
Chin. Ann. Math.
25B:4(2004),507–522.

ON THE RECOVERY OF A CURVE
ISOMETRICALLY IMMERSED IN En

M. SZOPOS∗

Abstract

It is known from classical differential geometry that one can reconstruct a curve
with (n − 1) prescribed curvature functions, if these functions can be differentiated a
certain number of times in the usual sense and if the first (n− 2) functions are strictly
positive. It is established here that this result still holds under the assumption that the
curvature functions belong to some Sobolev spaces, by using the notion of derivative in
the distributional sense. It is also shown that the mapping which associates with such
prescribed curvature functions the reconstructed curve is of class C∞.
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§ 1 . Introduction

Physically, we can think of a curve as being obtained from a straight line by bending
and twisting. After reflecting on this construction, we are led to conjecture that, roughly
speaking, the curvature functions describe completely the behavior of the curve. This state-
ment is true: we can find a proof of this classical result of differential geometry for example
in [4], where the case of a curve isometrically immersed in the n-dimensional Euclidean space
is treated, without specifying the regularity requirements for the initial data.

The same reconstruction problem can be posed for a surface or for an open set of Rn

and there exist different methods to prove this result of differential geometry. Recently,
motivated by some problems encountered in nonlinear elasticity, some extensions have been
obtained for the case of Sobolev-type functions. More specifically, the classical result for an
open set states that if the metric tensor is of class C2 and satisfies the Riemann compatibility
conditions, then it is induced by an immersion (see for instance [10] for a “local” version, or
[2] for the proof of the existence of a global immersion if in addition the open set is simply-
connected). Then, it has been proved by C. Mardare in [7] that the same result holds under
the assumption that the metric is of class C1; moreover, we can find in S. Mardare [8] an
even stronger result, for the case when the metric is only of class W 1,∞

loc .
Another interesting question concerns the regularity of the mapping that can be defined

by associating with the prescribed data (metric and curvature) the reconstructed manifold
in Rn. In this direction, it has been established that this mapping is continuous for certain
natural metrizable topologies, in the case of an open set of Rn by Ciarlet and Laurent in [3]
and in the case of a surface (using a different method) by Ciarlet in [1].
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The purpose of this paper is twofold. First we provide a proof of the existence and
uniqueness of a curve immersed in Rn, whose curvature functions are (n − 1) prescribed
functions in Hn−2(I;R)×Hn−3(I;R)×· · ·×H1(I;R)×L2(I;R); we emphasize that, instead
of the classical framework of differential geometry, where all functions are considered to be
indefinitely derivable, our setting will be that of distributions and we will always use the
notion of derivative in the general sense. Second, we show that the mapping constructed in
this fashion is of class C∞. As corollaries, we derive the same results in the classical setting,
where derivatives are considered in the usual sense.

The paper is organized as follows. In Section 2, we present some technical results
which will be used in the sequel. In Section 3, we prove the existence and uniqueness (or
uniqueness up to rigid motions, if the assumptions are weakened) of a curve with prescribed
curvatures and in Section 4 we show that the mapping constructed in this manner is of class
C∞. Finally, in Section 5 we gather some additional commentaries about our problem.

The results of this paper have been announced in [11].

§ 2 . Preliminaries

To begin with, we introduce some conventions and notations that will be used through-
out the article. For any n ≥ 1, the n-dimensional Euclidean space En will be identified with
Rn and will be endowed with the Euclidean norm defined by |a| =

√
〈a, a〉, where 〈a, b〉

denotes the Euclidean inner product of a, b ∈ Rn. The notations Mn×n and On
+, respec-

tively designate the set of all real square matrices and of all proper orthogonal matrices of
order n (a matrix Q is proper orthogonal if Q is orthogonal and det Q = 1). A mapping
ϕ : Rn → Rn defined by ϕ(x) = x0 + Qx, where x0 ∈ Rn and Q ∈ On

+ is called a proper
isometry or rigid motion. We denote by

|A| := sup
v∈Rn\{0}

|Av|
|v|

the operator norm of a matrix A ∈Mn×n and by In the identity matrix of order n.
If X is a Hilbert space, we denote by | · |X its norm induced by the inner product

and by D′((0, T ); X) the space of X-valued distributions. For all integer m ≥ 0, the m-th
derivative of f ∈ D′((0, T ); X) is denoted as f (m) and the first derivative is denoted as f ′

or f (1). The function spaces used in this paper are denoted as follows: Lp((0, T ); X) for
1 ≤ p < +∞ is the space of all measurable functions f : (0, T ) → X such that

|f |Lp((0,T );X) :=
(∫ T

0

|f(t)|pXdt
) 1

p

< +∞,

Hm((0, T ); X) := {v ∈ L2((0, T ); X); v(k) ∈ L2((0, T ); X), ∀ k ≤ m}.
Let H0((0, T ); X) := L2((0, T ); X). For all integer m ≥ 0, the space Hm((0, T ); X) endowed
with the inner product

〈u, v〉Hm((0,T );X) :=
m∑

k=0

∫ T

0

〈u(k)(t), v(k)(t)〉Xdt

is a Hilbert space.
In the sequel, we present three lemmas that will be key ingredients in the proof of

our main results (Theorems 3.1 and 4.1). The first lemma establishes the existence and
uniqueness of the solution of a differential system and the second and third lemmas are about
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mappings between Sobolev spaces. In what follows, the derivatives are to be understood in
the distributional sense and classes of functions in H1((0, T );Mn×n) are identified with their
continuous representative, as allowed by the Sobolev imbedding theorem. In particular, it
makes sense to consider Y (0) in the system below, since Y ∈ C0([0, T ];Mn×n).

Lemma 2.1. Consider the system of differential equations:

Y ′(t) = A(t)Y (t) + B(t) for almost all t in (0, T ),

Y (0) = Y0,
(2.1)

where A and B belong to the space L2((0, T );Mn×n) and Y0 is a matrix of Mn×n.
Then there exists a unique solution Y ∈ H1((0, T );Mn×n) to this system.

Proof. It is a direct consequence of Theorem 4.1 and Remark 4.3 of [5].

Lemma 2.2. Let k ≥ 0 and m ≥ 1 be two integers such that k ≤ m. Then the mapping

(f, g) ∈ Hk((0, T );R)×Hm((0, T );Rn) → (fg) ∈ Hk((0, T );Rn)

is of class C∞.

Proof. The proof is straightforward: this application being bilinear, we only have to
prove its continuity, in order to prove that it is C∞. To do this, we distinguish two situations:
1 ≤ k ≤ m and 0 = k < m and then use the Sobolev imbeddings and their consequence that
Hk((0, T );Rn) is a Banach algebra for k ≥ 1.

Lemma 2.3. Let k be a positive integer. Then the mapping

f ∈ Hk((0, T );Rn) → g ∈ Hk+1((0, T );Rn),

where g(t) =
∫ t

0

f(s)ds, is of class C∞.

Proof. The continuity of this mapping is a classical result (see, for example, [6]). Since
this mapping is also linear, it is of class C∞.

For the sake of completeness, we state the implicit function theorem in the functional
setting of Banach spaces.

Theorem 2.1. (Implicit Function Theorem) Let there be given three Banach spaces
X1, X2 and Y , an open subset Ω of the space X1 × X2 containing a point (a1, a2), and a
mapping ϕ : Ω ⊂ X1 ×X2 → Y satisfying

ϕ ∈ C1(Ω, Y ), ∂2ϕ(a1, a2) ∈ Isom(X2, Y ).

Let ϕ(a1, a2) = b ∈ Y . Then there exist open subsets O1 and O2 of the spaces X1 and
X2 respectively, such that (a1, a2) ∈ O1 × O2 ⊂ Ω, and there exists an implicit function
f : O1 ⊂ X1 → O2 ⊂ X2 such that

{(x1, x2) ∈ O1 ×O2, ϕ(x1, x2) = b} = {(x1, x2) ∈ O1 ×O2, x2 = f(x1)},
f ∈ C1(O1, X2) and f ′(x1) = −{∂2ϕ(x1, f(x1))}−1∂1ϕ(x1, f(x1)) for all x1 ∈ O1; moreover,
f is unique, provided that O1 is taken sufficiently small.

If in addition the mapping ϕ : Ω ⊂ X1 ×X2 → Y is of class Cm, m ≥ 2, the implicit
function f : O1 → X2 is also of class Cm.

Proof. This is a well-known result (see for example [9, Chapter 3, Section 8]).
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§ 3 . Existence and Uniqueness of the Curve c

To begin with, we present the geometrical framework of our problem. The integer
n ≥ 3 is fixed throughout this section. If v1, · · · , vk, k ≥ 1, are vectors in Rn, we denote by
sp{v1, · · · , vk} the vector space spanned by these vectors.

Let I = [0, T ] be a bounded interval of R. Let c : I → Rn be a regular curve of class
Cn−1 over I, i.e., the vectors c(1)(t), c(2)(t), · · · , c(n−1)(t) are linearly independent for all
t ∈ I. In this setting, one can show (see, for example, [4]) that there exists a unique Frenet
frame associated with this curve, denoted by {e1(t), · · · , en(t)}, which is a family of vector
fields along the curve c such that

〈ei(t), ej(t)〉 = δij , ∀ i, j ∈ {1, · · · , n}, ∀ t ∈ I,

sp{e1(t), · · · ek(t)} = sp{c(1)(t), · · · , c(k)(t)}, ∀ k ∈ {1, · · · , n− 1}, ∀ t ∈ I,

the two bases having the same orientation (i.e., the matrix of change of basis has positive
determinant) and such that {e1(t), · · · en(t)} is positively oriented for all t ∈ I ( i.e., it has the
same orientation as the natural ordered basis {(1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, 0, · · · , 1)}).

Then the Frenet formulas read:

e′i(t) =
n∑

j=1

aij(t)ej(t), ∀ i ∈ {1, · · · , n},

where the functions aij : I → R satisfy

aij(t) + aji(t) = 0, ∀ i, j ∈ {1, · · · , n}, ∀ t ∈ I,

aij(t) = 0, ∀ j ≥ i + 2, ∀ t ∈ I.

The curvature functions of c at the point t ∈ I are then defined by

ki(t) :=
ai,i+1(t)
|c′(t)| , ∀ i ∈ {1, · · · , n− 1} (3.1)

or equivalently, by means of the Frenet formulas, as

ki(t) =
〈ei+1(t), e′i(t)〉

|c′(t)| . (3.2)

We recall that the curvature functions are invariant under the action of rigid motions, i.e., if
ϕ : Rn → Rn is a proper isometry and c̃ = ϕ ◦ c, then k̃i(t) = ki(t) for all i ∈ {1, · · · , n− 1}
and for all t ∈ I (with self-explanatory notations).

The objective of this section is to prove the existence and uniqueness up to rigid motions
of a curve isometrically immersed in the n-dimensional space and with prescribed curvature
functions. While this result is classical if the curvature functions are regular enough (see
the assumptions of Corollary 3.2), it will be assumed here that they only belong to some
specific Sobolev spaces.

Theorem 3.1. (Existence and Uniqueness) Let (F1, · · · , Fn−1) ∈ Hn−2(I;R)× · · · ×
H1(I;R)× L2(I;R) be such that F1(t) > 0, · · · , Fn−2(t) > 0 for all t ∈ I. Then

(a) There exists a regular curve c ∈ Hn(I;Rn) such that |c′(t)| = 1 for all t ∈ I and its
curvature functions are F1, · · · , Fn−1, i.e., ki(t) = Fi(t) for all i ∈ {1, · · · , n− 1} and t ∈ I.
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(b) If c and c̃ are two curves satisfying the conditions of part (a), then there exists a
rigid motion ϕ : Rn → Rn such that c̃ = ϕ ◦ c.

(c) If x0 ∈ Rn is fixed, then there exists a unique curve c satisfying the properties of
part (a) and such that c(0) = x0 and its Frenet frame at the origin is given by e1(0) =
(1, 0, · · · , 0), · · · , en(0) = (0, 0, · · · , 1).

Proof. The proof is broken into six steps, in order to provide a more clear presen-
tation. Throughout the proof, the elements of the space H1(I;Rn), which are classes of
functions with respect to the equality almost everywhere, are identified with their continu-
ous representative (as allowed by the Sobolev imbedding theorem).

(i) We show that there exists a unique solution (e1, · · · , en) ∈ H1(I;Rn) × · · · ×
H1(I;Rn) to the Cauchy problem:

e′i(t) = −Fi−1(t)ei−1(t) + Fi(t)ei+1(t) a.e. in I, i ∈ {1, · · · , n}, (3.3)

e1(0) = (1, 0, · · · , 0), · · · , en(0) = (0, 0, · · · , 1), (3.4)

where F0 = Fn := 0, e0 = en+1 := 0.

We rewrite the system of ordinary differential equations as a matrix equation, viz.,



e1
1 · · · en

1

e1
2 · · · en

2
...

e1
n · · · en

n




′

=




0 F1 · · · 0
−F1 0 · · · 0

...
0 · · · −Fn−1 0







e1
1 · · · en

1

e1
2 · · · en

2
...

e1
n · · · en

n


 .

The Cauchy problem given by the relations (3.3) and (3.4) can be written as a linear
system of ordinary differential equations of the form

Y ′ = AY a.e. in I,

Y (0) = In.

By assumption, the mapping A : I → Mn×n belongs to the space L2(I;Mn×n), since the
functions F1, · · · , Fn−1 are at least in L2(I;R). Then Lemma 2.1 applied to the above
system shows that it possesses a unique solution Y ∈ H1(I;Mn×n).

Thus, we have obtained the existence of a unique family {e1, · · · , en} that satisfies the
Cauchy problem given by (3.3) and (3.4).

(ii) We show that this family is orthonormal at all t ∈ I.

Let αij(t) := 〈ei(t), ej(t)〉 for all t ∈ I and for all i, j ∈ {1, · · · , n}. Then the system
(3.3) shows that

α′ij(t) = 〈ei(t)′, ej(t)〉+ 〈ei(t), e′j(t)〉

= 〈−Fi−1(t)ei−1(t) + Fi(t)ei+1(t), ej(t)〉+ 〈ei(t),−Fj−1(t)ej−1(t) + Fj(t)ej+1(t)〉
with the convention made in step (i) that F0 = Fn = 0 and e0 = en+1 = 0. This implies on
the one hand that the functions αij : I → R satisfy the following system

α′ij(t) = −Fi−1(t)αi−1,j(t) + Fi(t)αi+1,j(t)− Fj−1(t)αi,j−1(t) + Fj(t)αi,j+1(t),

αij(0) = δij .
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On the other hand, one can see that the functions β : I → R, ∀ i, j ∈ {1, · · · , n},
defined by βij(t) = δij for all t ∈ I satisfy the same system (to this end, one can distinguish
the following three possible situations: i − 1 = j or i + 1 = j or i − 1 6= j and i + 1 6= j).
Consequently, the uniqueness of the solution to the above system implies that αij(t) = δij

for all t ∈ I and for all i, j ∈ {1, · · · , n}. In other words, 〈ei(t), ej(t)〉 = δij for all t ∈ I and
for all i, j ∈ {1, · · · , n}. Hence the family {e1(t), · · · , en(t)} is orthonormal for all t ∈ I.

(iii) We show a regularity result for the solution {e1, · · · , en} to the system (3.3).

Since for all m > 1
2 , Hm(I;R) is an algebra, it follows that the product (fe) between

f ∈ Hm(I;R) and e ∈ Hm(I;Rn) belongs to Hm(I;Rn). We shall use this fact in the proof
below.

We first infer from (3.3) that

e′m = −Fm−1em−1 + Fmem+1 for m = 1, 2, · · · , n− 2.

Since em−1, em+1 ∈ H1(I;Rn) and Fm−1, Fm ∈ H1(I;R), we obtain that em ∈ H2(I;Rn)
for all m ∈ {1, 2, · · · , n− 2}.

Next, we again infer from (3.3) that

e′m = −Fm−1em−1 + Fmem+1 for m = 1, 2, · · · , n− 3.

Since em−1, em+1 ∈ H2(I;Rn) and Fm−1 and Fm are at least in H2(I;R), we deduce that
en−3 ∈ H3(I;R) for all m ∈ {1, 2, · · · , n− 3}.

We continue the same argument, using each time relation (3.3) for m = 1, 2, · · · , n− k
and k = 2, 3, · · · , n− 1. In this fashion, we eventually obtain that

e′1 = F1e2.

Noting that F1 ∈ Hn−2(I;R) and e2 ∈ Hn−2(I;Rn), we finally deduce that e1 ∈ Hn−1(I;
Rn).

In conclusion, we have shown that ei ∈ Hn−i(I;Rn) and en ∈ H1(I;Rn), where i =
1, 2, · · · , n− 1.

(iv) We establish the existence of a curve satisfying the part (a) of the theorem.

Define the function c : [0, T ] → Rn by c(t) :=
∫ t

0
e1(s)ds + x0, 0 ≤ t ≤ T . This integral

is well defined since we know from step (iii) that e1 ∈ Hn−1(I;Rn), which also implies that
c ∈ Hn(I;Rn).

This allows to compute the successive derivatives, by proceeding recursively. For k = 1
we have

c(1) = e1.

Assume now that for an arbitrary k ≤ n− 1, the k-th derivative is given by

c(k) =
k∑

i=1

ak
i ei, (3.5)

where ak
i ∈ Hn−k(I;Rn). We deduce that

c(k+1) =
k∑

i=1

(ak
i )′ei +

k∑

i=1

ak
i (−Fi−1ei−1 + Fiei+1) =

k+1∑

i=1

((ak
i )′ − ak

i+1Fi + ak
i−1Fi−1)ei
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with the convention that ak
0 = 0 and ai

k = 0 for all i > k. Hence

c(k+1) =
k+1∑

i=1

ak+1
i ei,

where the functions ak+1
i := (ak

i )′ − ak
i+1Fi + ak

i−1Fi−1 belong to the space Hn−k−1(I;Rn)
for all i ∈ {1, · · · , k + 1}. Consequently, relation (3.5) holds for all k ∈ {1, · · · , n− 1}.

From these relations, we first infer that |c′(t)| = |e1(t)| = 1 for all t ∈ I. Then, if Ak(t)
denotes the lower triangular matrix in Mn×n whose entries are ak

i if i ≤ k, these relations
can be written as the following matrix equation




c(1)(t)
c(2)(t)

...
c(k)(t)


 = Ak(t)




e1(t)
e2(t)

...
ek(t)


 .

Note that the matrices Ak(t), k ≤ n− 1, have only positive terms on the principal diagonal,
viz., 1, F1(t) > 0, F1(t)F2(t) > 0,· · · , F1(t)F2(t) · · ·Fk−1(t) > 0 for all t ∈ I. This shows
that these matrices are invertible and their determinant is strictly positive. Then, since the
matrix An−1(t) is invertible, the vectors {c(1)(t), · · · , c(n−1)(t)} are linearly independent for
all t ∈ I, so that the curve c is regular.

We now show that the orthonormal family of vectors {e1(t), · · · , en(t)} constitutes the
Frenet frame of the curve c at t ∈ I. First, since the matrices Ak(t), k ≤ n− 1 are invertible
and with strictly positive determinant, it follows that

sp{e1(t), · · · , ek(t)} = sp{c(1)(t), · · · , c(k)(t)}, ∀ k ∈ {1, · · · , n− 1}, ∀ t ∈ I (3.6)

and the two bases have the same orientation.
Let ∆(t) be the determinant of the n × n matrix whose k-th row is the vector ek(t),

1 ≤ k ≤ n. We notice that ∆: I → R is a continuous function, since Y ∈ H1(I;Mn×n) ⊂
C0(Ī;Mn×n). Then, thanks to step (ii), the family {e1(t), · · · , en(t)} is orthonormal for all
t ∈ I, hence in particular these vectors form a linearly independent system for each t. This
implies on the one hand that ∆(t) 6= 0 for all t ∈ I. On the other hand, by using relation
(3.4), we obtain that ∆(0) = 1. Consequently, ∆(t) > 0 for all t ∈ I, which means that the
basis {e1(t), · · · , en(t)} is positively oriented for all t ∈ I.

From all these relations, we conclude that {e1(t), · · · , en(t)} is the Frenet frame of the
curve c. Consequently, its curvatures are given by (see relation (3.2))

ki(t) =
〈ei+1(t), e′i(t)〉

|c′(t)| = 〈ei+1(t),−Fi−1(t)ei−1(t) + Fi(t)ei+1(t)〉 = Fi(t),

where we used relation (3.3) and step (ii). This establishes part (a) of Theorem 3.1.

(v) We prove part (c) of Theorem 3.1.

Let c and c̃ be two regular curves of class Hn over I, parametrized by their arc length
(i.e., |c′(t)| = |c̃′(t)| = 1 for all t ∈ I), such that ki = k̃i for all i ∈ {1, · · · , n − 1}. The
Frenet equations for the curves c and c̃ are respectively given by

e′i =
n∑

j=1

aijej , a.e. in I, ∀ i ∈ {1, · · · , n},

ẽ′i =
n∑

j=1

ãij ẽj , a.e. in I, ∀ i ∈ {1, · · · , n}.
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Since ki = k̃i, formula (3.1) shows that aij = ãij a.e. in I and for all i, j ∈ {1, · · · , n}.
Noting that ei(0) = ẽi(0) for all i ∈ {1, · · · , n} (thanks to relation (3.4)), Lemma 2.1 implies
that ei = ẽi for all i ∈ {1, · · · , n}. In particular, e1 = ẽ1, hence c′ = c̃′. Since c(0) = c̃(0),
we finally obtain that c = c̃ in I.

(vi) We establish part (b) of Theorem 3.1.

Let c and c̃ be two regular curves parametrized by their arc length, such that ki = k̃i

for all i ∈ {1, · · · , n − 1}. Let {e1(0), · · · , en(0)} be the Frenet frame of c at c(0) and let
{ẽ1(0), · · · , ẽn(0)} be the Frenet frame of the curve c̃ at c̃(0). Clearly, there exist a vector
a ∈ Rn and a matrix Q ∈ On

+, such that

c̃(0) = a + Qc(0), (3.7)

ẽi(0) = Qei(0) for all i ∈ {1, · · · , n}. (3.8)

The Frenet equations for the curves c and c̃ respectively read

e′i =
n∑

j=1

aijej , ∀ i ∈ {1, · · · , n} (3.9)

and

ẽ′i =
n∑

j=1

ãij ẽj , ∀ i ∈ {1, · · · , n}. (3.10)

Since

aij =





−ki, if i = j − 1,

ki, if i = j + 1,

0, otherwise,

and

ãij =





−k̃i, if i = j − 1,

k̃i, if i = j + 1,

0, otherwise,

we deduce that aij = ãij . Consequently

Qe′i =
n∑

j=1

aijQej ⇒ (Qei)′ =
n∑

j=1

aij(Qej).

This last relation, combined with the relations (3.8) and (3.10) show that (ẽi) and (Qei)
satisfy the same Cauchy problem. Then the uniqueness result of Lemma 2.1 implies that

Qei = ẽi, ∀ i ∈ {1, · · · , n}.
In particular, the first relation (i.e., corresponding to i = 1 in the above relation) shows that

(Qc)′ = Qc′ = Qe1 = ẽ1 = (c̃)′.

Therefore, there exists a vector V ∈ Rn such that Qc(t) = c̃(t) + V for all t ∈ I. Then
relation (3.7) shows that V = −a, so that c̃(t) = Qc(t) + a for all t ∈ I. This means that
c̃ = ϕ ◦ c, where ϕ : Rn → Rn defined by ϕ(x) = a + Qx is a rigid motion.

We now restate the above result in the special, but most commonly encountered in
practice, case of dimension 3.
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Corollary 3.1. Let k ∈ H1(I;R∗+) and τ ∈ L2(I;R).
(a) There exists a curve c ∈ H3(I;R3), unique up to rigid motions in R3, parametrized

by its arc length, such that k and τ are its curvature and torsion functions.
(b) If x0 ∈ R3 is fixed, then there exists a unique curve c satisfying the properties of part

(a) and such that c(0) = x0 and its Frenet frame at the origin is given by e1(0) = (1, 0, 0),
e2(0) = (0, 1, 0), e3(0) = (0, 0, 1).

We also can use Theorem 3.1 to obtain the analogous statement for curves of class Cn.
More specifically, the following result holds:

Corollary 3.2. Let (F1, · · · , Fn−1) ∈ Cn−2(I;R) × · · · × C1(I;R) × C0(I;R) be such
that F1(t) > 0, · · · , Fn−2(t) > 0 for all t ∈ I. Then

(a) There exists a regular curve c ∈ Cn(I;Rn) such that |c′(t)| = 1 for all t ∈ I and its
curvature functions are F1, · · · , Fn−1, i.e., ki(t) = Fi(t) for all i ∈ {1, · · · , n− 1} and t ∈ I.

(b) If c and c̃ are two curves satisfying the conditions of part (a), then there exists a
rigid motion ϕ : Rn → Rn such that c̃ = ϕ ◦ c.

(c) If x0 ∈ Rn is fixed, then there exists a unique curve c satisfying the conditions of
part (a) and such that c(0) = x0 and its Frenet frame at the origin is given by e1(0) =
(1, 0, · · · , 0), · · · , en(0) = (0, 0, · · · , 1).

Sketch of Proof. In order to prove this corollary, we can use two different approaches:
we can either carry out the same computations as in the proof of Theorem 3.1 and use a
classical result of existence and uniqueness for ordinary differential equations (instead of
Lemma 2.1), or we can derive these results from Theorem 3.1, by using in particular the
Sobolev imbedding Hm(I;Rn) ⊂ Cm−1(I;Rn). For this second approach, we also need some
further analysis which makes the proof rather lengthy. By contrast, the first approach leads
to the result in a simpler way.

§ 4 . Regularity of a Curve as a Mapping of Its Curvatures

In order to simplify the presentation, we introduce the following notations:

H(I;R) :=
n−2∏

k=0

Hn−k−2(I;R),

H(I;R)> := {(F1, · · · , Fn−1) ∈ H(I;R); Fi(t) > 0, ∀ t ∈ I, ∀ i ∈ {1, · · · , n− 2}},

H(I;Rn) :=
( n−1∏

k=1

Hn−k(I;Rn)
)
×H1(I;Rn).

The set H(I;R)> is open in the Hilbert space H(I;R), endowed with the inner product

〈(F1, · · · , Fn−1), (G1, · · · , Gn−1)〉H(I;R) :=
n−2∑

k=0

〈Fk, Gk〉Hn−k−2(I;R).

The space H(I;Rn), endowed with the inner product

〈(e1, · · · , en), (f1, · · · , fn)〉H(I;Rn) :=
n−1∑

k=1

〈ek, fk〉Hn−k(I;Rn) + 〈en, fn〉H1(I;Rn),

is a Hilbert space.
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In the previous section, under some appropriate assumptions, we have proved the
existence and uniqueness of a curve c with prescribed curvature functions. More specifically,
Theorem 3.1 asserts that with each (n−1)-tuple of functions (F1, · · · , Fn−1) ∈ H(I;R)>, one
can associate a unique curve c ∈ Hn(I;Rn) parametrized by its arc length, satisfying some
ad hoc “initial” conditions, and whose curvatures are the given functions (F1, · · · , Fn−1).
In this way, we have constructed a mapping

F : (F1, · · · , Fn−1) ∈ H(I;R)> → c ∈ Hn(I;Rn).

The aim of this section is to study the regularity properties of this mapping. Our main
result is the following

Theorem 4.1. Define the mapping

F : (F1, · · · , Fn−1) ∈ H(I;R)> → c ∈ Hn(I;Rn),

where the curve c is defined in part (c) of Theorem 3.1. Then the mapping F is of class C∞.

Proof. For clarity, we break the proof in three steps: in step (i) we construct a function
f (related to F) and prove that it is of class C∞, in step (ii) we apply the implicit function
theorem 2.1 to this function, and in step (iii) we conclude the proof.

(i) Let e0
1 = (1, 0, · · · , 0), e0

2 = (0, 1, · · · , 0), · · · , e0
n = (0, 0, · · · , 1). Define the function

f : H(I;R)> ×H(I;Rn) → H(I;Rn)

by
f((F1, · · · , Fn−1), (e1, · · · , en)) = (w1, · · · , wn),

where, for all t ∈ I,

w1(t) := −e1(t) + e0
1 +

∫ t

0

F1(s)e2(s)ds,

w2(t) := −e2(t) + e0
2 +

∫ t

0

(F2(s)e3(s)− F1(s)e1(s))ds,

...

wn(t) := −en(t) + e0
n +

∫ t

0

(−Fn−1(s)en−1(s))ds.

(4.1)

Then the function f is well defined and of class C∞.
To see this, it suffices to prove that each component of f is well defined and of class

C∞. More specifically, we have to show that, for each k ∈ {1, 2, · · · , n}, the function defined
by

fk : H(I;R)> ×H(I;Rn) → Hn−k(I;Rn),

fk((F1, · · · , Fn−1), (e1, · · · , en)) = wk,

where

wk(t) = −ek(t) + e0
k +

∫ t

0

(Fk(s)ek+1(s)− Fk−1(s)ek−1(s))ds for all t ∈ I
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is well defined and of class C∞. Note that we use the convention that F0 = 0 and e0 =
en+1 = 0.

Since Fk ∈ Hn−k−1(I;R) and ek+1 ∈ Hn−k−1(I;Rn), we deduce that

Fkek+1 ∈ Hn−k−1(I;Rn).

In the same manner, we infer from the relations Fk−1 ∈ Hn−k(I;R) and ek−1 ∈ Hn−k+1(I;
Rn) that

Fk−1ek−1 ∈ Hn−k(I;Rn).

Consequently, the last two relations imply that

Fkek+1 − Fk−1ek−1 ∈ Hn−k−1(I;Rn).

We infer from Lemma 2.3 and from the relations ek ∈ Hn−k(I;Rn) that wk ∈ Hn−k(I;Rn).
This shows that the functions fk are well defined for all k ∈ {1, · · · , n}.

We next show that the mapping fk is of class C∞. We start by writing fk as a sum of
four terms, viz., fk = fk

1 + fk
2 + fk

3 + fk
4 , where

fk
1 ((F1, · · · , Fn−1), (e1, · · · , en)) = −ek,

fk
2 ((F1, · · · , Fn−1), (e1, · · · , en)) = e0

k,

fk
3 ((F1, · · · , Fn−1), (e1, · · · , en)) =

{
t 7→

∫ t

0

Fk(s)ek+1(s)ds
}

,

fk
4 ((F1, · · · , Fn−1), (e1, · · · , en)) =

{
t 7→ −

∫ t

0

Fk−1(s)ek−1(s)ds
}

.

The mappings f1
k and f2

k are of class C∞ since the first one is a projection and the second
one is constant.

In order to prove that fk
3 is of class C∞, note that the projection

H(I;R)> ×H(I;Rn) → Hn−k−1(I;R)×Hn−k−1(I;Rn),

((F1, · · · , Fn−1), (e1, · · · , en)) 7→ (Fk, ek+1)

is of class C∞. Then, applying succesively Lemma 2.2 and Lemma 2.3, one can show that
the mapping

Hn−k−1(I;R)×Hn−k−1(I;Rn) → Hn−k−1(I;Rn) → Hn−k(I;Rn),

defined by

(Fk, ek+1) 7→ Fkek+1 7→
{

t 7→
∫ t

0

Fk(s)ek+1(s)ds
}

,

is of class C∞. The mapping fk
3 , being the composition of two mappings of class C∞, is thus

also of class C∞.
The same argument can be used to show that the function fk

4 is of class C∞. We write
fk
4 as a composite mapping made of a projection and a mapping that is of class C∞, as

shown by applying successively Lemmas 2.2 and 2.3. Hence the mapping fk
4 is also of class

C∞.
The mapping fk being the sum of four applications of class C∞, is of class C∞ too.

Letting k vary in the set {1, · · · , n} shows that the mapping f is of class C∞, as claimed.
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(ii) The implicit function theorem can be applied to the function f defined in step (i).

The functional framework is that presented in Theorem 2.1. Let X1 = H(I;R)>, let
X2 = H(I;Rn), and let

p̃ := ((F̃1, · · · , F̃n−1), (ẽ1, · · · , ẽn)) ∈ H(I;R)> ×H(I;Rn)

such that f(p̃) = 0. Note that such an element p̃ always exists, as showed in steps (i)
and (iii) of the proof of Theorem 3.1. More specifically, it was shown there that for any
(F̃1, · · · , F̃n−1) ∈ H(I;R)>, there exists a unique n-tuple (ẽ1, · · · , ẽn) ∈ H(I;Rn) such that
f((F̃1, · · · , F̃n−1), (ẽ1, · · · , ẽn)) = 0.

The partial derivatives of the function f are denoted by

fFi
:=

∂f

∂Fi
: H(I;R)> ×H(I;Rn) → L(Hn−i−1(I;R),H(I;Rn))

for i = 1, · · · , n− 1, and

fej
:=

∂f

∂ej
: H(I;R)> ×H(I;Rn) → L(Hn−j(I;Rn),H(I;Rn))

for j = 1, · · · , n.
The gradient matrix of the function f is denoted by

Df =




f1
F1

· · · f1
Fn−1

f1
e1

· · · f1
en

...
fn

F1
· · · fn

Fn−1
fn

e1
· · · fn

en




n×(2n−1)

,

and the derivative

D(e1,··· ,en)f : H(I;R)> ×H(I;Rn) → L(H(I;R)>,H(I;Rn))

can be written by using matrix notation under the form

D(e1,··· ,en)f =




f1
e1

· · · f1
en

...
fn

e1
· · · fn

en




n×n

.

We have already seen that the mapping f is of class C∞. In order to apply the implicit
function theorem (see Theorem 2.1), we have to prove that D(e1,··· ,en)f(p̃) is an isomorphism
between the spaces H(I;Rn) and H(I;Rn).

First, we claim that this mapping is one-to-one, which means that for any (w1, · · · , wn)
∈ H(I;Rn), there exists a unique (v1, · · · , vn) ∈ H(I;Rn) such that




f1
e1

(p̃) · · · f1
en

(p̃)
...

fn
e1

(p̃) · · · fn
en

(p̃)







v1

...
vn


 =




w1

...
wn


 . (4.2)

Equivalently, this can be written as

f1
e1

(p̃)v1 + f1
e2

(p̃)v2 + · · ·+ f1
en

(p̃)vn = w1,

...
fn

e1
(p̃)v1 + fn

e2
(p̃)v2 + · · ·+ fn

en
(p̃)vn = wn,
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or, according to the definition of f given in (4.1), as

−v1(t) +
∫ t

0

F̃1(s)v2(s)ds = w1(t),

−
∫ t

0

F̃1(s)v1(s)ds− v2(t) +
∫ t

0

F̃2(s)v3(s)ds = w2(t),

...

−
∫ t

0

F̃n−2(s)vn−2(s)ds− vn−1(t) +
∫ t

0

F̃n−1(s)vn(s)ds = wn−1(t),

−
∫ t

0

F̃n−1(s)vn−1(s)ds− vn(t) = wn(t)

for all t ∈ I.
By derivation, this implies that the n-tuple (v1, · · · , vn) satisfies the following system

v′1 = F̃1v2 − w′1,

v′2 = F̃2v3 − F̃1v1 − w′2,
...

v′n−1 = F̃n−1vn − F̃n−2vn−2 − w′n−1,

v′n = −F̃n−1vn−1 − w′n,

and the initial conditions

v1(0) = −w1(0),
v2(0) = −w2(0),

...
vn−1(0) = −wn−1(0),

vn(0) = −wn(0).

Note that this is a system of ordinary differential equations, which in matrix form becomes




v1

v2

...
vn−1

vn




′

=




0 F̃1 · · · 0 0
−F̃1 0 · · · 0 0

...
0 0 · · · 0 F̃n−1

0 0 · · · −F̃n−1 0







v1

v2

...
vn−1

vn




+




−w′1
−w′2

...
−w′n−1

−w′n




with the initial condition 


v1

v2

...
vn


 (0) =




−w1

−w2

...
−wn


 (0).

Thanks to Lemma 2.1, this system has a unique solution in H1(I;Mn×n). Applying
the same method as that used in step (iii) of the proof of Theorem 3.1, and taking into
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account the fact that (w1, · · · , wn) ∈ H(I;Rn), one can see that (v1, · · · , vn) ∈ H(I;Rn).
Thus, we have proved that D(e1,··· ,en)f(p̃) is one-to-one, hence an isomorphism, between the
spaces H(I;Rn) and H(I;Rn).

We are now in a position to apply the implicit function theorem 2.1 to the function
f , which is of class C∞. Accordingly, there exist an open subset U of H(I;R)> contain-
ing (F̃1, · · · , F̃n−1), an open subset V of H(I;Rn) containing (ẽ1, · · · , ẽn), and an implicit
function g : U → V such that

f((F1, · · · , Fn−1), (e1, · · · , en)) = 0 and ((F1, · · · , Fn−1), (e1, · · · , en)) ∈ U × V

is equivalent to

(e1, · · · , en) = g(F1, · · · , Fn−1) for all (F1, · · · , Fn−1) ∈ U.

Moreover, the same theorem shows that the mapping g : U → V is of class C∞.
But, in the proof of Theorem 3.1, we have seen that for any (F1, · · · , Fn−1) ∈ H(I;R)>,

the equation
f((F1, · · · , Fn−1), (e1, · · · , en)) = 0

has a unique solution (e1, · · · , en) ∈ H(I;Rn). This shows that the mapping ḡ : H(I;R)> →
H(I;Rn) defined by ḡ(F1, · · · , Fn−1) = (e1, · · · , en), is well defined. Therefore, the unique-
ness part of the implicit function theorem 2.1, shows that ḡ = g on U , hence that ḡ is of
class C∞ over U . Since the (n− 1)-tuple (F̃1, · · · , F̃n−1) was arbitrarily chosen in H(I;R)>,
we deduce that the mapping ḡ is of class C∞ over H(I;R)>.

(iii) We now conclude our proof.

First, the previous step shows that the mapping

ḡ : (F1, · · · , Fn−1) ∈ H(I;R)> → (e1, · · · , en) ∈ H(I;Rn)

is of class C∞.
Second, the mapping

(e1, · · · , en) ∈ H(I;Rn) → e1 ∈ H(I;Rn)

is a projection, hence of class C∞.
Third, the mapping

φ : Hn−1(I;Rn) → Hn(I;Rn)

defined by

e1 7→
{

t 7→ c(t) =
∫ t

0

e1(s)ds + x0

}

is also of class C∞ thanks to Lemma 2.3 (a translation by a constant vector x0 is clearly of
class C∞).

Since the mapping

F : (F1, · · · , Fn−1) ∈ H(I;R)> → c ∈ Hn(I;Rn)

is the composition of the three above mappings, it is also of class C∞. The proof is now
complete.

In the special case of dimension 3, which is the most encountered in practice, the
theorem above leads to the following corollary:
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Corollary 4.1. The mapping

F : (k, τ) ∈ H1(I;R∗+)× L2(I;R) → c ∈ H3(I;R3),

where the curve c is defined in part (b) of Corollary 3.1, is of class C∞.

For curves of class Cn, the following result, similar to that of Theorem 4.1, holds:

Corollary 4.2. Let the mapping

F : Cn−2(I;R∗+)× Cn−3(I;R∗+)× · · · × C1(I;R∗+)× C0(I;R) → Cn(I;Rn)

be defined by
(F1, · · · , Fn−1) → c,

where the curve c is defined in part (c) of Corollary 3.2. Then F is of class C∞.

Sketch of Proof. The two methods that we have already mentioned for the proof
of Corollary 3.2 can be also used to prove this result. Accordingly, we can either use the
classical theory for ordinary differential equations, or we can derive the result from Theorem
4.1 and from the fact that the imbedding Hm(I;Rn) ⊂ Cm−1(I;Rn) is continuous for all
m > 1

2 and linear, hence of class C∞.

§ 5 . Commentaries

(1) In the statements of Theorems 3.1 and 4.1, we have considered the case of a curve
parametrized by its arc length. This restriction is not essential however. To see this, let
α : I → Rn be a given curve, not necessarily parametrized by its arc length, such that
α′(t) 6= 0 for all t ∈ I. Then, it is always possible to obtain another curve β : J → Rn

this time parametrized by its arc length, which has the same image and the same curvature
functions as the curve α. Indeed, let

s(t) :=
∫ t

0

|α′(τ)|dτ for all t ∈ I.

Since s′(t) = |α′(t)| 6= 0, the inverse function theorem shows that there exists an inverse
function s 7→ t(s), defined on J := s(I). It is then easily seen that the curve β := α ◦ t : J →
Rn satisfies the required properties.

(2) In this paper, we have restricted our attention to curves such that {c(1)(t), · · · ,
c(n−1)(t)} are linearly independent at each point t ∈ I. In fact, if c(k)(t) is linearly dependent
on {c′(t), · · · , c(k−1)(t)} along a whole interval [a, b] ⊂ I, then one can prove that the image
of c lies in a (k − 1)-dimensional subspace of Rn, so that we can establish a result similar
to that of Theorems 3.1 and 4.1 on this interval, but in a lower dimension. More difficulties
arise in some other cases (for example, if the property above holds only at isolated points
or at some sequence of points); for details, see [10, Chapter 1].

(3) Another natural question arises: What happens (for curves immersed in the three-
dimensional space, for simplicity) at the points where the curvature vanishes and conse-
quently the torsion is not defined? More specifically, assume that α : [a, b] → R3 is a curve
whose torsion vanishes everywhere, save at one point t0 ∈]a, b[, where the torsion is unde-
fined; then it seems reasonable to say that α has zero torsion everywhere, by extension.
However, if we accept this convention, we can see that the hypothesis k > 0 of Corollary 3.1
is an essential one, as shown by the following example:
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Let

α1(t) =

{
0, if t = 0,
(t, 0, 5e−

1
t2 ), if t 6= 0,

α2(t) =





(t, 5e−
1
t2 , 0), if t < 0,

0, if t = 0,
(t, 0, 5e−

1
t2 ), if t > 0.

Then α1 and α2 have the same curvature and the same torsion, but there is no rigid trans-
formation mapping α1 onto α2. To see this, note that the curvatures of α1 and α2 are also
vanishing in t = 0, since the function ϕ : R→ R defined by

ϕ(t) :=





e−
1
t2 , if t 6= 0,

0, if t = 0

has the property that all its derivatives vanish at 0.
The curve α1 is a planar curve, hence its torsion vanishes, i.e., τα1(t) = 0 for all t 6= 0

and, by the convention above, τα1(t) = 0 for all t ∈ R. In the same way, one can see that
τα2(t) = 0 for all t ∈ R, by the same convention. Therefore, the curves α1 and α2 have the
same curvature and the same torsion. On the other hand, any rigid motion would have to
be the identity on one portion of R3 and a rotation on the other one, which is impossible.
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Paris, 1968.

[ 7 ] Mardare, C., On the recovery of a manifold with prescribed metric tensor, Analysis and Applications,
1:4(2003), 433–453.

[ 8 ] Mardare, S., On isometric immersions of a Riemannian space with little regularity, Analysis and
Applications, 2:3(2004), 193–226.
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