HARMONIC FUNCTIONS ON A COMPLETE NONCOMPACT MANIFOLD WITH ASYMPTO-TICALLY NONNEGATIVE CURVATURE***

ZHOU CHAOHUI* CHEN ZHIHUA**

Abstract

The authors prove the space of harmonic functions with polynomial growth of a fixed rate on a complete noncompact Riemannian manifold with asymptotically nonnegative curvature is finite dimensional.

Keywords Harmonic function, Asymptotically nonnegative curvature, Polynomial growth

2000 MR Subject Classification 53C20

§1. Introduction

Recently Tobias H. Colding and Willian P. Minicozzi II proved a conjecture of Yau [1].

Yau's Conjecture. For an open manifold with nonnegative Ricci curvature, the space of harmonic functions with polynomial growth of a fixed rate is finite dimensional.

Now we will prove the conjecture of Yau is true under the condition of asymptotically nonnegative curvature, that is,

Theorem 1.1. Let M^n be a complete noncompact Riemannian manifold with asymptotically nonnegative curvature, then the space of harmonic functions with polynomial growth of a fixed rate is finite dimensional.

§2. Preliminary

First, we give some definitions and notations.

Definition 2.1. We say that the curvature is asymptotically nonnegative if $K_M(x) \ge -\lambda(r(x))$, where $\lambda(\cdot)$ is a nonnegative and nonincreasing function on $[0, +\infty)$ and

$$\int_0^\infty r\lambda(r)dr < +\infty,$$

 $r(x) = \operatorname{dist}(p, x)$ and p is a fixed point in M.

Manuscript received September 27, 2003.

^{*}Department of Applied Mathematics, Tongji University, Shanghai 200092, China.

E-mail: zhxzhchh@sina.com

 $^{^{**}\}mbox{Department}$ of Applied Mathematics, Tongji University, Shanghai 200092, China.

E-mail: zzzhhc@tongji.edu.cn

^{***}Project supported by the National Natural Science Foundation of China (No.10271089).

Definition 2.2. We set $I_u(a,r) = \int_{B_a(r)} u^2$, $J_{a,r}(u,v) = \int_{B_a(r)} uv$, where a is a point in M, $B_a(r)$ is a geodesic ball of radius r centered at p.

Definition 2.3. Let

$$H_d(M) = \{u \text{ is harmonic, and } |u| \le c(r^d + 1)\},$$

$$P_d(M) = \{u \mid I_u(a, r) \le K(r^{2d+n_0} + 1), n_0 \text{ is some constant}\},$$

$$HP_d(M) = \{u \text{ is harmonic}\} \cap P_d(M), \text{ where } r(x) = \operatorname{dist}(p, x).$$

The key to this paper is to prove that the following Property 2.1 and Property 2.2 are true on a complete noncompact manifold with asymptotically nonnegative curvature.

Property 2.1. Let M be an n-dimensional complete noncompact manifold with asymptotically nonnegative curvature, then there exists $C_D < \infty$ such that $\forall x \in M, \forall r \ge 0$,

$$V_x(2r) \le C_D V_x(r),$$

where $V_x(r) = Vol(B_x(r)), \ B_x(r) = \{y \in M \mid dist(x, y) < r\}.$

Property 2.2. We say M^n satisfies a local Neumann-Poicaré inequality if there exists $C_N < \infty$ such that $\forall x \in M$ and $r(p, x) \ge r^{m_0} + 4r$ $(r > 0), f \in W^{1,2}_{\text{loc}}(M)$,

$$\int_{B_x(2r)} (f-A)^2 \le C_N \times (2r)^{2m_0} \int_{B_x(2r)} |\nabla f|^2,$$

where $A = \int_{B_x(2r)} f / V_x(2r)$, some constant $m_0 > 1$ depending on n.

We will prove them in $\S3$, $\S4$ respectively.

In addition, we will use the following property which has been proved by S. T. Yau [2].

Property 2.3. If $\lambda > 1$, u is harmonic on M^n , $\forall x \in M$, and r > 0, then there exists $C_F = C_F(\lambda) < \infty$ such that

$$r^2 \int_{B_x(r)} |\nabla u|^2 \le C_F \int_{B_x(\lambda r)} u^2.$$

§3. Proof of Property 2.1

Before the proof of Property 2.1, we shall prove

Lemma 3.1. Suppose f(r) is a C^2 function on (0,T],

$$\frac{d}{dr}(-f(r)) - \frac{f^2(r)}{n-1} \ge -\frac{(n-1)k}{r^2}, \qquad \lim_{r \to 0^+} f(r) = +\infty.$$

Then

$$0 \le f(r) \le \frac{(n-1)(1+\sqrt{1+4k})}{2r},\tag{3.1}$$

where k > 0, T can tend to $+\infty$.

Proof. We use comparison method to discuss the inequality. Assume

$$b_1(r) = \frac{-1 + \sqrt{1 + 4k}}{2(n-1)k}r, \qquad b_2(r) = \frac{-1 - \sqrt{1 + 4k}}{2(n-1)k}r.$$
(3.2)

Then

$$\frac{db_i}{dr} + \frac{(n-1)k}{r^2}b_i^2 - \frac{1}{n-1} = 0, \qquad i = 1,2$$
(3.3)

and $b_1(0) = b_2(0) = 0$.

$$\dot{b}_1(r) = \frac{1}{n-1} - \frac{(n-1)k}{r^2} b_1^2 = \frac{-1 + \sqrt{1+4k}}{2(n-1)k},$$
(3.4)

$$\dot{b}_2(r) = \frac{1}{n-1} - \frac{(n-1)k}{r^2} b_2^2 = \frac{-1 - \sqrt{1+4k}}{2(n-1)k}.$$
(3.5)

Let $A = \frac{1}{f(r)}$. Then

$$\frac{dA}{dr} + \frac{(n-1)k}{r^2}A^2 - \frac{1}{n-1} \ge 0$$
(3.6)

and A(0) = 0.

From the Taylor expansion of A at r = 0, we know that

$$A^{2} = [\dot{A}(0)r + O(r^{2})]^{2} = \dot{A}^{2}(0)r^{2} + O(r^{3}), \qquad (3.7)$$

then

$$\dot{A}(0) \ge \frac{1}{n-1} - (n-1)k\frac{A^2}{r^2}\Big|_{r=0} = \frac{1}{n-1} - (n-1)k\dot{A}^2(0),$$
(3.8)

i.e., $\dot{A}_1(0) \ge \dot{b}_1(0)$ or $\dot{A}_2(0) \le \dot{b}_2(0)$.

We will prove $\dot{A}_2(0) \leq \dot{b}_2(0)$ is not valid.

If not, then there exists $\eta_1 \leq T$, such that for $0 \leq r \leq \eta_1$, $A_2(r) \leq b_2(r) < 0$,

$$-\frac{(n-1)(1+\sqrt{1+4k})}{2r} \le f(r) \le 0.$$
(3.9)

This contradicts the fact that $\lim_{r \to 0^+} f(r) = +\infty$.

We know from $\dot{A}_1(0) \geq \dot{b}_1(0)$ that there exists $\eta_2 \leq T$, such that for $0 \leq r \leq \eta_2$, $A_1(r) \geq b_1(r)$.

If $\exists \eta_2 = T$, then we complete the proof; if $\exists \eta_2 < T$, we can prove that $\forall r \in (0,T], A_1(r) \geq b_1(r)$, if not, $(0,r_1]$ is the maximum connected closed interval, where $r_1 < T$, $A_1(r_1) = b_1(r_1)$ and $\dot{A}_1(r_1) < \dot{b}_1(r_1)$,

$$\dot{b}_1(r_1) > \dot{A}_1(r_1) \ge \frac{1}{n-1} - (n-1)k\frac{A_1^2}{r^2}\Big|_{r=r_1} = \frac{1}{n-1} - (n-1)k\frac{b_1^2}{r^2}\Big|_{r=r_1},$$

this contradicts the definition of b_1 . So

$$0 \le f(r) \le \frac{(n-1)(1+\sqrt{1+4k})}{2r}.$$

Lemma 3.2. Suppose M is an n-dimensional complete noncompact Riemannian manifold, whose radial Ricci curvature $\geq -\frac{(n-1)k}{r(p,x)^2}$, where k > 0, p is a fixed point, r(p,x) is the distance between p and x. Then its metric can be written as $ds^2 = dr^2 + \sum_{i=1}^{n-1} g_{ij}(r,\theta)$, we have (

$$0 \le \frac{\partial \log \sqrt{g}}{\partial r} \le \frac{(n-1)(1+\sqrt{1+4k})}{2r},\tag{3.10}$$

where $g = \det(g_{ij})$.

Proof. We divide the proof into three steps.

The first step: when x is not in the cut-locus of p, that is, x is differentiable, assume $\gamma(x)$ is a normal geodesic which issues from p, choose an orthonormal frame $\{e_i\}_{i=1}^n$ by parallel transport along the geodesic, $e_n = \nabla r$ and $\nabla_{e_n} e_n = 0$.

Let $\nabla_{e_i} e_n = u_{ij} e_j, \ \nabla_{e_n} e_i = \lambda_{ij} e_j,$

$$u_{ij} = \langle \nabla_{e_i} e_n, e_j \rangle = e_i \langle e_n, e_j \rangle - \langle e_n, \nabla_{e_i} e_j \rangle = -\nabla_{e_i} e_j(r)$$
$$= e_i e_j r - \nabla_{e_i} e_j(r) = Hr(e_i, e_j) = u_{ji},$$
(3.11)

$$\lambda_{ij} = \langle \nabla_{e_n} e_i, e_j \rangle = -\langle e_i, \nabla_{e_n} e_j \rangle = -\lambda_{ij}, \qquad (3.12)$$

$$-\frac{(n-1)k}{r^{2}} \leq \operatorname{Ric}(e_{n}, e_{n}) = \sum_{i=1}^{n-1} \langle R(e_{i}, e_{n})e_{n}, e_{i} \rangle$$

$$= -\sum_{i=1}^{n-1} \langle \nabla_{e_{n}} \nabla_{e_{i}}e_{n}, e_{i} \rangle - \sum_{i=1}^{n-1} \langle \nabla_{\nabla_{e_{i}}e_{n}}e_{n}, e_{i} \rangle + \sum_{i=1}^{n-1} \langle \nabla_{\nabla_{e_{n}}e_{i}}e_{n}, e_{i} \rangle$$

$$= \frac{d}{dr} \Big(-\sum_{i=1}^{n-1} u_{ii} \Big) - \sum_{i,j=1}^{n-1} u_{ij} \lambda_{ji} - \sum_{i,j=1}^{n-1} u_{ij} u_{ji} + \sum_{i,j=1}^{n-1} \lambda_{ij} u_{ji}$$

$$\leq \frac{d}{dr} \Big(-\sum_{i=1}^{n-1} u_{ii} \Big) - \frac{1}{n-1} \Big(\sum_{i=1}^{n-1} u_{ii} \Big)^{2}, \qquad (3.13)$$

where $\triangle r = \sum_{i=1}^{n-1} u_{ii}$, and $\lim_{t \to 0^+} \triangle r(t) = +\infty$.

So by Lemma 3.1, at differentiable points, we have

$$0 \le \Delta r \le \frac{(n-1)(1+\sqrt{1+4k})}{2r}.$$
(3.14)

The second step: when x is a cut-point to p, we will prove (3.14) is still valid.

We let E include all cut-locuses of p, $M = \Omega \cup E$, where Ω is a starlike domain, the Lipschitz function r is differentiable in Ω , so by (3.14), in Ω we have

$$0 \le \Delta r \le \frac{(n-1)(1+\sqrt{1+4k})}{2r}.$$
(3.15)

We choose $\forall \varphi \in C_0^{\infty}(M), \ \varphi \geq 0$, since mess(E) = 0, then

$$\int_M r \triangle \varphi = \int_\Omega r \triangle \varphi.$$

We can find a sequence of starlike subdomains Ω_{ϵ} such that $\Omega_{\epsilon} \subset \subset \Omega$, $\lim_{\epsilon \to 0} \Omega_{\epsilon} = \Omega$, and Ω_{ϵ} is interior contracting from Ω along r direction.

Since Stokes formula is true to Lipschitz function, and $\varphi \in C_0^{\infty}(M)$, we have

$$\int_{M} r \Delta \varphi = -\int_{M} \nabla \varphi \cdot \nabla r = \lim_{\epsilon \to 0} (-1) \int_{\Omega_{\epsilon}} \nabla \varphi \cdot \nabla r, \qquad (3.16)$$

the last equality is because $|\nabla r| = 1$ is almost valid and $\nabla \varphi$ is bounded.

By Green formula, one has

$$-\int_{\Omega_{\epsilon}} \nabla \varphi \cdot \nabla r = \int_{\Omega_{\epsilon}} \triangle r \cdot \varphi - \int_{\partial \Omega_{\epsilon}} \varphi \cdot \frac{\partial r}{\partial v}$$

where v is an exterior normal direction. Because $\varphi \ge 0$ and Ω_{ϵ} is interior contracting from Ω along r direction, then $\frac{\partial r}{\partial v} > 0$, and

$$-\int_{\Omega_{\epsilon}} \nabla \varphi \cdot \nabla r \leq \int_{\Omega_{\epsilon}} \Delta r \cdot \varphi \leq \int_{\Omega_{\epsilon}} \frac{(n-1)(1+\sqrt{1+4k})}{2r} \varphi, \qquad (3.17)$$

then we have

$$\int_{M} r \cdot \Delta \varphi \leq \lim_{\epsilon \to 0} \int_{\Omega_{\epsilon}} \frac{(n-1)(1+\sqrt{1+4k})}{2r} \varphi$$
$$= \int_{\Omega} \frac{(n-1)(1+\sqrt{1+4k})}{2r} \varphi = \int_{M} \frac{(n-1)(1+\sqrt{1+4k})}{2r} \varphi.$$
(3.18)

So in the sense of distribution, $\forall x$, that is, $\forall r \in [0, +\infty)$, we have

$$0 \le \Delta r \le \frac{(n-1)(1+\sqrt{1+4k})}{2r}.$$
(3.19)

The last step: the proof of (3.10). Because $\triangle = \frac{\partial^2}{\partial r^2} + \frac{\partial \log \sqrt{g}}{\partial r} \frac{\partial}{\partial r} + \triangle'$, where \triangle' is a differential operator only consisting of $\frac{\partial}{\partial \theta^i}$, θ^i are local coordinates on $S^{n-1}(1)$, for $1 \leq i \leq n-1$, then $\triangle r = \frac{\partial \log \sqrt{g}}{\partial r}$. By (3.19), we have

$$0 \le \frac{\partial \log \sqrt{g}}{\partial r} \le \frac{(n-1)(1+\sqrt{1+4k})}{2r}.$$
(3.20)

Lemma 3.3. Let M^n be a complete noncompact manifold. If its radial Ricci curvature $\geq -\frac{(n-1)k}{r^2}$, then $\forall \alpha, \ 0 < \alpha < 1$, we have

$$V_p(r) \le \left(\frac{1}{\alpha}\right)^{m+1} V_p(\alpha r), \tag{3.21}$$

$$V_y\left(\frac{r}{2}\right) \le \left(\frac{1}{\alpha}\right)^{m+1} V_y\left(\frac{\alpha r}{2}\right), \qquad \forall y \in \partial B_p(r), \qquad (3.22)$$

$$V_p(r) \le \operatorname{Vol}(B_p(k_1 r) - B_p((k_1 - 1)r)), \quad \forall k_1 \ge 2,$$
(3.23)

where k > 0, $m = \frac{(n-1)(1+\sqrt{1+4k})}{2}$.

Proof. Because

$$0 \leq \frac{\partial \log \sqrt{g}}{\partial r} \leq \frac{(n-1)(1+\sqrt{1+4k})}{2r}$$

let $m = \frac{(n-1)(1+\sqrt{1+4k})}{2}$. Then $\forall 0 < \alpha < 1$, we have

$$\left|\log\sqrt{g(t,\theta)} - \log\sqrt{g(\alpha t,\theta)}\right| \le \int_{\alpha t}^{t} \left|\frac{\partial\log\sqrt{g}}{\partial r}\right| dr \le m\ln\frac{1}{\alpha}.$$

Then

$$\sqrt{g(t,\theta)} \leq \left(\frac{1}{\alpha}\right)^m \sqrt{g(\alpha t,\theta)},$$

$$V_p(r) = \int_{S^{n-1}} \int_0^r \sqrt{g(t,\theta)} dt d\theta \leq \int_{S^{n-1}} \int_0^r \left(\frac{1}{\alpha}\right)^m \sqrt{g(\alpha t,\theta)} dt d\theta \\
= \int_{S^{n-1}} \int_0^{\alpha r} \left(\frac{1}{\alpha}\right)^{m+1} \sqrt{g(t,\theta)} dt d\theta = \left(\frac{1}{\alpha}\right)^{m+1} V_p(\alpha r),$$
(3.24)
(3.25)

so (3.21) is valid.

 $\forall\,y\in\partial B_p(r)$ and $\forall\,x\in B_y(\frac{r}{2}),\,r(p,x)\geq r(y,x),$ so

$$\operatorname{Ric}(M) \ge -\frac{(n-1)k}{r(p,x)^2} \ge -\frac{(n-1)k}{r(y,x)^2},$$

then we can have (3.22) by proving similarly as (3.21).

Because $\frac{\partial \log \sqrt{g}}{\partial r} \ge 0$, then $\sqrt{g(r,\theta)}$ is increasing with r.

$$V_p(r) = \int_{S^{n-1}(1)} \int_0^r \sqrt{g(t,\theta)} dt d\theta \le \int_{S^{n-1}(1)} \sqrt{g(r,\theta)} d\theta \le \int_{S^{n-1}(1)} \int_{(k_1-1)r}^{k_1 r} \sqrt{g(t,\theta)} dt d\theta = \operatorname{Vol}(B_p(k_1 r) - B_p((k_1 - 1)r)).$$
(3.26)

Lemma 3.4. Suppose that M is a complete noncompact manifold with asymptotically nonnegative curvature. Then $\forall r > 0, \ 0 < \alpha < 1$, we have

$$B_p(2r) \setminus B_p(r) \subset \bigcup_{i=1}^N B_{x_i}(\alpha r),$$

where $x_i \in B_p(2r) \setminus B_p(r)$, and N is a constant independent of r.

Proof. Before proving this lemma, we quote [3, Theorem 2.2.B]: Let V^n be a compact manifold of diameter D and $\inf K \geq -Q^2$, where K is the curvature of V, $\{B_{x_i}(\epsilon)\}$, $i = 1, \dots, N$, is a minimal covering, where $x_i \in V$. Then $N \leq 80^n D^n \epsilon^{-n} \exp(nQD)$.

If $V = B_p(2r) \setminus B_p(r)$, then D = 4r. Since the curvature of M is asymptotically nonnegative, there exists k > 0, such that the curvature at $x \ge -\frac{k}{r(p,x)^2}$, so $Q = \frac{\sqrt{k}}{r}$, and we let $\epsilon = \alpha r$, $0 < \alpha < 1$, then

$$N \le 80^n \left(\frac{4r}{\alpha r}\right)^n \exp\left(n \times \frac{\sqrt{k}}{r} \times 4r\right) = 320^n \alpha^{-n} \exp(4n\sqrt{k}).$$

We complete the proof of this lemma.

528

Proof of Property 2.1. By Lemma 3.4,

$$B_p\left(\frac{9}{8}r\right) \setminus B_p\left(\frac{7}{8}r\right) \subset \bigcup_{i=1}^N B_{x_i}\left(\frac{r}{8}\right),$$

where $x_i \in B_p(\frac{9}{8}r) \setminus B_p(\frac{7}{8}r)$ and N is a constant independent of r, and for each $B_{x_i}(\frac{r}{8})$, there exists $y_i \in \partial B_p(r)$ such that $B_{y_i}(\frac{r}{2}) \supset B_{y_i}(\frac{r}{4}) \supset B_{x_i}(\frac{r}{8})$, so

$$B_p\left(\frac{9}{8}r\right) \setminus B_p\left(\frac{7}{8}r\right) \subset \bigcup_{i=1}^N B_{y_i}\left(\frac{r}{2}\right),$$

where N is a constant independent of r.

Because the curvature is asymptotically nonnegative, then there exists k > 0, such that the curvature at $x \ge -\frac{k}{r(p,x)^2}$, so Ricci curvature at $x \ge -\frac{(n-1)k}{r(p,x)^2}$, and by Lemma 3.3,

$$V_p(r) \le C_1 V_p\left(\frac{r}{4}\right) \le C_1 \operatorname{Vol}\left(B_p\left(\frac{9}{8}r\right) - B_p\left(\frac{7}{8}r\right)\right) \le C_1 \sum_{i=1}^N V_{y_i}\left(\frac{r}{2}\right) \le C_2 V_z\left(\frac{r}{2}\right)$$

for some $z \in \partial B_p(r)$. And

$$V_z\left(\frac{r}{2}\right) \le C_3 V_z\left(\frac{r}{4}\right) \le C_4 V_{z_1}\left(\frac{r}{2}\right),\tag{3.27}$$

where $z_1 \in \partial B_z(\frac{r}{4}) \cap \partial B_p(r)$.

By Lemma 3.4, $\forall y \in \partial B_p(r)$, there is a piecewise smooth curve from y to z in $B_p(\frac{9}{8}r) \setminus B_p(\frac{7}{8}r)$ with length not greater than C_5r , where some constant C_5 is independent of y, z, r. So by continuing the way of (3.27), we can find C_6 so that

$$V_z\left(\frac{r}{2}\right) \le C_6 V_y\left(\frac{r}{2}\right), \qquad \forall y \in \partial B_p(r),$$

that is,

$$V_p(r) \le C_7 V_y\left(\frac{r}{2}\right), \qquad \forall \, y \in \partial B_p(r).$$

Now we divide the proof of $V_x(2r) \leq C_D V_x(r), \ \forall x \in M$, into four cases.

Let r(p, x) = s.

(1) When $r \geq 2s$.

By the triangle inequality, we know the geodesic ball $B_x(2r) \subseteq B_p(2r+s)$, then

$$V_x(2r) \le V_p(2r+s).$$
 (3.28)

By Lemma 3.3,

$$V_p(2r+s) \le \left(\frac{2r+s}{r-s}\right)^{m+1} V_p(r-s),$$
(3.29)

but $\frac{2r+s}{r-s} \leq 8$, and $B_p(r-s) \subseteq B_x(r)$, so

$$V_x(2r) \le 2^{3m+3} V_x(r). \tag{3.30}$$

(2) When $\frac{s}{2} \le r \le 2s$.

$$V_x(2r) \le V_p(2r+s) \le \left(\frac{2r+s}{s}\right)^{m+1} V_p(s).$$
 (3.31)

Because $\frac{s}{2} \le r \le 2s$, then $\frac{2r+s}{s} \le 5 < 8$, and by (3.27),

$$V_x(2r) \le 2^{3m+3} V_p(s) \le 2^{3m+3} C_5 V_x\left(\frac{s}{2}\right) \le 2^{3m+3} C_5 V_x(r) \le C_D V_x(r).$$
(3.32)

(3) When $\frac{s}{4} \leq r \leq \frac{s}{2}$.

$$V_x(2r) \le V_p(2r+s) \le \left(\frac{2r+s}{s}\right)^{m+1} V_p(s).$$
 (3.33)

Because $\frac{s}{4} \leq r \leq \frac{s}{2}$, then $\frac{2r+s}{s} \leq 2$. By (3.27) and (3.22) in Lemma 3.3, we have

$$V_p(s) \le C_5 V_x\left(\frac{s}{2}\right) \le C_5\left(\frac{s}{2r}\right)^{m+1} V_x(r),$$
(3.34)

 \mathbf{SO}

$$V_x(2r) \le 2^{m+1} C_5 2^{m+1} V_x(r) = 2^{2m+2} C_5 V_x(r) \le C_D V_x(r).$$
(3.35)

(4) When $r \leq \frac{s}{4}$, i.e., $4r \leq s$, $\forall y \in B_x(2r)$, $r(p,y) \geq r(x,y) = 2r$, so

$$\operatorname{Ric}(M) \ge -\frac{(n-1)k}{r(p,y)^2} \ge -\frac{(n-1)k}{r(x,y)^2}.$$
(3.36)

By (3.22) in Lemma 3.3,

$$V_x(2r) \le 2^{m+1} V_x(r) \le C_D V_x(r).$$
(3.37)

So Property 2.1 indicates the volumn of M is polynomial growth whose growth degree at most $\frac{\log C_D}{\log 2}$.

§4. Proof of Property 2.2

Before the proof of this property, we will quote a theorem (see [4]): Let X^n be a compact Riemannian manifold, whose Ricci curvature is bounded below by $-(n-1)R^2$, where $R \ge 0$, and ρ denotes injectivity radius of X, then $\forall f \in W^{1,2}(X)$, there only exists a constant $c_1(n) > 1$ dependent on n, such that

$$\int_{X} (f - A)^2 \le (\rho^{1 - n} \operatorname{Vol}(X))^2 c_1^{1 + R\rho^{1 - n} \operatorname{Vol}(X)} \int_{X} |\nabla f|^2,$$

where $A = \frac{\int_X f}{\operatorname{Vol}(X)}$.

By the assumption of curvature, from Property 2.1, we have

$$V_x(2r) \le C_D V_x(r),$$

i.e.,

$$V_x(r) \le V r^{n_0},\tag{4.1}$$

where $V = C_D V_x(1)$, $n_0 = \frac{\log C_D}{\log 2}$. By the proof in §3, we know that $n_0 \ge m + 1 > n$. Let

$$m_0 = n_0 - n + 1, \tag{4.2}$$

so this constant $m_0 > 1$.

Due to the assumption of curvature, there exists k > 0, such that the curvature at $y \ge -\frac{k}{r(p,y)^2}$ and Ricci curvature $\ge -\frac{(n-1)k}{r(p,y)^2}$. When $r(p,x) \ge r^{m_0} + 4r$, and $y \in B_x(2r)$, then $r(p,y) \ge r^{m_0}$, so $\forall y \in B_x(2r)$,

$$\operatorname{Ric} \ge -\frac{(n-1)k}{r(p,y)^2} \ge -\frac{(n-1)k}{r^{2m_0}}.$$

If $X = B_x(2r)$, by the theorem in [4], then there exists a constant $c_1(n) > 1$, such that

$$\int_{B_x(2r)} (f-A)^2 \le [V \times (2r)^{n_0 - n + 1}]^2 c_1^{1 + \frac{\sqrt{k}}{r^{m_0}} \times (2r)^{1 - n} \times V \times (2r)^{n_0}} \int_{B_x(2r)} |\nabla f|^2$$
$$\le C_N \times (2r)^{2m_0} \int_{B_x(2r)} |\nabla f|^2,$$

where the definitions of A, f are the same as the above.

§5. Proof of Theorem 1.1

Because the curvature of M is asymptotically nonnegative, for a given point p, we now choose a point $a \in M$. If we have no special expression in the following, we usually use r to denote the distance to p, R the distance to a.

Since $u \in H_d(M)$, there exists c such that $|u| \leq c(r^d + 1)$, of course, there exists c' such that

$$|u| \le c'(R^d + 1). \tag{5.1}$$

But we still denote it by $u \in H_d(M)$. By (4.2),

$$V_x(r) \le V r^{n_0} \le (r^{n_0} + 1)V, \tag{5.2}$$

so by (5.1) and (5.2),

$$I_u(a,R) \le {c'}^2 (R^d + 1)^2 (R^{n_0} + 1)V \le 4V {c'}^2 (R^{2d+n_0} + 1),$$

then

$$H_d(M) \subset HP_d(M) \subset P_d(M).$$

We will use the following two propositions to prove the theorem directly.

Proposition 5.1. Let (Y, d, μ) be a complete metric space with a locally finite positive Borel measure μ . For $a \in Y$, let $X = B_a(R)$, where $r(p, a) \ge R^{m_0} + 4R$, be a metric ball with $\mu(X) = 1$. Suppose that Y satisfies Property 2.1 and Property 2.2. Given $\beta > 0$, there exist at most N - 1 orthonormal (on $B_a(R)$) functions in $W_{\beta^2}(B_a(2R))$, where $N = N(\beta^2, C_D, C_N)$, $\beta > R > 2$, the definition of $m_0 = n_0 - n + 1$ is the same as the above.

$$W_{\beta^2}(B_a(R)) := \Big\{ f \in W^{2,1}(B_a(R)) \Big| \int_{B_a(R)} f^2 + R^2 \int_{B_a(R)} |\nabla f|^2 \le \beta^2 \Big\},$$

functions f_1, f_2, \cdots, f_m are orthonormal on $B_a(R)$, if

$$\int_{B_a(R)} f_i f_j = \delta_{ij}, \qquad \forall \, 1 \le i,j \le m.$$

Proposition 5.2. Let $u_1, u_2, \dots, u_{2k} \in HP_d(M)$ be linearly independent. Given $\Omega > 2$, there exist constants $C_H > \Omega^{2(2d+n_0)}$, $l \ge \frac{k}{2}C_H^{-1}$, and functions v_1, v_2, \dots, v_l in the linear span of u_i such that for $j = 1, 2, \dots, l$,

$$I_{v_j}(a, \Omega^2) \le 2C_H I_{v_j}(a, \Omega) = 2C_H,$$

$$J_{a,\Omega}(v_i, v_j) = \delta_{ij},$$
(5.3)

where a is a point satisfying $r(p, a) \ge \Omega^{m_0} + 4\Omega$, the definitions of m_0, d, n_0 are the same as the above.

The proofs of these propositions are as similar as those of Proposition 2.5 and Proposition 4.16 in [1] respectively.

Likewise, Proposition 5.1, Proposition 5.2 and Property 2.3 assure that the proof of Theorem 1.1 is as similar as that of Theorem 0.7 in [1], except that in this paper we let $X = B_a(\Omega)$, such that r(p, a) is sufficiently large.

References

- Colding, T. H. & Minicozzi II, W. P., Harmonic function on manifolds, Ann. Math., 146(1997), 725– 747.
- [2] Yau, S. T., Some function theoretic properties of complete Riemannian manifolds and their applications to geometry, *Indiana Univ. J.*, 25(1976), 659–670.
- [3] Gromov, M., Curvature, diameter and Betti numbers, Comment. Math. Hel., 56(1981), 179-195.
- [4] Buser, P., A note on the isoperimetric constant, Ann. Scient. Ec. Norm. Sup., 15(1982), 213-230.