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Abstract

The authors prove the space of harmonic functions with polynomial growth of a fixed
rate on a complete noncompact Riemannian manifold with asymptotically nonnegative
curvature is finite dimensional.
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§ 1 . Introduction

Recently Tobias H. Colding and Willian P. Minicozzi II proved a conjecture of Yau [1].

Yau’s Conjecture. For an open manifold with nonnegative Ricci curvature, the space
of harmonic functions with polynomial growth of a fixed rate is finite dimensional.

Now we will prove the conjecture of Yau is true under the condition of asymptotically
nonnegative curvature, that is,

Theorem 1.1. Let Mn be a complete noncompact Riemannian manifold with asymp-
totically nonnegative curvature, then the space of harmonic functions with polynomial growth
of a fixed rate is finite dimensional.

§ 2 . Preliminary

First, we give some definitions and notations.

Definition 2.1. We say that the curvature is asymptotically nonnegative if KM (x) ≥
−λ(r(x)), where λ(·) is a nonnegative and nonincreasing function on [0, +∞) and

∫ ∞

0

rλ(r)dr < +∞,

r(x) = dist(p, x) and p is a fixed point in M .
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Definition 2.2. We set Iu(a, r) =
∫

Ba(r)

u2, Ja,r(u, v) =
∫

Ba(r)

uv, where a is a point

in M, Ba(r) is a geodesic ball of radius r centered at p.

Definition 2.3. Let

Hd(M) = {u is harmonic, and |u| ≤ c(rd + 1)},
Pd(M) = {u | Iu(a, r) ≤ K(r2d+n0 + 1), n0 is some constant},

HPd(M) = {u is harmonic} ∩ Pd(M), where r(x) = dist(p, x).

The key to this paper is to prove that the following Property 2.1 and Property 2.2 are
true on a complete noncompact manifold with asymptotically nonnegative curvature.

Property 2.1. Let M be an n-dimensional complete noncompact manifold with asymp-
totically nonnegative curvature, then there exists CD < ∞ such that ∀x ∈ M, ∀ r ≥ 0,

Vx(2r) ≤ CDVx(r),

where Vx(r) = Vol(Bx(r)), Bx(r) = {y ∈ M | dist(x, y) < r}.
Property 2.2. We say Mn satisfies a local Neumann-Poicaré inequality if there exists

CN < ∞ such that ∀x ∈ M and r(p, x) ≥ rm0 + 4r (r > 0), f ∈ W 1,2
loc (M),

∫

Bx(2r)

(f −A)2 ≤ CN × (2r)2m0

∫

Bx(2r)

|∇f |2,

where A =
∫

Bx(2r)

f
/

Vx(2r), some constant m0 > 1 depending on n.

We will prove them in §3, §4 respectively.

In addition, we will use the following property which has been proved by S. T. Yau [2].

Property 2.3. If λ > 1, u is harmonic on Mn, ∀x ∈ M , and r > 0, then there exists
CF = CF (λ) < ∞ such that

r2

∫

Bx(r)

|∇u|2 ≤ CF

∫

Bx(λr)

u2.

§ 3 . Proof of Property 2.1

Before the proof of Property 2.1, we shall prove

Lemma 3.1. Suppose f(r) is a C2 function on (0, T ],

d

dr
(−f(r))− f2(r)

n− 1
≥ − (n− 1)k

r2
, lim

r→0+
f(r) = +∞.

Then

0 ≤ f(r) ≤ (n− 1)(1 +
√

1 + 4k)
2r

, (3.1)

where k > 0, T can tend to +∞.
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Proof. We use comparison method to discuss the inequality.
Assume

b1(r) =
−1 +

√
1 + 4k

2(n− 1)k
r, b2(r) =

−1−√1 + 4k

2(n− 1)k
r. (3.2)

Then
dbi

dr
+

(n− 1)k
r2

b2
i −

1
n− 1

= 0, i = 1, 2 (3.3)

and b1(0) = b2(0) = 0.

ḃ1(r) =
1

n− 1
− (n− 1)k

r2
b2
1 =

−1 +
√

1 + 4k

2(n− 1)k
, (3.4)

ḃ2(r) =
1

n− 1
− (n− 1)k

r2
b2
2 =

−1−√1 + 4k

2(n− 1)k
. (3.5)

Let A = 1
f(r) . Then

dA

dr
+

(n− 1)k
r2

A2 − 1
n− 1

≥ 0 (3.6)

and A(0) = 0.
From the Taylor expansion of A at r = 0, we know that

A2 = [Ȧ(0)r + O(r2)]2 = Ȧ2(0)r2 + O(r3), (3.7)

then

Ȧ(0) ≥ 1
n− 1

− (n− 1)k
A2

r2

∣∣∣
r=0

=
1

n− 1
− (n− 1)kȦ2(0), (3.8)

i.e., Ȧ1(0) ≥ ḃ1(0) or Ȧ2(0) ≤ ḃ2(0).
We will prove Ȧ2(0) ≤ ḃ2(0) is not valid.
If not, then there exists η1 ≤ T , such that for 0 ≤ r ≤ η1, A2(r) ≤ b2(r) < 0,

− (n− 1)(1 +
√

1 + 4k)
2r

≤ f(r) ≤ 0. (3.9)

This contradicts the fact that lim
r→0+

f(r) = +∞.

We know from Ȧ1(0) ≥ ḃ1(0) that there exists η2 ≤ T , such that for 0 ≤ r ≤
η2, A1(r) ≥ b1(r).

If ∃ η2 = T , then we complete the proof; if ∃ η2 < T , we can prove that ∀ r ∈
(0, T ], A1(r)≥ b1(r), if not, (0, r1] is the maxium connected closed interval, where r1 <

T, A1(r1) = b1(r1) and Ȧ1(r1) < ḃ1(r1),

ḃ1(r1) > Ȧ1(r1) ≥ 1
n− 1

− (n− 1)k
A2

1

r2

∣∣∣
r=r1

=
1

n− 1
− (n− 1)k

b2
1

r2

∣∣∣
r=r1

,

this contradicts the definition of b1. So

0 ≤ f(r) ≤ (n− 1)(1 +
√

1 + 4k)
2r

.



526 ZHOU, C. H. & CHEN, Z. H.

Lemma 3.2. Suppose M is an n-dimensional complete noncompact Riemannian man-

ifold, whose radial Ricci curvature ≥ − (n− 1)k
r(p, x)2

, where k > 0, p is a fixed point, r(p, x) is

the distance between p and x. Then its metric can be written as ds2 = dr2 +
n−1∑
i,j=1

gij(r, θ),

we have

0 ≤ ∂ log
√

g

∂r
≤ (n− 1)(1 +

√
1 + 4k)

2r
, (3.10)

where g = det(gij).

Proof. We divide the proof into three steps.
The first step: when x is not in the cut-locus of p, that is, x is differentiable, assume

γ(x) is a normal geodesic which issues from p, choose an orthonormal frame {ei}n
i=1 by

parallel transport along the geodesic, en = ∇r and ∇en
en = 0.

Let ∇ei
en = uijej , ∇en

ei = λijej ,

uij = 〈∇ei
en, ej〉 = ei〈en, ej〉 − 〈en,∇ei

ej〉 = −∇ei
ej(r)

= eiejr −∇eiej(r) = Hr(ei, ej) = uji, (3.11)

λij = 〈∇enei, ej〉 = −〈ei,∇enej〉 = −λij , (3.12)

− (n− 1)k
r2

≤ Ric(en, en) =
n−1∑

i=1

〈R(ei, en)en, ei〉

= −
n−1∑

i=1

〈∇en∇eien, ei〉 −
n−1∑

i=1

〈∇∇ei
enen, ei〉+

n−1∑

i=1

〈∇∇eneien, ei〉

=
d

dr

(
−

n−1∑

i=1

uii

)
−

n−1∑

i,j=1

uijλji −
n−1∑

i,j=1

uijuji +
n−1∑

i,j=1

λijuji

≤ d

dr

(
−

n−1∑

i=1

uii

)
− 1

n− 1

( n−1∑

i=1

uii

)2

, (3.13)

where 4r =
n−1∑
i=1

uii, and lim
t→0+

4r(t) = +∞.

So by Lemma 3.1, at differentiable points, we have

0 ≤ 4r ≤ (n− 1)(1 +
√

1 + 4k)
2r

. (3.14)

The second step: when x is a cut-point to p, we will prove (3.14) is still valid.
We let E include all cut-locuses of p, M = Ω ∪ E, where Ω is a starlike domain, the

Lipschitz function r is differentiable in Ω, so by (3.14), in Ω we have

0 ≤ 4r ≤ (n− 1)(1 +
√

1 + 4k)
2r

. (3.15)

We choose ∀ϕ ∈ C∞0 (M), ϕ ≥ 0, since mess(E) = 0, then
∫

M

r4ϕ =
∫

Ω

r4ϕ.
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We can find a sequence of starlike subdomains Ωε such that Ωε ⊂⊂ Ω, lim
ε→0

Ωε = Ω, and
Ωε is interior contracting from Ω along r direction.

Since Stokes formula is true to Lipschitz function, and ϕ ∈ C∞0 (M), we have
∫

M

r4ϕ = −
∫

M

∇ϕ · ∇r = lim
ε→0

(−1)
∫

Ωε

∇ϕ · ∇r, (3.16)

the last equality is because |∇r| = 1 is almost valid and ∇ϕ is bounded.
By Green formula, one has

−
∫

Ωε

∇ϕ · ∇r =
∫

Ωε

4r · ϕ−
∫

∂Ωε

ϕ · ∂r

∂v
,

where v is an exterior normal direction. Because ϕ ≥ 0 and Ωε is interior contracting from
Ω along r direction, then ∂r

∂v > 0, and

−
∫

Ωε

∇ϕ · ∇r ≤
∫

Ωε

4r · ϕ ≤
∫

Ωε

(n− 1)(1 +
√

1 + 4k)
2r

ϕ, (3.17)

then we have
∫

M

r · 4ϕ ≤ lim
ε→0

∫

Ωε

(n− 1)(1 +
√

1 + 4k)
2r

ϕ

=
∫

Ω

(n− 1)(1 +
√

1 + 4k)
2r

ϕ =
∫

M

(n− 1)(1 +
√

1 + 4k)
2r

ϕ. (3.18)

So in the sense of distribution, ∀x, that is, ∀ r ∈ [0,+∞), we have

0 ≤ 4r ≤ (n− 1)(1 +
√

1 + 4k)
2r

. (3.19)

The last step: the proof of (3.10). Because 4 = ∂2

∂r2 + ∂ log
√

g

∂r
∂
∂r + 4′, where 4′

is a differential operator only consisting of ∂
∂θi , θi are local coordinates on Sn−1(1), for

1 ≤ i ≤ n− 1, then 4r = ∂ log
√

g

∂r . By (3.19), we have

0 ≤ ∂ log
√

g

∂r
≤ (n− 1)(1 +

√
1 + 4k)

2r
. (3.20)

Lemma 3.3. Let Mn be a complete noncompact manifold. If its radial Ricci curvature

≥ − (n− 1)k
r2

, then ∀α, 0 < α < 1, we have

Vp(r) ≤
( 1

α

)m+1

Vp(αr), (3.21)

Vy

(r

2

)
≤

( 1
α

)m+1

Vy

(αr

2

)
, ∀ y ∈ ∂Bp(r), (3.22)

Vp(r) ≤ Vol(Bp(k1r)−Bp((k1 − 1)r)), ∀ k1 ≥ 2, (3.23)

where k > 0, m =
(n− 1)(1 +

√
1 + 4k)

2
.



528 ZHOU, C. H. & CHEN, Z. H.

Proof. Because

0 ≤ ∂ log
√

g

∂r
≤ (n− 1)(1 +

√
1 + 4k)

2r
,

let m = (n−1)(1+
√

1+4k)
2 . Then ∀ 0 < α < 1, we have

| log
√

g(t, θ)− log
√

g(αt, θ)| ≤
∫ t

αt

∣∣∣∂ log
√

g

∂r

∣∣∣dr ≤ m ln
1
α

.

Then
√

g(t, θ) ≤
( 1

α

)m√
g(αt, θ), (3.24)

Vp(r) =
∫

Sn−1

∫ r

0

√
g(t, θ)dtdθ ≤

∫

Sn−1

∫ r

0

( 1
α

)m√
g(αt, θ)dtdθ

=
∫

Sn−1

∫ αr

0

( 1
α

)m+1√
g(t, θ)dtdθ =

( 1
α

)m+1

Vp(αr), (3.25)

so (3.21) is valid.
∀ y ∈ ∂Bp(r) and ∀x ∈ By( r

2 ), r(p, x) ≥ r(y, x), so

Ric(M) ≥ − (n− 1)k
r(p, x)2

≥ − (n− 1)k
r(y, x)2

,

then we can have (3.22) by proving similarly as (3.21).
Because ∂ log

√
g

∂r ≥ 0, then
√

g(r, θ) is increasing with r.

Vp(r) =
∫

Sn−1(1)

∫ r

0

√
g(t, θ)dtdθ ≤

∫

Sn−1(1)

√
g(r, θ)dθ

≤
∫

Sn−1(1)

∫ k1r

(k1−1)r

√
g(t, θ)dtdθ = Vol(Bp(k1r)−Bp((k1 − 1)r)). (3.26)

Lemma 3.4. Suppose that M is a complete noncompact manifold with asymptotically
nonnegative curvature. Then ∀ r > 0, 0 < α < 1, we have

Bp(2r)\Bp(r) ⊂
N⋃

i=1

Bxi(αr),

where xi ∈ Bp(2r)\Bp(r), and N is a constant independent of r.

Proof. Before proving this lemma, we quote [3, Theorem 2.2.B]: Let V n be a compact
manifold of diameter D and inf K ≥ −Q2, where K is the curvature of V, {Bxi(ε)}, i =
1, · · · , N , is a minimal covering, where xi ∈ V . Then N ≤ 80nDnε−n exp(nQD).

If V = Bp(2r)\Bp(r), then D = 4r. Since the curvature of M is asymptotically
nonnegative, there exists k > 0, such that the curvature at x ≥ − k

r(p,x)2 , so Q =
√

k
r , and

we let ε = αr, 0 < α < 1, then

N ≤ 80n
( 4r

αr

)n

exp
(
n×

√
k

r
× 4r

)
= 320nα−n exp(4n

√
k).

We complete the proof of this lemma.
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Proof of Property 2.1. By Lemma 3.4,

Bp

(9
8
r
)∖

Bp

(7
8
r
)
⊂

N⋃

i=1

Bxi

(r

8

)
,

where xi ∈ Bp( 9
8r)\Bp( 7

8r) and N is a constant independent of r, and for each Bxi(
r
8 ), there

exists yi ∈ ∂Bp(r) such that Byi(
r
2 ) ⊃ Byi(

r
4 ) ⊃ Bxi(

r
8 ), so

Bp

(9
8
r
)∖

Bp

(7
8
r
)
⊂

N⋃

i=1

Byi

(r

2

)
,

where N is a constant independent of r.
Because the curvature is asymptotically nonnegative, then there exists k > 0, such that

the curvature at x ≥ − k
r(p,x)2 , so Ricci curvature at x ≥ − (n−1)k

r(p,x)2 , and by Lemma 3.3,

Vp(r) ≤ C1Vp

(r

4

)
≤ C1Vol

(
Bp

(9
8
r
)
−Bp

(7
8
r
))

≤ C1

N∑

i=1

Vyi

(r

2

)
≤ C2Vz

(r

2

)

for some z ∈ ∂Bp(r). And

Vz

(r

2

)
≤ C3Vz

(r

4

)
≤ C4Vz1

(r

2

)
, (3.27)

where z1 ∈ ∂Bz( r
4 ) ∩ ∂Bp(r).

By Lemma 3.4, ∀ y ∈ ∂Bp(r), there is a piecewise smooth curve from y to z in
Bp( 9

8r)\Bp(7
8r) with length not greater than C5r, where some constant C5 is independent

of y, z, r. So by continuing the way of (3.27), we can find C6 so that

Vz

(r

2

)
≤ C6Vy

(r

2

)
, ∀ y ∈ ∂Bp(r),

that is,
Vp(r) ≤ C7Vy

(r

2

)
, ∀ y ∈ ∂Bp(r).

Now we divide the proof of Vx(2r) ≤ CDVx(r), ∀x ∈ M, into four cases.
Let r(p, x) = s.
(1) When r ≥ 2s.
By the triangle inequality, we know the geodesic ball Bx(2r) ⊆ Bp(2r + s), then

Vx(2r) ≤ Vp(2r + s). (3.28)

By Lemma 3.3,

Vp(2r + s) ≤
(2r + s

r − s

)m+1

Vp(r − s), (3.29)

but 2r+s
r−s ≤ 8, and Bp(r − s) ⊆ Bx(r), so

Vx(2r) ≤ 23m+3Vx(r). (3.30)

(2) When s
2 ≤ r ≤ 2s.

Vx(2r) ≤ Vp(2r + s) ≤
(2r + s

s

)m+1

Vp(s). (3.31)
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Because s
2 ≤ r ≤ 2s, then 2r+s

s ≤ 5 < 8, and by (3.27),

Vx(2r) ≤ 23m+3Vp(s) ≤ 23m+3C5Vx

(s

2

)
≤ 23m+3C5Vx(r) ≤ CDVx(r). (3.32)

(3) When s
4 ≤ r ≤ s

2 .

Vx(2r) ≤ Vp(2r + s) ≤
(2r + s

s

)m+1

Vp(s). (3.33)

Because s
4 ≤ r ≤ s

2 , then 2r+s
s ≤ 2. By (3.27) and (3.22) in Lemma 3.3, we have

Vp(s) ≤ C5Vx

(s

2

)
≤ C5

( s

2r

)m+1

Vx(r), (3.34)

so
Vx(2r) ≤ 2m+1C52m+1Vx(r) = 22m+2C5Vx(r) ≤ CDVx(r). (3.35)

(4) When r ≤ s
4 , i.e., 4r ≤ s, ∀ y ∈ Bx(2r), r(p, y) ≥ r(x, y) = 2r, so

Ric(M) ≥ − (n− 1)k
r(p, y)2

≥ − (n− 1)k
r(x, y)2

. (3.36)

By (3.22) in Lemma 3.3,
Vx(2r) ≤ 2m+1Vx(r) ≤ CDVx(r). (3.37)

So Property 2.1 indicates the volumn of M is polynomial growth whose growth degree
at most log CD

log 2 .

§ 4 . Proof of Property 2.2

Before the proof of this property, we will quote a theorem (see [4]): Let Xn be a
compact Riemannian manifold, whose Ricci curvature is bounded below by −(n − 1)R2,
where R ≥ 0, and ρ denotes injectivity radius of X, then ∀f ∈ W 1,2(X), there only exists a
constant c1(n) > 1 dependent on n, such that

∫

X

(f −A)2 ≤ (ρ1−nVol(X))2c1+Rρ1−nVol(X)
1

∫

X

|∇f |2,

where A =
R

X
f

Vol(X) .
By the assumption of curvature, from Property 2.1, we have

Vx(2r) ≤ CDVx(r),

i.e.,
Vx(r) ≤ V rn0 , (4.1)

where V = CDVx(1), n0 = log CD

log 2 . By the proof in §3, we know that n0 ≥ m + 1 > n. Let

m0 = n0 − n + 1, (4.2)

so this constant m0 > 1.
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Due to the assumption of curvature, there exists k > 0, such that the curvature at
y ≥ − k

r(p,y)2 and Ricci curvature ≥ − (n−1)k
r(p,y)2 . When r(p, x) ≥ rm0 + 4r, and y ∈ Bx(2r),

then r(p, y) ≥ rm0 , so ∀ y ∈ Bx(2r),

Ric ≥ − (n− 1)k
r(p, y)2

≥ − (n− 1)k
r2m0

.

If X = Bx(2r), by the theorem in [4], then there exists a constant c1(n) > 1, such that
∫

Bx(2r)

(f −A)2 ≤ [V × (2r)n0−n+1]2c
1+

√
k

rm0 ×(2r)1−n×V×(2r)n0

1

∫

Bx(2r)

|∇f |2

≤ CN × (2r)2m0

∫

Bx(2r)

|∇f |2,

where the definitions of A, f are the same as the above.

§ 5 . Proof of Theorem 1.1

Because the curvature of M is asymptotically nonnegative, for a given point p, we now
choose a point a ∈ M . If we have no special expression in the following, we usually use r to
denote the distance to p, R the distance to a.

Since u ∈ Hd(M), there exists c such that |u| ≤ c(rd + 1), of course, there exists c′

such that
|u| ≤ c′(Rd + 1). (5.1)

But we still denote it by u ∈ Hd(M).
By (4.2),

Vx(r) ≤ V rn0 ≤ (rn0 + 1)V, (5.2)

so by (5.1) and (5.2),

Iu(a,R) ≤ c′2(Rd + 1)2(Rn0 + 1)V ≤ 4V c′2(R2d+n0 + 1),

then
Hd(M) ⊂ HPd(M) ⊂ Pd(M).

We will use the following two propositions to prove the theorem directly.

Proposition 5.1. Let (Y, d, µ) be a complete metric space with a locally finite positive
Borel measure µ. For a ∈ Y , let X = Ba(R), where r(p, a) ≥ Rm0 + 4R, be a metric ball
with µ(X) = 1. Suppose that Y satisfies Property 2.1 and Property 2.2. Given β > 0,
there exist at most N − 1 orthonormal (on Ba(R)) functions in Wβ2(Ba(2R)), where N =
N(β2, CD, CN ), β > R > 2, the definition of m0 = n0 − n + 1 is the same as the above.

Wβ2(Ba(R)) :=
{

f ∈ W 2,1(Ba(R))
∣∣∣
∫

Ba(R)

f2 + R2

∫

Ba(R)

|∇f |2 ≤ β2
}

,

functions f1, f2, · · · , fm are orthonormal on Ba(R), if
∫

Ba(R)

fifj = δij , ∀ 1 ≤ i, j ≤ m.



532 ZHOU, C. H. & CHEN, Z. H.

Proposition 5.2. Let u1, u2, · · · , u2k ∈ HPd(M) be linearly independent. Given Ω >
2, there exist constants CH > Ω2(2d+n0), l ≥ k

2C−1
H , and functions v1, v2, · · · , vl in the linear

span of ui such that for j = 1, 2, · · · , l,

Ivj
(a, Ω2) ≤ 2CHIvj

(a,Ω) = 2CH ,

Ja,Ω(vi, vj) = δij ,
(5.3)

where a is a point satisfying r(p, a) ≥ Ωm0 +4Ω, the definitions of m0, d, n0 are the same as
the above.

The proofs of these propositions are as similar as those of Proposition 2.5 and Propo-
sition 4.16 in [1] respectively.

Likewise, Proposition 5.1, Proposition 5.2 and Property 2.3 assure that the proof of
Theorem 1.1 is as similar as that of Theorem 0.7 in [1], except that in this paper we let
X = Ba(Ω), such that r(p, a) is sufficiently large.

References

[ 1 ] Colding, T. H. & Minicozzi II, W. P., Harmonic function on manifolds, Ann. Math., 146(1997), 725–
747.

[ 2 ] Yau, S. T., Some function theoretic properties of complete Riemannian manifolds and their applications
to geometry, Indiana Univ. J., 25(1976), 659–670.

[ 3 ] Gromov, M., Curvature, diameter and Betti numbers, Comment. Math. Hel., 56(1981), 179–195.

[ 4 ] Buser, P., A note on the isoperimetric constant, Ann. Scient. Ec. Norm. Sup., 15(1982), 213–230.


