ω) ≥ α > 0.

Proof. The conclusion follows by the same argument in [10, 18].

Now to prove next lemmas we need the following assumption

Hc1 + kε
3 ≤ hex ≤ k1| ln ε|+ O(1), (7.1)
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where
Hc1 = k1| ln ε|+ kε

2 (7.2)

with
k1 =

1
2max

Ω
|ξ0(x)/a(x)| , kε

2 = O(1), kε
3 = o(1). (7.3)

Lemma 7.2. Let (u,A) be obtained from a minimizer (ũ, Ã) of J in D, and (aε
i , d

ε
i )

be the vortices of uγ . Denote

Λ =
{

x ∈ Ω :
∣∣∣ξ0(x)
a(x)

∣∣∣ = max
y∈Ω

∣∣∣ξ0(y)
a(y)

∣∣∣
}

. (7.4)

Then we have

dist (aε
i , Λ) → 0 as ε → 0, ∀ i ∈ T1, (7.5)

dist (aε
i , a

ε
j) ≥ α > 0 for i 6= j ∈ T1. (7.6)

The first result (7.5) remains true if we only assume hex ≤ k1| ln ε|+ o(| ln ε|).
Proof. If T1 6= ∅, we have from Lemma 7.1 that dε

i = 1 for all i ∈ T1. Denote
d =

∑
i∈T1

dε
i = CardT1 = deg(uγ , ∂Ω). Then it follows from Lemma 5.2, as in [10, 18], that

W (a1, · · · , ak) + π
∑

i∈T1

a(aε
i )| ln ε|+ O(1) ≤ Fa(uγ) ≤ −2πhex

∑

i∈T1

ξ0(aε
i ) + o(| ln ε|),

where W (a1, · · · , ak) = W ((a1, 1), · · · , (ak, 1)). Then

π
∑

i∈T1

a(aε
i )| ln ε| ≤ 2πhex

∑

i∈T1

a(aε
i )max

Ω

∣∣∣ξ0(x)
a(x)

∣∣∣

− 2πhex

∑

i∈T1

a(aε
i )

(ξ0(aε
i )

a(aε
i )

+ max
Ω

∣∣∣ξ0(x)
a(x)

∣∣∣
)

+ o(| ln ε|),

which in turn gives

∑

i∈T1

(ξ0(aε
i )

a(aε
i )

+ max
Ω

∣∣∣ξ0(x)
a(x)

∣∣∣
)
≤ o(| ln ε|)

hex
→ 0,

hence
dist (aε

i , Λ) → 0 as ε → 0, ∀ i ∈ T1.

Moreover, since W (aε
1, · · · , aε

k) ≥ O(1) and

W (aε
1, · · · , aε

k) + π
∑

i∈T1

a(aε
i )| ln ε|+ O(1) ≤ −2πhex

∑

i∈T1

ξ0(aε
i ) + O(1),

we have W (aε
1, · · · , aε

k) ≤ O(1) if hex ≤ k1| ln ε|+O(1). Therefore we conclude that |aε
i −aε

j |
remains bounded from below uniformly since as in [5] we could prove that W → +∞ if
|aε

i − aε
j | → 0 for some i 6= j. Lemma 7.2 is proved.

Lemma 7.3. Assume that M > π(CardΛ)max
Λ

a(x). Then, for ε sufficiently small, a

minimizer (ũ, Ã) of J in D is a solution of (G.L.), and (u,A) = (ũ, Ã), where (u,A) comes
from (ũ, Ã) in Lemma 2.2.
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Proof. It suffices to show that (ũ, Ã) is not on the boundary of D. Since we have
proved that W is a bounded quantity in Lemma 7.2 and dist (aε

i , a
ε
j) ≥ α > 0, we have

π
∑

i∈T1

a(ai)| ln ε|+ O(1) ≤ π
∑

i∈T1

a(ai)| ln ε|+ O(1).

Hence, this inequality together with Lemma 2.2 yields that

Fa(u) = π
∑

i∈T1

a(ai)| ln ε|+ O(1). (7.7)

Now it follows from Lemma 7.2 that as ε → 0, aε
i → ci ∈ Λ and thus we get from (7.6)

that ci 6= cj for i 6= j. Hence
d = CardT1 ≤ CardΛ. (7.8)

Thus
π

∑

i∈T1

a(ai) ≤ πCardΛmax
Λ

a(x) + δ < M for ε ≤ ε0. (7.9)

Here, δ ≤ 1
2

(
M − πCardΛmax

Λ
a(x)

)
. Thus

Fa(ũ) ≤ π
∑

i∈T1

a(ai)| ln ε|+ O(1) ≤ (M − δ)| ln ε|, (7.10)

which implies that (ũ, Ã) is not on ∂D. Thus Lemma 7.3 is proved.

Now since (u, A) is a solution of (G.L.), we can show that |∇u| ≤ C/ε. Then u has
bigger vortices of size ρ : {(bi, qi)}i∈T1 . The following lemma compares the vortices of uγ

with the vortices of u.

Lemma 7.4. For sufficiently small ε, we have
( i ) If (u,A) is a solution of (G.L.) such that J(u, A) ≤ Ch2

ex, then |u| ≤ 1, and

|∇u| ≤ C

ε
.

(ii) If (u,A) is a solution of (G.L.) such that uγ has no vortex
(
i.e. |uγ | ≥ b0

2

)
and

J(u,A) ≤ J0 +
1
2

∫

Ω

|∇√a|2 + o(1), then u has not vortex on Ω
(
|u| ≥ b0

2

)
.

(iii) If (u,A) is a solution of (G.L.) given by Theorem 1.1, then its vortices (of size ρ)
satisfy the same conclusions as those of uγ .

(iv) In addition, if (ai)i∈T1 are the vortices of uγ of degree one, then the vortices
{bi}i∈T1 of u are of degree one and Lemma 2.6 (on uγ) is satisfied by u.

Proof. The conclusions follow by the same argument in [19].

Proof of Theorem 1.1. Let (ũ, Ã) be a minimizer of J(u,A) in D. Then, from
Lemma 7.3, we have that (ũ, Ã) is a solution of (G.L.), and (u,A) = (ũ, Ã), where (u,A)
comes from (ũ, Ã) by Lemma 2.2.

Now, in the case that hex ≤ Hc1 , we know that uγ has not a vortex from Lemma 6.1.
Combining this with the conclusion (ii) of Lemma 7.4, we obtain that u has no vortex and
|u| ≥ b0

2 in Ω. Moreover, from the conclusion (i) of Lemma 7.4, we have |u| ≤ 1 in Ω. Thus
the conclusion (i) of Theorem 1.1 is proved.

In the case that Hc1 + k2
3 ≤ hex ≤ Hc1 + O(1), we know that uγ has vortices from

Lemma 6.1. Then by the conclusions of Lemma 7.1, Lemma 7.2, and the conclusions (iii) and
(iv) in Lemma 7.4, we obtain the conclusion (ii) of Theorem 1.1. The proof of Theorem 1.1
is complete.
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